
AofA’10 DMTCS proc. AM, 2010, 439–452

Dynamic Threshold Strategy for Universal
Best Choice Problem

Jakub Kozik †

Theoretical Computer Science, Jagiellonian University,
ul. Łojasiewicza 6, 30-348 Krakow, Poland

We propose a new strategy for universal best choice problem for partially ordered sets. We present its partial analysis
which is sufficient to prove that the probability of success with this strategy is asymptotically strictly greater than 1/4,
which is the value of the best universal strategy known so far.
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Introduction
The secretary problem is one of the most commonly known best-choice problems. It models a situation of
n candidates applying for a single secretary position. The candidates are interviewed in a random order.
After each interview an irrevocable decision to accept or reject the current candidate is made. Once a
candidate is accepted, no more interviews are arranged. All candidates are linearly ordered according
to their qualifications, but the qualifications of the candidate are not known before the interview. The
objective is to choose the best candidate.

The classical result states that the best strategy guarantees a probability of success greater than e−1.
The strategy ignores the first rn candidates, and then chooses the first one better than all the candidates
interviewed so far. The number rn can be easily computed and it asymptotically behaves like e−1 ·n. For
precise definitions and historical view on the classical secretary problem consult [2].

Many variants of this classical problem have been considered (e.g. [2] for a brief overview and bib-
liography). The problem can be generalized by relaxing the assumption that the candidates are linearly
ordered. One of the natural extensions allows for several criteria, each one ordering the candidates lin-
early. In such a case the candidates are, in fact, partially ordered and the order has dimension not greater
than the number of criteria. The objective is to choose one of the maximal elements (comp. [4]). Similar
research has been done for other classes of partial orders (comp. [5]).

In the most general variant the candidates are partially ordered with no constraints imposed on the
order. The number of candidates is still known beforehand, and the objective is to choose one of the
candidates maximal in the partial order. It was an interesting question, whether there exists a strategy,
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with a probability of success greater than some positive constant (on every partial order). First such
strategy was presented by Preater [6]. The analysis provided in the paper showed that the probability of
success exceeds 1/8. Georgiou, Kuchta, Morayne and Niemiec [3] proved that, for a variant of Preater’s
strategy, this probability is no smaller than 1/4, and that, for every ε > 0, there exists a poset for which
this probability is smaller than 1/4 + ε.

The classical secretary problem shows that the asymptotic probability of success for the general prob-
lem cannot exceed e−1. The question what is the probability for the best possible strategy for the general
problem remains open.

In the present paper we propose a new strategy called The Dynamic Threshold Strategy, with a prob-
ability of success greater than 1/4 + ε for some ε > 0 and for all sufficiently large posets. As long as it
does not compromise our objective to show that the probability is greater than 1/4, we favor simplicity
of the presentation over the precision of given estimations. However, the actual asymptotic value of this
probability seems to be much bigger.

1 The universal best choice problem (UBC)
For the general definition of the universal strategy as a random variable which is some stopping time see
e.g. [6]. For our purposes it will be sufficient to consider specific subclass, namely stateless deterministic
strategies.

A pointed poset is a poset with a one distinguished element. A stateless deterministic strategy for UBC
is a (computable) function, that given a pointed poset P and a number n which is not smaller than the size
of P , returns accept or reject. The interpretation is straightforward – pointed poset is an induced poset
on the candidates presented so far, and the distinguished vertex is the current candidate. The value of the
function determines whether to accept or reject the current candidate.

Let P be a poset of size n. We assume that its nodes are labeled by distinct numbers from {1, . . . , n}.
For a permutation π of {1, . . . , n} let Pπ = (Pπ1 , . . . , P

π
n ) denote a sequence of pointed posets such that,

Pπj is a subposet of P induced by elements {π(1), . . . , π(j)}, with distinguished vertex π(j). Poset Pπj
is called the induced poset at time j. When the time j is clear from the context we call it just the induced
poset.

