
AofA’10 DMTCS proc. AM, 2010, 373–386

The analysis of a prioritised probabilistic
algorithm to find large induced forests in
regular graphs with large girth

Carlos Hoppen†

Instituto de Matemática, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre-RS,
Brazil, 91509-900

The analysis of probabilistic algorithms has proved to be very successful for finding asymptotic bounds on parameters
of random regular graphs. In this paper, we show that similar ideas may be used to obtain deterministic bounds for
one such parameter in the case of regular graphs with large girth. More precisely, we address the problem of finding
a large induced forest in a graph G, by which we mean an acyclic induced subgraph of G with a lot of vertices. For a
fixed integer r ≥ 3, we obtain new lower bounds on the size of a maximum induced forest in graphs with maximum
degree r and large girth. These bounds are derived from the solution of a system of differential equations that arises
naturally in the analysis of an iterative probabilistic procedure to generate an induced forest in a graph. Numerical
approximations suggest that these bounds improve substantially the best previous bounds. Moreover, they improve
previous asymptotic lower bounds on the size of a maximum induced forest in a random regular graph.

Keywords: Probabilistic algorithms, graphs, large girth

1 Introduction and main results
An induced forest in a graph G is an acyclic induced subgraph of G. The problem of finding a large
induced forest in a graph G has been of great interest in graph theory, especially in its form known as the
decycling set problem, also called the feedback vertex set problem. A decycling set of a graph is a subset
of its vertices whose deletion yields an acyclic graph. Hence, induced forests and decycling sets are dual
concepts, as a set S ⊆ V induces a forest in G = (V,E) if and only if V \ S is a decycling set of G. The
problem of obtaining an acyclic subgraph of a graph G by removing vertices was already considered by
Kirchhoff (1847) in an early work on spanning trees. Erdős et al. (1986) addressed this problem stated in
terms of maximum induced trees.

Finding a minimum decycling set in a graph is listed among the NP-complete problems in the seminal
paper of Karp (1972). As a matter of fact, there is no efficient algorithm for this problem, unless P = NP ,
even in special families of graphs such as bipartite graphs, planar graphs or perfect graphs. Nevertheless,

†The author was partly funded by IM-UFRGS and by FAPESP (Proc. FAPESP 2007/56496-3).

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmAMind.html

374 Carlos Hoppen

there exist polynomial-time algorithms to solve instances of this problem in cubic graphs, permutation
graphs and interval graphs. Also, tighter bounds or even the exact value of the decycling number have
been determined for bipartite graphs and for graphs such as grids and cubes.

The hardness of determining an exact solution to this problem for general graphs has motivated a rich
literature on bounds on the maximum number of vertices in an induced forest. For instance, Alon et al.
(1987) showed that, if the average degree of an n-vertex graph G is at most d ≥ 2, then the maximum
cardinality τ(G) of a subset of vertices inducing an acyclic subgraph of G satisfies τ(G) ≥ 2n/(d + 1).
Whenever d + 1 divides n, this bound is tight, as shown by the graph containing n/(d + 1) disjoint
copies of the graph Kd+1. In the case of triangle-free graphs with maximum degree ∆, Alon et al. (2001)
established that τ(G)

n = Ω
(

log ∆
∆

)
as ∆ tends to infinity, which is tight for some classes of triangle-

free graphs. Another result in their paper gives a lower bound on τ(G) as a function of its order n, its
maximum degree ∆ and its independence number α(G), namely τ(G) ≥ α(G) + n−α(G)

(∆−1)2 , provided that
∆ ≥ 3.

Results concerning asymptotic bounds on the size of a maximum induced forest in a random regular
graph have also been obtained. This means that, if an r-regular graph on n vertices is chosen uniformly
at random over all such graphs, then the probability that the size of a maximum induced forest satisfies
such bounds tends to one as n tends to infinity. The best upper and lower bounds prior to the present work
have been given by Bau et al. (2002). As is the case with several bounds for random r-regular graphs,
their lower bounds are obtained through the analysis of a randomised algorithm over the probability space
of random regular graphs. It makes use of a standard tool in this area, the so-called Differential Equation
Method Wormald (1995). Hoppen and Wormald (2008) used a probabilistic algorithm for induced forests
in regular graphs to conclude that the numerical values in Bau et al. (2002) are also deterministic lower
bounds in the case of graphs with large girth, that is, every r-regular graph with sufficiently large girth has
an induced forest whose size is at least the lower bound given in Bau et al. (2002).

In this paper, we extend the procedure in Hoppen and Wormald (2008) to a class of iterative probabilistic
algorithms in regular graphs, which we call neighbourly algorithms. The main feature of this class is that
it allows for prioritised algorithms, that is, algorithms in which vertices that benefit the algorithm the most
are chosen with higher probability.

For a particular choice of parameters, the bounds obtained through the analysis of neighbourly algo-
rithms surpass the results of Hoppen and Wormald (2008). More precisely, we prove the following result.
Given r ≥ 3, consider the constant ξ(r) defined in (10) in terms of the solutions to the system of differ-
ential equations (9) with initial conditions given with p0 = 0.

Theorem 1.1 Let δ > 0 and r ≥ 3. Then there exists g > 0 such that every r-regular graph G on n
vertices with girth greater than or equal to g satisfies τ(G) ≥ (ξ(r)− δ)n.

Numerical approximations of the numbers ξ(r) are given in Table 1, and have been obtained by nu-
merically solving this system of differential equations. The numbers ξ1(r) and Ξ(r) in the table are the
lower bounds obtained in Hoppen and Wormald (2008) and the upper bounds found in Bau et al. (2002),
respectively. The numbers ξ(r) improve the bounds previously known for all values of r ≥ 4 for which
they were calculated. If r = 3, the best lower bound is τ(G) ≥ (0.75 − δ)n, for every δ > 0, implied
by the work of Edwards and Farr (2001). As we shall see, the bounds in this paper are also new best
asymptotic bounds for random regular graphs, improving, for all r ≥ 4, the bounds first given in Bau
et al. (2002).

375

Tab. 1: Lower and upper bounds on τ(G)/n

r ξ(r) ξ1(r) Ξ(r) r ξ(r) ξ1(r) Ξ(r)
3 0.7368 0.7268 0.7500 7 0.4746 0.4283 0.5403
4 0.6351 0.6045 0.6667 8 0.4415 0.3940 0.5086
5 0.5662 0.5269 0.6216 9 0.4137 0.3658 0.4811
6 0.5149 0.4711 0.5776 10 0.3898 0.3419 0.4570

It is not hard to see that, given a graph G with maximum degree r, we may construct a graph G′ by
taking copies of G and joining vertices in different copies so as to make G′ r-regular. This can be done
without decreasing the girth if sufficiently many copies of G are used. Moreover, we have the inequality
τ(G)/n ≥ τ(G′)/|V (G′)|, because the copy of G containing the most vertices in a largest induced forest
in G′ satisfies this property. Thus the bounds in Theorem 1.1 may be translated into bounds for graphs
with large girth and maximum degree r.

Corollary 1.2 Let δ > 0 and r ≥ 3. Then there exists g > 0 such that every graph G on n vertices with
maximum degree r and girth greater than or equal to g satisfies τ(G) ≥ (ξ(r)− δ)n.

Moreover, it is a well known fact (see for instance Bollobás (1980)) that, for fixed integers r and g, a
random r-regular graph G may asymptotically almost surely be turned into a graph G′ with maximum
degree r and girth at least g with the deletion of at most log n vertices. Corollary 1.2 then leads to the
following result.

Corollary 1.3 Let δ > 0 and r ≥ 3. Then a random r-regular graph G on n vertices asymptotically
almost surely satisfies τ(G) ≥ (ξ(r)− δ)n.

We shall see that, although asymptotic lower bounds on random regular graphs do not directly imply
the bounds on regular graphs with large girth, our analysis resembles the analysis of an algorithm in a
random graph. In other words, the random regular case is a source of inspiration in the design of the
algorithm, and part of the analysis consists of proving that the distribution of vertices of each type in an
instance of the algorithm is “random-graph-like” when the girth of the input graph is sufficiently large.

Furthermore, for graphs with large girth, the cardinality of a maximum induced forest is related to the
concept of fragmentability of a graph. Given a constant λ > 0 and an integer m, a graph is (λ,m)-
fragmentable if there is a set X ⊆ V (G) such that |X| ≤ λ|V (G)| and Y = V (G) \X is m-fragmented,
that is, every component of G[Y] has at most m vertices. For an integer r, define λ(r) as the infimum of
all constants λ such that there is an m for which every graph with maximum degree at most r is (λ,m)-
fragmentable. A remark in Haxell et al. (2008) relates, for a random r-regular graph G, the problem of
finding the cardinality of a minimum decycling set in G and the problem of finding the infimum of all λ
such that G is (λ,m)-fragmentable for some m. This relation can be easily restated in the case when G
is a graph with large girth and maximum degree r: for any r, g and ε > 0, there is an n0 such that, for
any r-regular graph G of order n ≥ n0 and girth larger than g, the size φ(G) of a minimum decycling
set in G satisfies |φ(G) − nλ(r)| < εn. Thus, the problem of finding bounds on λ(r) and on the size
of φ(G) of a minimum decycling set (and hence on the cardinality τ(G) of a largest induced forest) are
equivalent. The best upper bound on the fragmentability of r-regular graphs with girth sufficiently large
is λ(r) ≤ r−2

r+1 , as established by Edwards and Farr (2001). This bound gives the best possible result for

376 Carlos Hoppen

r = 3. Note that, in the case of induced forests, this implies the bound τ(G)/n ≥ 0.75− δ, where δ > 0
is arbitrary and G is a graph on n vertices. However, for all values of r ≥ 4 for which an approximation
of the bound given in this paper is calculated, the bounds provided here are superior, and hence they lead
to new best upper bounds for the fragmentability of regular graphs with large girth.

2 The algorithm
This section is devoted to the class of neighbourly algorithms. We define this class and prove some of its
main properties. We then present a general framework under which the behaviour of such algorithms can
be described in terms of the solution of a system of differential equations.

Algorithm 1 Neighbourly algorithm
Require: An r-regular graphG, a positive integerN , an initial probability p0, and vectors of probabilities

pi = (pi,j,k : 0 ≤ j ≤ 1, 0 ≤ k ≤ r − j), i = 1, . . . , N .
Ensure: The set P of light purple vertices.