Let S be a stateless deterministic strategy. For every poset P of size n, and permutation of its elements
π (we call it a presentation order), we define the chosen element as an element π(j) (i.e. the j-th element
that comes) for a minimal j for which S(Pπj , n) = accept, and if there is no such j we put j = n. A
choice was a success if the chosen element is maximal in P . We put valS(P, π) = 1 if a choice was
success and valS(P, π) = 0 otherwise. For a poset P of size n we define the value of a strategy S on P
as:

pS(P ) =

∑
π∈Sn

valS(P, π)

n!

i.e. the probability of success when a presentation order is chosen uniformly at random (Sn denotes the
set of all permutations of {1, . . . , n}).

Let Pn be the set of all partial orders on the set {1, . . . , n}. For a fixed n ∈ N we define the value of a
strategy as a minimal value among all the values on the posets of size n:

pS(n) = min
P∈Pn

pS(P ).
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An asymptotic value of a strategy S is defined as

pS = lim inf
n→∞

pS(n).

The general problem is to determine the value pS for the best possible strategy. It is known to be not
greater than e−1, since no strategy can be better than the classical threshold strategy for the secretary
problem (i.e. on linear orders).

Remark 1.1 Preater’s Policy B ([6, 3]) is not stateless deterministic strategy. It needs both internal
state and randomization. Analogous definitions for strategies with internal state and randomization are
straightforward. The asymptotic value of the Policy B equals 1/4.

1.1 Dynamic Threshold Strategy
When the poset of candidates has many maximal elements, it seems reasonable not to choose the first
one that comes. Intuitively, the longer we wait, the more information about the poset we get, and the
chances of making a mistake get smaller. If, on the other hand, we wait too long, we can miss the last
maximal element, and lose. If we knew the number of maximal elements m, we could calculate the
expected time of arrival of the last maximal element, and focus on the elements that come around this
time. Unfortunately, we do not know m. However, when the number of maximal elements is large, we
can get some estimation of it by observing the number of maximal elements in the induced poset at the
time n/2 and multiplying it by 2 (where n, as usual, denotes the number of candidates). Although this
value is very likely to be overestimated, the probability of essential underestimation is rather low (we
expect that about half of maximal elements have already come). In most cases relying on it would make
us wait longer than we should. However, we can still observe the elements that come and actualize our
estimation accordingly. When the last maximal element comes, our estimation should be quite close to
the real value. Unfortunately, at that moment any overestimation results in a failure.

Our strategy can be summarized as: try to estimate the number of maximal elements, wait until some
threshold time trn(m) (trn(m) depends on the estimated value), and pick the first maximal element after
that time.

Definition 1.2 (Dynamic Threshold Strategy) For a poset with size n, pick an element v at the step t if
and only if:

• v is maximal in the induced poset at time t

• and t > n · e−1/m, where m is the number of maximal elements of the induced poset at time t.

Theorem 1.3 (Main result) There exists ε > 0 such that the asymptotic value of the Dynamic Threshold
Strategy exceeds 1/4 + ε.

2 Analysis of the strategy
The following sections are devoted to the analysis of the Dynamic Threshold Strategy (the strategy). The
analysis is divided in two parts. The first one deals with posets that have large number of maximal ele-
ments. The second one tackles the posets with number of maximal elements smaller than some constant.
Due to the limited space, we present the first part in detail, and sketch the proofs of the second one.
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2.1 Preliminaries

We define tr(m) = e−1/m and, for a positive integer n, we put

trn(m) = btr(m) · nc = dtr(m) · n− 1e.

Note that, since tr(m) is never rational for integer m ≥ 1, using floor (resp. ceiling) function does not
change the described strategy. We put also

ltr(m) = 1− tr(m) and ltrn(m) = n− trn(m).