1: Start with all the vertices of the graph coloured white. As an initialization step, colour each vertex
purple with probability p0, at random, independently of all others. Purple vertices are light purple if
no neighbours have also turned purple. Then colour non-purple vertices yellow if they have at least
two purple neighbours.

2: for i = 1, . . . , N do
3: Choose a set S of white vertices, where a white vertex with j purple neighbours and k yellow

neighbours is added to S randomly, independently of all others, with probability pi,j,k. Colour all
vertices in S purple, with a vertex being light purple if none of its neighbours lies in S. Then colour
non-purple vertices yellow if they have at least two purple neighbours.

4: end for

It is clear that the output P of this algorithm induces a forest in the input graph, as a cycle can only be
created in the set P of purple vertices if two adjacent vertices are chosen in the same step, in which case
they are not light purple. We should keep in mind that, although deleting all dark purple vertices from the
final forest is wasteful, this does not affect the asymptotic size of the forest produced. This could be easily
optimised in an actual implementation of this algorithm.

LetG = (V,E) be an r-regular graph with girth at least g. LetN be a fixed positive integer and consider
a set of probabilities pi,j,k, i ≥ 0, (j, k) ∈ I, where I = {(j, k) ∈ Z2 : 0 ≤ j ≤ 1, 0 ≤ k ≤ r − j}. The
random sets of white, yellow and purple vertices after i steps of the algorithm are denoted by Wi, Yi and
Pi, respectively, while W j,k

i is the set of white vertices with j purple neighbours and k yellow neighbours
after i steps. We shall analyse the performance of Algorithm 1 by calculating the probability of several
events related to this randomised algorithm, such as the probability of a fixed vertex having some given
colour at a fixed time. To achieve this, some independence results will be proved.

The first, which we call independence of vertex labelling, shows that the colouring produced by the
algorithm in a small connected subgraph H of G depends only on the isomorphism type of H , and not on
the particular vertices in the subgraph, where “small” is measured with respect to the girth of the graph.
More precisely, let u ∈ V and let u1, . . . , ur be its neighbours. For each s ∈ {1, . . . , r} and positive
integer m < g/2, the component Tu,s,m of G[{v : d(u, v) ≤ m} \ u] containing us is a tree, which we
consider as a rooted tree with root us. We shall refer to these trees as branches around u.

377

Lemma 2.1 (Independence of vertex labelling) Let u ∈ V and fix nonnegative integers i and t. Con-
sider t distinct neighbours us1 , . . . , ust of u and let d′1, · · · , d′t be positive integers such that 2(2i + 1 +
max{d′j}) < g. Then the probability that u has colour c and each Tu,sj ,d′j has colouring χj,d′j at time i
is independent of u and of the set of neighbours {us1 , . . . , ust}.
In particular, the values of wi,j,k = P(u ∈ W j,k

i), where u is a vertex of G, are independent of the
particular vertex u, as long as i is small in terms of the girth of g. The objective now is to calculate these
probabilities as functions of r ≥ 3, and of the probabilities p0 and (pi,j,k)0≤i≤N,(j,k)∈I when the input
graph G is r-regular and has girth g greater than 4N + 4. In the case when i = 0, these numbers depend
only on r and p0. Straightforward calculations lead to the formula

w0,j,k =

(
r

j

)(
r − j
k

)
pj0(1− p0)r−j+1 (1− h(r, p0))

k
h(r, p0)r−j−k, (1)

where h(r, p0) =
∑1
s=0

(
r−1
s

)
ps0(1 − p0)r−s. When i > 0, we aim to express the vector wi = (wi,j,k :

(j, k) ∈ I) as a function of pi = (pi,j,k : (j, k) ∈ I) and wi−1, which would allow us to inductively
calculate all the values in wi through a recurrence relation. To this end, we need a second independence
result, which we call conditional independence of branches. It specifies conditions under which the
colourings of a set of branches rooted at different neighbours of u are mutually independent. As usual,
we say that a collection of events H1, ...,Hm is mutually independent if, for any subset of the collection,
the joint probability of all events is equal to the product of the probabilities of the individual events.

Lemma 2.2 (Conditional independence of branches) Let u ∈ V and A,B ⊆ N(u), A ∩ B = ∅. Fix
nonnegative integers i and d′ such that 2(2i + 1 + d′) + 1 < g. Consider colourings χt of Tu,t,d′ ,
ut ∈ N(u) \ (A ∪ B) and let Ct be the event that Tu,t,d′ has colouring χt at time i. Then, conditional
upon the event {u ∈Wi∧(N(u)∩Pi = A)∧(N(u)∩Yi = B)}, the events Ct are mutually independent.

The importance of these independence results in the calculation of the probability of events in the
algorithm is illustrated by the following corollary.

Corollary 2.3 Let u ∈ V , A,B ⊆ N(u), A∩B = ∅, and ut ∈ N(u)\ (A∪B). Fix nonnegative integers
i and d′ such that 2(2i + 1 + d′) + 2 < g. Let χt be a colouring of the branch Tu,t,d′ and consider the
event Ct that Tu,t,d′ has colouring χt at time i. Then

P(Ct | u ∈Wi ∧ (N(u) ∩ Pi = A) ∧ (N(u) ∩ Yi = B)) = P(Ct | u ∈Wi ∧ ut ∈Wi).