For a fixed poset P , we usually denote by m the number of its maximal elements, and by n the number
of all its elements. The interval [tr(m), 1] is called the game interval. For a presentation order π, we say
that some element v comes in the interval [a, b] if a ≤ π−1(v)

n ≤ b.
Let P(n,m) denote the set of all posets on the set {1, . . . , n} with m maximal elements. We put:

p(n,m) = min
P∈P(n,m)

pS(P ),

where pS(P ) denotes the probability of success of our strategy on the poset P .
The following observation is crucial for the presented analysis.

Observation 2.1 For every time moment t, if the strategy did not pick an element before t, and k maximal
elements of P came before t, then it will not pick an element before the moment trn(k + 1).

Clearly, if k maximal elements came already, they can not be dominated by any elements that will come.
Therefore, the observed number of maximal elements will never be smaller than k. Moreover, if some
element comes and it is maximal in the induced poset, the observed number of maximal elements at that
time is not smaller than k+1. Hence it can not be picked unless it comes after trn(k+1). Note also, that
we usually do not know the actual value of k.

2.1.1 Hypergeometric distribution
In the presented analysis, in many places we meet random variables with hypergeometric distribution. For
nonnegative integers r, g, b the distribution HD(r, g, b+ g) can be defined as a distribution of number of
green balls in a random sample of size r, taken without repetitions from the urn containing g green balls
and b black balls. It is easy to see that probability of having k green balls in the sample is

(
g
k

)
gk·br−k

(b+g)r

where am = a · (a − 1) · . . . · (a − (m − 1)). E.g. for a poset of size n with m maximal elements
the number of maximal elements that come before trn(1) follows distribution HD(m, trn(1), n). For a
random variable X with distribution HD(r, g, b+ g) we have

E(X) =
rb

b+ g
, V ar(X) =

rbg

(b+ g)2

(
1− r − 1

b+ g − 1

)
(see e.g. [1] for the proofs). Note that the variance is smaller than the variance of analogous binomial
distribution (i.e. for sampling with repetitions).
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2.2 Large number of maximal elements
In this section we are going to prove that, for all sufficiently large m and n, the probability p(n,m) is
greater than 0.27.

First, we prove that for every γ ∈ (0, 1) and for all sufficiently large n and m, we do not pick an
element before time trn(γ ·m) with probability which is arbitrarily close to 1.

Lemma 2.2 For every γ ∈ (0.5, 1) and ε > 0 there exist M,N ∈ N such that for all m,n such that
M < m ≤ n > N we do not pick an element before time trn(γ ·m) with probability exceeding 1− ε .

Proof: Let us fix γ ∈ (0.5, 1), and consider three events:

1. at least one maximal element comes before trn(1),

2. at least half of maximal elements come before trn(2),

3. at least γ ·m maximal elements come before trn(m/2).

According to Observation 2.1 the first event guarantees that we do not pick an element before trn(2). The
second that we do not pick an element in the interval [trn(2), trn(m/2)), and the third – in the interval
[trn(m/2), trn(γ · m)). Therefore, if all these events occur, we can be sure of not picking an element
before trn(γ ·m).

It is not hard to see that for sufficiently large m and n the probability of each of the events is arbi-
trarily close to 1. Indeed, the first is trivial. The expected number of maximal elements before trn(2) is
asymptotically equal to m · tr(2) ≈ m · 0.605.., and the distribution of the number of elements before
trn(2) is concentrated around the mean, since the standard deviation grows like

√
m. The application of

the Chebyshev’s inequality shows that the probability of the second event goes to 1 with m → ∞. The
expected number of maximal elements that come after trn(m/2) converges to 2 (with m), and (1−γ) ·m
goes with m to infinity. It remains to apply the Markov’s inequality to see that the probability of the third
event goes to 1 with m→∞. 2

We analyze the behavior of p(n,m) in two regions. Let us put g(n) = n2/3 log n. First, we analyze
all the pairs (m,n) for which m > g(n), and n is greater than some fixed N (we call it Region 1). The
remaining part, i.e. all the pairs (m,n) for which M < m ≤ g(n) and n > N , for some fixed M,N is
called Region 2.

2.3 Region 1 ( m > g(n) )
We omit the analysis of the cases, when m > n/2, where it is easy to show that the probability of success
is much bigger than 0.25.

According to Lemma 2.2, for sufficiently large n, with arbitrarily large probability we can almost reach
the game interval without picking an element. We focus on the interval consisting of the last b2·n·ltr(m)c
steps, which we call the extended game interval. It turns out that for large enough n with probability
arbitrarily close to 1, there are no ”false maximal elements” in that interval.

Lemma 2.3 For every ε > 0 , for all sufficiently large n and for all m > g(n) the probability that some
not-maximal element comes in the extended game interval and it is maximal in its induced order, is smaller
than ε.
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Proof: We partition the set of not-maximal elements of the poset into m disjoint classes in such a way,
that j-th class is a subset of the strict lower cone of j-th maximal element (we take any such partition).

Let l be the length of the extended game interval. Clearly, we have at most l maximal elements and
at most l not-maximal elements in the extended game interval. Let us consider the construction of the
presentation order such that: first we choose positions for the maximal elements, then we distribute not-
maximal elements in the remaining positions and finally we distribute maximal elements in the chosen
positions. Before the last step, at most l classes have their representatives in the extended game interval,
we call their maximal elements forbidden elements. If none of the last l maximal elements in constructed
presentation order is forbidden, then we can be sure that there are no not-maximal elements in the extended
game interval which are maximal in the induced order. The probability of such an event is greater than:

(m− l)l

ml
>

(
m− 2l

m− l

)l
=

(
1− l

m− l

)l
,

and it is a matter of simple calculation to show that the assumption on the growth of m is sufficient for the
probability above to tend to 1, with n→∞, uniformly for all m > g(n). 2

According to the previous lemma and Lemma 2.2, asymptotically almost surely, we do not pick an
element before the extended game interval, and no ”false maximals” comes in that interval. In such a case
if at least one maximal element comes in the game interval, we can be sure of success. The probability,
that there is no maximal element that comes in the game interval is:

trn(m)m

nm
≤
(
trn(m)

n

)m
≤ tr(m)m = e−1.

Corollary 2.4 For every ε > 0, there exists N such that, for all n > N and all m > g(n) we have
p(n,m) > 1− e−1 − ε.

2.4 Region 2 (m ≤ g(n))
Let us start with the observation that, since g(n) is sublinear, we have

trn(m) ∼n n · tr(m)

uniformly, for all m ≤ g(n). For any functions f(n,m), g(n,m) writing f(n,m) ∼n g(n,m) we mean
asymptotic equivalence for n→∞, which is uniform for all m in currently considered range of m.

We are going to give a lower bound for p(n,m) by calculating the probability that we succeed and
exactly one maximal element comes in the game interval. We proceed in three steps. First we estimate
the probability that exactly one maximal element comes in the game interval. Then, that we do not pick
an element before the game interval. Finally, that we pick a maximal element in the game interval.

It is easy to see that the probability that exactly one maximal element comes in the game interval
depends only on the size of the poset n, and number of its maximal elements m, but not on its structure.
We denote this number by pm(n,m).

Lemma 2.5 For every ε > 0 and for all sufficiently large m,n we have pm(n,m) ≥ e−1 − ε.

The purely technical (but simple) proof is omitted.
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2.4.1 Probability of playing
According to Lemma 2.2 for every γ ∈ (0, 1) we do not pick an element before trn(γm) with probability
1− ε1 (for sufficiently large m and n).

It is also easy to check that for every ε2 > 0 we can choose γ ∈ (0, 1) sufficiently large to ensure that
the probability of having no maximal element in the interval [trn(γm), trn(m)] is greater than 1− ε2 (for
sufficiently large m and n). (The fact that g(n) is sublinear is used in the proof).