An important special case of this result is that the probability P
(
v ∈W j,k

i | u ∈W j′,k′

i ∧ v ∈Wi

)
is

independent of j′ and k′ and can be denoted by qi,j,k. We may obtain a formula for qi,j,k in terms of the
probabilities wi,j′,k′ , namely qi,j,k =

(r−j−k)wi,j,k∑
j′,k′ (r−j′−k′)wi,j′,k′

. This implies that, for any white vertex, the
distribution of white neighbours of each type, that is, with given numbers of purple and yellow neighbours,
is as if the algorithm was applied to a random regular graph.

3 A framework for analysis
Using the independence results from the previous section, we are able to obtain a system of recurrence
equations of the form

wi = wi−1 + F(pi,wi−1) + E(pi,wi−1), i = 1, . . . , N, (2)

378 Carlos Hoppen

where F = (Fj,k)(j,k)∈I is given by the formula below. Details about the derivation of this formula are
in the full paper.

Fj,k(pi,wi−1) =− pi,j,kwi−1,j,k −
χ(pi,wi−1)

s(wi−1)
(r − j − k)wi−1,j,k

+ δj=1
χ(pi,wi−1)

s(wi−1)
(r − j − k + 1)wi−1,0,k

+
λ(wi−1)χ(pi,wi−1)

s(wi−1)2
(δk≥1(r − j − k + 1)wi−1,j,k−1 − (r − j − k)wi−1,j,k) .

(3)

Here, δE denotes the characteristic function for the event E, and we have

s(wi) =
1∑

j′=0

r−1−j∑
k′=0

(r − j′ − k′)wi,j′,k′ ,

χ(pi+1,wi) =

1∑
j′=0

r−1−j′∑
k′=0

pi+1,j′,k′(r − j′ − k′)wi,j′,k′

and λ(wi) =
∑r−3
k′=0(r − k′ − 1)(r − k′ − 2)wi−1,1,k′ . The vector function E = (Ej,k)(j,k)∈I is such

that every Ej,k = Ej,k(pi,wi−1) is a polynomial in the variables corresponding to the vector pi whose
coefficients are rational functions in the variables corresponding to wi−1; moreover, as a polynomial in
the first |I| variables, Ej,k contains only monomials of degree larger than one. This function E is called
the error function associated with Algorithm 1, as its influence is negligible when the probabilities pi,j,k
are small.

We now present a general strategy to analyse Algorithm 1. For fixed r and a given initial probability p0,
the vector of initial conditions w0(p0) = (w0,j,k(p0))(j,k)∈I is defined as in (1). To apply Algorithm to
an r-regular graph, we still need to define the number of steps N and the probabilities pi,j,k, 1 ≤ i ≤ N ,
(j, k) ∈ I. For the latter, fix a positive integer m and a sequence of real numbers x−1 = 0 < x0 < x1 <
· · · < xm. We specify bounded nonnegative functions p̂j,k : [0, xm) → R for every (j, k) ∈ I, which
are required to be piecewise continuous with discontinuities restricted to the set {x0, . . . , xm−1}. Now,
given a sufficiently small constant ε > 0, we may define the probabilities pi,j,k as pi,j,k = pi,j,k(ε) =
εp̂j,k(iε). Having the probabilities defined in this way is convenient, since we may consider arbitrarily
small probabilities by letting ε go to zero. The real numbers in the set {x0, . . . , xm−1} are related with
the points of phase transition in the algorithm, while x−1 and xm give starting and termination points.

For any fixed ε > 0, we consider an application of Algorithm 1 with the previous r, p0 and pi,j,k =
εp̂j,k(iε), for i ∈ {1, . . . , N} and (j, k) ∈ I. The number of steps N is given by N = bxm/εc. We also
require the input graph G to have girth larger than 4N + 4 to ensure that independence of vertex labelling
and independence of branches hold throughout the application of the algorithm. In particular, we look at
Algorithm 1 as a randomised function of the parameters r, p0, ε and p̂ = (p̂j,k)(j,k)∈I . However, as r and
p̂ will be fixed throughout the discussion, we shall treat the algorithm as a function of ε and p0 and call it
A(ε, p0).

Let wε,p0i,j,k denote the probability P(u ∈W j,k
i) for fixed values of ε and p0. By our previous discussion,

379

the quantities wε,p0i,j,k satisfy a system of recurrence equations of the form

wε,p0i,j,k = wε,p0i−1,j,k + Fj,k(εp̂(iε),wε,p0
i−1) + Ej,k(εp̂(iε),wε,p0

i−1), i = 1, . . . , N, (j, k) ∈ I,
wε,p00,j,k = w0,j,k(p0), (j, k) ∈ I.