Finally, Lemma 2.5 says that with probability exceeding e−1−ε3 we have exactly one maximal element
in the game interval.

If all three events occur we have (m− 1) maximal elements before trn(γm), which guarantees that we
do not pick an element before the game interval. Therefore, for sufficiently large n,m, with probability
exceeding e−1 − ε1 − ε2 − ε3 exactly one maximal element comes in the game interval, and we do not
pick an element before the game interval. It remains to estimate the conditional probability of winning in
the game interval.

2.5 Submaximal elements
For a maximal element v we say that an element w is submaximal for v if and only if the strict upper
cone of w equals {v}. Suppose that v is the unique maximal element that comes in the game interval.
Let l denote the number of submaximal elements for v. We are going to show that, independently of the
value of l, the probability of taking the maximal element in the game interval is greater than 0.75. All the
probabilities in this section are conditioned on the event E defined as follows: we do not pick an element
before the game interval and the only maximal element that comes in the game interval is v.

2.5.1 Small number of submaximal elements
If l is small it is very likely that all of the submaximal elements for v come before the game interval. The
(conditional) probability of this event equals

pAll(n,m, l) =
(trn(m)−m+ 1)l

(n−m)l
,

and for all l < cm (for any constant c) we have

pAll(n,m, l) &n exp(− l

m− 1
).

It shows that for all l ≤ m/4 (and sufficiently large m and n) the probability of success in the game
interval is asymptotically greater than exp(−1/4) ≈ 0.779...

2.5.2 Large number of submaximal elements
When the number of submaximal elements is large in comparison tom, we usually see a lot of submaximal
elements in the beginning of the game interval, which postpones the decision of picking.

We assume that l ≥ 4m. Suppose that we see j submaximal elements at the beginning of the game
interval. They appear as maximal, therefore we will not take any elements before trn(m− 1 + j) unless
it is the last maximal element. Therefore, we succeed with probability exceeding

1− ltrn(m− 1 + j)

ltrn(m)
.



446 Jakub Kozik

Let us fix any γ ∈ (0, 1). It is not hard to show that, for sufficiently large m, with probability exceeding
1 − ε, we observe at least γl submaximal elements at the beginning of the game interval. Then we can
estimate from below the probability of success by

1− ltrn(m− 1 + γl)

ltrn(m)
− ε.

And one can easily check that we can chose γ such that, for all sufficiently large m and all l ≥ 4m, the
probability above exceeds 0.75.

2.5.3 Moderate number of submaximal elements
For the values of l between m/4 and 4m neither of two considered events is sufficient to grant the proba-
bility of success exceeding 0.75. In this region we consider three disjoint events (for a fixed γ ∈ (0, 1)):

A – all submaximal elements come before the game interval. The probability of this event is denoted
by pl0(n,m, l). In this case success is guaranteed.

B – all but one submaximal elements come before the game interval. The probability is denoted by
pl1(n,m, l). Then we can be sure of success if the last maximal element or the last submaximal ele-
ment comes before trn(m−1+ l) – (conditional) probability of success is denoted by pls1(n,m, l)

C – at least γ · l but no more than l − 2 submaximal elements come before trn(m). The probability
is denoted by plγ(n,m, l). Success is guaranteed if the last maximal element comes before trn(m+
γ · l − 1) – (conditional) probability of success is denoted by plsγ(n,m, l)

We give lower bounds for the described probabilities. By asymptotic inequality f(n) &n s(n) we mean
that there is a function h such that f(n) ≥ h(n) ∼n s(n).

Proposition 2.6 All of the following asymptotic (in)equalities w.r.t. n hold uniformly for all m larger
than some constant M and m < g(n), and all l such that m/4 < l < 4m. Asymptotic equalities w.r.t. m
hold uniformly for all l satisfying m/4 < l < 4m.

1. pl0(n,m, l) &n exp(− l
m−1 ) ∼m exp(− l

m ),

2. pl1(n,m, l) &n ltr(m) · l · exp( l−1m−1 ) ∼m
l
m exp(− l

m )

3. pls1(n,m, l) ∼n 1−
(
ltr(m+l−1)
ltr(m)

)2
∼m 1− ( m

m+l )
2

4. plγ(n,m, l) ∼n 1− pl0(n,m, l)− pl1(n,m, l)− ε(m), and ε(m)→m 0.

5. plsγ(n,m, l) ∼n 1− ltr(m−1+γl)
ltr(m) ∼m 1− m

m+γl

Proof: The first estimation is given in Section 2.5.1. In an analogous way we derive the second one. The
third, and the fifth are straightforward. In the fourth, we have to show that the asymptotic probability of
having more than (1− γ) · l submaximal elements in the game interval goes to 0 with m→∞.
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The number of submaximal elements in the game interval follows the hypergeometric distribution
HD(l, ltrn(m) − 1, n −m). Therefore, the expected number of elements in the game interval is even-
tually smaller than some positive constant. Since γ · l →m→∞ ∞ the Markov’s inequality finishes the
proof. 2

The total probability of success, (conditioned on the event E), is

pl0(n,m, l) + pl1(n,m, l) · pls1(n,m, l) + plγ(n,m, l) · plsγ(n,m, l). (1)

Hence, according to Proposition 2.6, we have the following asymptotic lower bound:

exp(−l/m)(1 +
l

m
· (1− (

m

m+ l
)2)) + (1− exp(−l/m) · (1 + l/m)) · (1− m

m+ γl
)

Replacing l by αm, we obtain:

exp(−α) · (1 + α(1− (
1

1 + α
)2)) + (1− exp(−α) · (1 + α)) · (1− 1

1 + γα
).

We are interested in α ∈ (1/4, 4) that minimizes the formula above. We used a software for symbolic
manipulation Mathematica [7], which was able to verify symbolically that the for sufficiently large γ ∈
(0, 1) the value of the formula above is greater than 0.75 for all values of α > 1/4. From numerical
approximations we know that the minimal value is obtained for α close to 1.57661.. and it is roughly
0.769487..

Three previous sections show that, independently of the number of submaximal elements, the condi-
tional probability of success in the game interval asymptotically exceeds 0.75. Additionally, we know that
the asymptotic probability that we do not pick before the game interval and that m− 1 maximal elements
come before the game interval exceeds e−1. This justifies the following statement:

Proposition 2.7 For any ε > 0 and all sufficiently large n and m, such that m < g(n), we have
p(n,m) > 0.75 · e−1 − ε.

Additionally, we have 0.75 · e−1 ≈ 0.2759... For the next section let us fix some ε < 0.01 and let M be
the minimal value for which there exists N such that for all m,n fulfilling n > N and M < m < g(n)
we have p(n,m) > 0.75 · e−1 − ε.

3 Small number of maximal elements
In this section we consider the posets with number of maximal elements not greater than M from the
previous section. For a small number of maximal elements, the submaximal elements play important
role. For maximal elements v1, . . . , vm let l1, . . . , lm be their corresponding numbers of submaximal
elements. For every maximal element vi we are going to give a lower bound for the probability of success,
conditioned on the event that vi is the maximal element that comes last. This lower bound depends only
on m and li and is denoted by ps(m, li). Then, the total probability of success is greater than the average
value of all ps(m, li) (for i = 1, . . . ,m). Moreover, it turns out that even the minimal value is greater than
0.25. Since the lower bound, that we are going to use, depends only on the number li (and m) but not on
the structure of a poset, we can assume that all maximal elements in our poset have the same number l of
submaximal elements – the number that minimizes ps(m, l).
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It is easy to see that for every ε and for large enough l, the number of submaximal elements that come
before trn(1) with arbitrary large probability is large enough that we will not pick a not maximal element
before the time (1 − ε) · n. Then, if the last maximal element comes in the interval (tr(m), (1 − ε)) we
can be sure of success. The number m is bounded, therefore choosing large enough l we can make sure
that asymptotic probability of success is greater than e−1. In the rest of this section we assume that l is
smaller than some constant L.