(4)

When the error function is negligible, the behaviour of this system is determined by the functions fj,k(x,y)
= 1

εFj,k(εp̂(x),y) = Fj,k(p̂(x),y), which, for (j, k) ∈ I, describe the expected rate of change of
the variable indexed by it in an application of A(ε, p0). To emphasise the fact that each phase is anal-
ysed separately, we use the notation f (t)

j,k(x,y) = fj,k(x,y) for every (j, k) ∈ I, t ∈ {0, . . . ,m} and
x ∈ [xt−1, xt). With foresight, it is important to assume that these functions satisfy additional technical
conditions. First, for any fixed constants M,γ > 0, we define the region

Ωγ,M = {(x,y) ∈ R|I|+1 : 0 ≤ x ≤M, y0,0 ≥ γ and 0 ≤ yj,k ≤M, for every (j, k) ∈ I}, (5)

and we consider γ > 0 and M > xm in such a way that the vector of initial conditions (0, (w0,j,k(p0)))
lies in Ωγ,M . Note that γ and M may be chosen as functions of p0 only. We assume that the following
conditions hold.
(P1) The coefficients of the polynomialsEj,k = Ej,k(p,w), which are rational functions in the variables

w, do not have poles in the region Ωγ,M .
(P2) Each function fj,k is defined over the region Ωγ,M , and the functions f (t)

j,k are Lipschitz continuous
in the region Ωγ,M ∩

(
[xt−1, xt)× R|I|

)
, for each t ∈ {0, . . . ,m} and (j, k) ∈ I.

(P3) There exist functions ŵp0(x) = (ŵp0j,k(x))(j,k)∈I defined for x in the interval [0, xm) such that
(x, ŵp0(x)) ∈ Ωγ,M for every x and that

dŵp0j,k
dx

= f
(t)
j,k(x, ŵp0) in the interval [xt−1, xt), t = 0, . . . ,m

ŵp0j,k(xt−1) = βt−1,j,k,

(6)

where βt−1,j,k is equal to the initial condition w0,j,k(p0), if t = 0, and is inductively defined as
limx→x−t−1

ŵp0j,k(x) if t > 0.

Intuitively, the first condition ensures that the influence of the error term Ej,k(εp̂(iε),wε,p0
i−1) in equation

(4) is negligible in comparison with the influence of Fj,k(εp̂(iε),wε,p0
i−1). Combined with the fact that

Fj,k(εp̂(iε),wε,p0
i−1) = εfj,k(iε,wε,p0

i−1) for i = 1, . . . , N , this suggests that the system of differential
equations (6) is a natural approximation of the system of recurrence equations (4) as ε tends to zero.

Condition (P3) establishes that the system of differential equations (6) can be solved, while condition
(P2) guarantees that the functions describing the behaviour of the algorithm are well-behaved within each
phase. Using essentially the proof of convergence of Euler’s method for the solution of differential equa-
tions, we may establish that, as ε tends to zero, the solutions to (4) converge uniformly to the solutions to
(6) within the region Ωγ,M . As a matter of fact, to ensure that the comparison between these systems oc-
curs within the region Ωγ,M , we define the final stepNf = Nf (p0, ε) as the last step for which (iε,wε,p0

i)
is inside Ωγ,M . Observe that, because the solutions of (4) are probabilities in a well defined probability
space, the only reason for (iε,wε

i) to leave Ωγ,M is that wε,p0i,0,0 becomes smaller than γ or that some of
wε,p0i,j,k becomes larger than M . Note that the latter never occurs if we set M to be larger than 1, which will
be the case in our applications.

380 Carlos Hoppen

Lemma 3.1 For any ξ > 0 and p0 ∈ (0, 1), there exists ε′ > 0 such that, if 0 < ε < ε′, then∣∣∣wε,p0i,j,k − ŵ
p0
j,k(iε)

∣∣∣ < ξ, i = 0, 1, . . . , Nf = Nf (ε, p0).

One of the consequences of this result is that εNf → xm as ε→ 0. To see why this is true, observe that, in
the interval [0, xm), the derivative of ŵp00,0 is negative, hence ŵp00,0(x) is a decreasing function lying within
Ωγ,M . Moreover, Lemma 3.1 implies that wε,p0i,0,0 can be made arbitrarily close to ŵp00,0(iε) for ε sufficiently
small. This prevents the condition wε,p0i,0,0 ≥ γ from being violated until i is very close to xm/ε, which
establishes our claim.

In the following, for each 0 < ε < 1/C, where C is an upper bound on the values assumed by the
bounded functions p̂j,k, for every (j, k) ∈ I, let P̄ (ε, p0) be the random set of light purple vertices in an
instance of A(ε, p0) running for Nf = Nf (ε, p0) steps. Moreover, p̂j,k , ŵj,k and xm are defined as in
the previous discussion, and the conditions (P1), (P2) and (P3) are satisfied.

Lemma 3.2 Let r ≥ 3 be an integer. Given δ > 0 and p0 ∈ (0, 1), there exists ε′ > 0 such that, if
0 < ε < ε′ and G is an r-regular graph with n vertices and girth larger than 4Nf (ε′, p0) + 4, we have∣∣∣∣∣∣E|P̄ (ε, p0)| − n

p0(1− p0)r +

∫ εNf

0

∑
(j,k)∈I

p̂j,k(x)ŵj,k(x) dx

∣∣∣∣∣∣ ≤ δn.
Because the expected behaviour of this algorithm is the same for every r-regular graph with girth suffi-
ciently large, a bound on τ(G) may be obtained directly from the above theorem.

Corollary 3.3 Let r ≥ 3 be an integer. Given δ > 0 and p0 ∈ (0, 1), there exists g > 0 such that every
r-regular graph G on n vertices with girth greater than or equal to g satisfies

τ(G) ≥ n

p0(1− p0)r +

∫ xm

0

∑
(j,k)∈I

p̂j,k(x)ŵj,k(x) dx− δ

 .