The situation, when the numbersm and l are bounded by constants, and we are interested in asymptotic
probability of success (i.e. when n goes to infinity), allows for the change of probabilistic model. We
give a lower bound for the probability of success which is based only on the times of arrival of maximal
and submaximal elements. The total number of maximal and their submaximal elements is bounded,
therefore assuming that for every n their arrival times are independent and uniformly distributed on the
set {1, . . . , n}, will not change the asymptotic value of our lower bound. Further we use m + l · m
independent random variables X1, . . . , Xm, Y1,1, . . . , Y1,l, . . . , Yl,1, . . . , Yl,l, with uniform distributions
on the unit interval. Variable Xi describes the normalized time of arrival of i-th maximal element, and
variable Yi,j the normalized time of arrival of j-th submaximal element of the i-th maximal element. For
β ∈ [0, 1] we define Iβ as follows:

Iβ = #{i ∈ {1, . . . ,m} : Xi ≤ β}+#{i ∈ {1, . . . , l} : Yk,i ≤ β}

where k is the index of the maximal element that comes last (Iβ is the number of maximal elements and
elements which are submaximal for the last maximal, that come before β). We define an event F as:

• there exists a time moment β < maxi=1,...,mXi such that β > tr(Iβ + 1)

• or maxi=1,...,mXi < tr(m).

The first condition says that there is a time moment before the arrival of the last maximal element, in
which any incoming element which is maximal in the induced poset would be picked. If this event does
not occur, we can be sure of not picking any element before the arrival of the last maximal. The second
condition corresponds to the situation when no maximal element arrives in the game interval. The event
complementary to F , abbreviated by S will be called a success. Now it is easy to see, that for all l < L,
and all m < M the probability of the event S gives a lower bound for the asymptotic probability of
success on all posets with m elements, in which all maximal elements have l submaximal elements. We
are going to show that this probability is greater than 0.25. Due to the limited space we present only brief
description of the methods.

3.0.4 Minimizing M

We look for the minimal m for which the arguments from the previous section work. Therefore, in our
new model we repeat the reasoning from the section 2.4 with several modifications. In particular, for
probabilities of exactly one element in the game interval and not picking before the game interval, we
use lower bounds which are increasing with m. We also take into account submaximal elements while
estimating the probability of not picking before the game interval. Then we obtain a lower bound for
the probability of exactly one element in the game interval and not picking before the game interval, by
evaluating our lower bound at m = 30. The last step – estimating the probability of success in the game
interval – is analogous to the developments of Section 2.5.3, i.e. we get a lower bound dependent only on
the quotient l/m, and show that it is always greater than 0.7. All these developments are rather technical
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and we made an extensive use of a system of symbolic manipulation Mathematica [7]. We were able to
show that the probability of winning exceeds 0.252 for all m ≥ 30.

Then, we repeat the previous scenario once again, this time using more exact lower bounds (in particular
nonmonotonic). Since we have only few values of m left to be analyzed, we can afford to check them all.
In particular we use the exact value of the probability of having exactly one maximal element in the game
interval, which is decreasing with m, and was previously estimated from below by e−1. In that way we
show that:

1. if there are no submaximal elements, then the probability of success is greater than 0.26 for all
m ≥ 8,

2. if there is at least one submaximal element, but no more than 3 ·m, then the probability of success
is greater than 0.26 for all m ≥ 6,

3. if there are more than 3 · m submaximal elements, then the probability of success is greater than
0.26 for all m ≥ 3,

3.0.5 Remaining cases
In the remaining cases the probability of not picking before the game interval needs a special care, since
the estimations used so far are very inaccurate for low values of m.