The lower bounds on the size of an induced forest obtained in Hoppen and Wormald (2008) can also
be analysed in this framework, as they are derived from the analysis of a particular case of Algorithm 1,
namely the case where pi,1,k = p and pi,0,k = 0 for every i > 0, where p is any given positive constant.

4 Proof of Theorem 1.1
The aim of this section is to discuss the ideas behind the definition of the constants ξ(r) in the statement
of Theorem 1.1, as well as the validity of this theorem, which is an application of the framework of the
previous section with an appropriate choice of parameters.

Before describing the choice of parameters, we address the intuition behind our approach. An operation
consists of selecting a white vertex v, colouring it purple, and possibly colouring some of its neighbours
yellow according to the rules of the algorithm. An operation is said to be of type (j, k) if v has j purple
and k yellow neighbours prior to its selection. We rank operations of different types according to their
benefit to the algorithm, and the probability functions p̂j,k(x) are fixed so as to give priority to higher-
rank operations. One criterion is quite natural: a white vertex with many yellow neighbours is high on
the priority list, as any purple vertex obtained in this way is expected to cause fewer white vertices to
turn yellow. As a second criterion, note that, because Algorithm 1 can only capture local information, an

381

unchosen vertex with multiple purple neighbours is automatically discarded (i.e., it turns yellow), even if
its addition to the forest would not create cycles, but only merge some of its components. Thus creating
extra components after the initial step of the algorithm is wasteful, and we avoid selecting white vertices
with no purple neighbour after the initial step of the algorithm.

For convenience, white vertices devoid of white neighbours are also not selected. This is because, on
the one hand, they cannot become yellow in a later step, and, on the other hand, they can all be added to
the induced forest at the end of the algorithm without creating cycles.

In light of the above, we may restrict the above set of operations and say that the algorithm performs an
operation of type t when it chooses a white vertex adjacent to one purple vertex and to t yellow vertices,
where t ∈ {0, . . . , r − 2} and priority increases with t. To take maximum advantage of this ranking, one
would ideally choose, at a given step i, only eligible vertices with the highest ranking. Algorithms of this
type are often called degree-greedy and have been studied in several contexts when the input is a random
regular graph; see for instance (Wormald (1995), Wormald (2003)).

We now illustrate the behaviour that we would like to mimic. Suppose that the graph to which this
algorithm is applied is a large typical graph, or a random graph, and that the initialization step has already
been taken. For simplicity, we discuss the behaviour of a degree-greedy algorithm for which a single
vertex is processed in each iteration, with the vertex selected at step i being randomly chosen amongst
all vertices with highest ranking. Early in the algorithm, if we look at the white vertices with one purple
neighbour, most of them have no yellow neighbours. We say that the algorithm is in Phase 0, for which
selecting a vertex with no yellow neighbours is the basic operation. Early in the process, it is unlikely
that many white vertices with yellow neighbours will be created, and any such vertices created are chosen
in the next few steps until none remain. As the algorithm evolves, however, the occasional white vertices
with yellow neighbours become increasingly common, until we reach a point for which, as a white vertex
with one yellow neighbour is chosen, more vertices of this type tend to be created, that is, they begin to
regenerate themselves faster than they are consumed. Our algorithm now enters Phase 1, whose basic
operation is to choose a white vertex with one purple neighbour and one yellow neighbour. In general,
when the algorithm is in Phase k, the basic operation consists of selecting a vertex with one purple
neighbour and k yellow neighbours. Again, white vertices with a purple neighbour and more yellow
neighbours may be created during this phase, and they are all selected before another basic operation is
performed. There will be a point in which we either run out of basic vertices, and the algorithm has to
stop, or the vertices with one purple and k + 1 yellow neighbours regenerate themselves faster than they
are consumed, which marks the transition of the algorithm to Phase k + 1.

Now, if we want to use these ideas to find parameters for Algorithm 1, we have to think of a “depriori-
tised” version of the above discussion, as we are not allowed to choose a single vertex at each step (there is
a limited number of iterations until the independence provided by our independence lemmas breaks down,
and so does our analysis). In other words, we will set the parameters so that the proportion of vertices of
each type chosen by the algorithm forces the expected behaviour to follow the previous characterization,
even though there is no guarantee that vertices with the highest ranking are chosen.

To this end, let α` denote the proportion of vertices of type ` among all the chosen vertices at some
step of the algorithm. On the one hand, if the algorithm is in Phase t, we wish to have

∑r−2
`=t α` = 1,

as no vertices with fewer than t yellow neighbours should be chosen. On the other hand, using the
independence obtained in the previous section, it is not hard to calculate the expected change on the
proportion of vertices of each type if all the vertices processed have a single type, say type t. As a matter
of fact, for 0 ≤ t ≤ r − 2 and (j, k) ∈ I, the expected change in the proportion of vertices of type (j, k)

382 Carlos Hoppen

when all the vertices processed have type t is given by the formula

φj,k
(t)(x,w) = −δk,tδj,1 − (r − j − k)(r − t− 1)wj,k/s(w)

+ (r − t− 1) ((r − j − k + 1)wj,k−1δk≥1 − (r − j − k)wj,k)λ(w)/s(w)2

+ δj,1(r − j − k + 1)(r − t− 1)wj−1,k/s(w),

(7)

where s(w) = s(w0,0, . . . , w0,r, w1,0, . . . , w1,r−1) =
∑1
j′′=0

∑r−j
k′′=0(r − j′′ − k′′)wj′′,k′′ and λ(w) =∑r−3

k′′=0(r − k′′ − 1)(r − k′′ − 2)w1,k′′ .
By the previous discussion, while the algorithm is in Phase t, white vertices with one purple neighbour

and k > t yellow neighbours should not regenerate themselves faster than they are consumed, which leads
to the equations

∑r−2
`=t α`φ

(`)
1,k = 0 if t < k ≤ r − 2. Hence the proportion α(t)

k of operations of type k
performed by the algorithm while in Phase t, for a fixed t ∈ {0, . . . , r− 2}, is given by the solution to the
linear system 

1 1 . . . 1

φ
(t)
t+1 φ

(t+1)
t+1 · · · φ

(r−2)
t+1

· · · · · ·
· · · · · ·

φ
(t)
r−2 φ

(t+1)
r−2 · · · φ

(r−2)
r−2





α
(t)
t

α
(t)
t+1

·
·

α
(t)
r−2


=



1

0

·
·
0


. (8)

Let M (t) denote the matrix in this equation. When its determinant is nonzero, the unique solution to

this system is given by α(t)
t (x,w) =

1−
∑r−2

`=t+1(r−`−1)a`

1+
∑r−2

`=t+1(`−t)a`
and α(t)

k (x,w) = (r−t−1)ak
1+

∑r−2
`=t+1(`−t)a`

, if k > t,

where ak = ak(x,w) = −(r− k− 1)w1,k/s+ (r− k)w0,k/s+ [(r− k)w1,k−1− (r− k− 1)w1,k]λ/s2,
with s = s(w) and λ = λ(w) defined as before.

Given p0 ∈ (0, 1), and for constants 0 = x−1 < x0 < · · · < xm, this discussion suggests the system
of differential equations

dwp0j,k
dx

= f
(t)
j,k(x,w(x)) for x ∈ [xt−1, xt), w

p0
j,k(xt) = µp0t,j,k for every (j, k) ∈ I, (9)

where f (t)
j,k(x,w) =

∑r−2
`=t α

(t)
` φ

(`)
j,k and the numbers µp0t,j,k are defined as follows. If t = −1, it is equal

to the initial condition w0,j,k(p0) defined in equation (1). If 0 ≤ t ≤ m, µp0t,j,k = limx→x−t
wp0j,k(x).

To prove Theorem 1.1, we proceed in a somewhat counterintuitive way, which mirrors the analysis of
deprioritised algorithms undertaken in Wormald (2003) in the context of random regular graphs. We first
study the differential equations (9) with p0 = 0, and we show that there is a nonnegative integer b and real
numbers 0 < x0 < . . . < xb so that there is a solution w to (9) such that 0 ≤ wj,k(x) ≤ 1 for x in the
interval [0, xb). Moreover, the functions α(t)

k (x,w(x)) also lie in [0, 1] for x ∈ [0, xb), t ∈ {0, . . . , b} and
k ∈ {t, . . . , b}.

By analysing the sensitivity of the system to its initial conditions, we may then extend this to small
values of p0, that is, we may show that there is a positive constant p′0 for which we may define well-
behaved phase-transition functions x0, . . . , xb : [0, p′0] → R+ such that, for 0 < p0 < p′0, there is
a solution wp0 = (wp0j,k) of (9) satisfying 0 ≤ wp0j,k(x) ≤ 1 for every (j, k) ∈ I and every x in the

383

interval [0, xb(p0)), with phase transitions at the points x0(p0) < . . . < xb−1(p0). We also have 0 ≤
α

(t)
k (x,wp0(x)) ≤ 1 for x ∈ [0, xb(p0)), for all t ∈ {0, . . . , b} and k ∈ {t, . . . , r − 2}. We are then

able to appropriately set the functions p̂j,k based on these solutions. In other words, we use solutions to
the desired system of differential equation to define the parameters in such a way that the behaviour of
Algorithm 1 is described by these differential equations.

The details of this process are quite technical and will apear in the full paper. In what follows, we
informally describe the main ideas involved in the study of the differential equations (9) with p0 = 0,
which is done inductively as follows. We define a constant γ such that the initial conditions lie in the
region Ωγ,1. The main tool for extending the initial conditions to solutions within this region is the
following standard result in the theory of first order differential equations (see Hurewicz (1958)).

Lemma 4.1 If a set of functions fi : Rs+1 → R is Lipschitz continuous in a bounded region Ω and the
point (x′, y′1, . . . , y

′
s) lies in Ω, then the solution of the system of differential equations

dzi
dx

= fi(x, z1, . . . , zs), i = 1, . . . , s

with initial conditions zi(x′) = y′i, i = 1, . . . , s may be uniquely extended arbitrarily close to the bound-
ary of Ω.