Let us fix a poset with m maximal elements. Let r be a positive integer, and suppose that the last
maximal element comes after tr(r). All maximal elements but the last one and all submaximal elements
are called semimaximal elements. Having k semimaximal elements, the probability that we do not pick
an element before the time tr(r), and that all k semimaximal elements comes before tr(r) is greater than
the value of function G(k, r) defined recursively as follows:

G(k, r) =


0, k + 1 < r
tr(1)k, r = 1∑
j=r−1,...,k

(
k
j

)
·G(j, r − 1) · (tr(r)− tr(r − 1))k−j , r > 1.

The first two cases are obvious: for r > 1 we can be sure of not picking before tr(r) if we did not pick
before tr(r − 1) and there were at least r − 1 semimaximal elements present at time tr(r − 1).

Let l denote the number of submaximal elements. Suppose that the last maximal element comes in the
interval (tr(k), tr(k + 1)), for k ≥ m. Then we can estimate the probability of success by:

P1(m, l, k) =
∑

j=k,..,m−1+l

G(j, k) ·
(

l

j −m− 1

)
· ltr(k)l−(j−m+1)).

Indeed, we need at least k semimaximal elements at tr(k) to be sure of not picking not maximal ele-
ment before tr(k + 1). If we have j semimaximal elements at tr(k), then exactly m − 1 of them must
be maximal elements. Therefore, we have

(
l

j−m−1
)

possibilities to choose the remaining submaximal
elements. Additionally, all j elements that come before tr(k) must be distributed in such a way that it
ensures not picking an element before tr(k) (this happens with probability greater than G(j, k)). Finally,
all the remaining submaximal elements must come after tr(k) (probability ltr(k)l−(j−m+1))).
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As a result, the probability that the last maximal element comes in the interval (tr(k), tr(k + 1)) and
we succeed is greater than:

P2(m, l) =
∑

k=m,...,m−1+l

m · (tr(k + 1)− tr(k)) · P1(m, l, k).

By a construction, the probability P2(m, l) is increasing with l. For each m = 1, 2, 3, 4, 5 the smallest l
for which P2(m, l) > 0.25 is resp.3, 4, 5, 6, 7.

For the remaining cases we consider another possibility of winning. The case when the last maximal
element comes after tr(m + l), has not been included in P2(m, l). In such a case we can be sure of
success if we do not pick before tr(m+ l− 1) and all semimaximal elements come before that time. The
probability of this event is greater than

P3(m, l) = m · ltr(m+ l) ·G(m− 1 + l,m− 1 + l).

Evaluating P2(m, l)+P3(m, l) for the remaining cases shows that the probability is greater than 0.25 for
all except m = 1, l = 1. In this case it is necessary for a success (in a sense of S), that the submaximal
element comes before tr(1) and maximal one comes after. The probability of this event is 0.2325...
However, in that case very simple analysis concerning subsubmaximal elements (i.e. elements whose
strict upper cones contains exactly maximal and submaximal element) shows that the probability is greater
than 0.26.

4 Concluding remarks
We have shown that asymptotic probability of success using Dynamic Threshold Strategy is strictly greater
than 0.25. It is an easy task to improve the given estimations, however at a cost of bigger complexity of the
calculations (and less clear presentation). Although the improvement might be considerable, we do not
think that it is possible to approach the value e−1 in this way. However, in many cases, when the estimated
value was close to 0.25, we took into account only the event when there was exactly one maximal element
in the game interval. Considering the cases of two or more maximal elements in the game interval would
probably improve our lower bound in an essential way. The other idea of improvement could be taking
into account subsubmaximal elements (and subsubsubmaximal etc.) Finally, it is important to remark
that, unlike the results of [6, 3] concerning Preater’s strategy, our results deals only with asymptotic value
of the strategy. However it is possible to alternate the strategy, by adding some randomization, to obtain
analogous results for all posets.
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