There are two main concerns as we apply this result to Phase 0 of the system of differential equations (9)
with p0 = 0. First we wish this phase to be non-degenerate, that is, that the solutions may extended
within Ωγ,1 for x in an interval [0, x0) with x0 > 0. Moreover, we wish to ensure that the quantities
α

(0)
k (x,w(x)) represent proportions, that is, they lie in the interval [0, 1]. To this end, at the start of the

phase, we verify that: (i) the determinant of the matrixM (0) in (8) is bounded away from zero at the point
(0,w(0)); (ii) for all (j, k), either the value of wj,k(0) is bounded away from the corresponding boundary
in Ωγ,1, or its first non-zero derivative is bounded away from zero in such a way that the solution points
into the region; (iii) for all k, if α(0)

k (0,w(0)) is not identically zero, it is either bounded away from the
boundaries of the interval [0, 1], or its first non-zero derivative is bounded away from zero in such a way
that it points into the interval (0, 1).

There are several natural conditions for Phase 0 to end. For instance, the solution (x,w(x)) could
approach the boundary of Ωγ,1, which would prevent the solution of (9) from being extended further based
on Lemma 4.1. Moreover, the determinant det(M (0)(x,w(x)) could approach zero, or the proportions
α

(0)
k (x,y(x)) could become negative or larger than one for some value of k. Let x0 be the infimum of

all x > 0 for which at least one such conditions hold. The initial conditions tell us that x0 > 0. If
any termination condition other than α(0)

0 (x,w(x)) = 0 is active at x0, or if α(0)
0 (x0,w(x0)) = 0 but

its derivative with respect to x is nonnegative at this point, Phase 0 is said to be the final phase, and
we fix b = 0 and xb = x0. The reason behind this condition is that α(0)

0 (x0,w(x0)) = 0 implies
that the derivative of φ(1)

1,1(x,w(x)) equals zero at the point x0, that is, vertices of type (1, 1) start to
regenerate themselves faster than they are consumed when they are processed by the algorithm. Moreover,
if α(0)

0 (x0,w(x0)) = 0 is the single termination condition that holds at x0, we ensure that the starting
conditions for the following phase, namely Phase 1, are satisfied, which implies that it can be extended
to a point x1 > x0, the infimum of all x > x0 for which one of the termination conditions hold, that is,
the determinant det(M (1)(x,w(x)) approaches zero, the proportions α(1)

k (x,w(x)) become negative or
larger than one for some value of k, or the solution w(x) approaches the boundary of Ωγ,1. Once again,

384 Carlos Hoppen

Phase 1 is said to be the final phase if any termination condition other than α(1)
1 (x,w(x)) = 0 is active at

x1, or if α(1)
1 (x1,w(x1)) = 0, but its derivative with respect to x is nonnegative, otherwise Phase 2 starts.

Let b denote the index of the final phase. We first discuss the dependency of b and x0, . . . , xb on the
constant γ. On the one hand, it is clear that, by choosing a smaller value of γ, there is no change in
the values of x0, . . . , xb−1, since all the conditions and termination conditions would be verified in the
same way. However, if the only active termination condition at xb is w1,b(xb) = γ, it may be the case
that, by decreasing γ, the solution of the differential equation could be extended beyond xb. It is even
conceivable that a different termination condition would then become active, which could potentially
originate a new phase. However, if b(γ) denotes the index of a final phase for a particular choice of γ, the
limit b = limγ→0+ b(γ) is well defined, since b(γ) is bounded above by r − 2 and is non-decreasing as
γ decreases. Moreover, since b(γ) is integer-valued, we know that this limit is achieved for γ sufficiently
small. For this value of b, we may also define xb = limγ→0+ xb(γ), since xb(γ) is non-decreasing as γ
decreases, and it is easy to see that 1 is an upper bound on its value. We may now define the constant

ξ(r) = xb + w0,r(xb) + w1,r−1(xb). (10)

The lower bounds on ξ(r) given in Table 1 were obtained by “solving” the system of differential equations
numerically, without using careful error bounds, but just apparent good convergence as the step size was
made smaller. The points of phase transition were determined by the termination conditions. However,
since the points of phase transition are not determined exactly, we also verified that, if we slightly perturb
the points in which there is transition from one differential equation to the next, the overall change in the
solutions is very small. Furthermore, we observed that, in a small interval in which a phase transition
seems to occur, the values given by the numerical calculations suggest that the remaining conditions are
“far” from being satisfied, hence we have numerically verified that the appropriate termination condition
is active at the end of the phase, which ensures that the next phase does start.

To conclude the paper, we would like to emphasise that the main contribution of this work lies in the
method presented rather than in these particular new bounds, as it allows us, in some sense, to directly
analyse prioritised algorithms in regular graphs. A similar approach may be applied to a wide range of
problems in regular graphs with large girth.

References
N. Alon, J. Kahn, and P. D. Seymour. Large induced degenerate subgraphs in graphs. Graphs and

Combinatorics, 3:203–211, 1987.

N. Alon, D. Mubayi, and R. Thomas. Large induced forests in sparse graphs. Journal of Graph Theory,
38:113–123, 2001.

S. Bau, N. Wormald, and S. Zhou. Decycling number of random regular graphs. Random Structures &
Algorithms, 21:397–413, 2002.

B. Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs.
European Journal of Combinatorics, 1:311–316, 1980.

K. Edwards and G. Farr. Fragmentability of graphs. Journal of Combinatorial Theory, Series B, 82:30–37,
2001.

385

P. Erdős. Graph theory and probability. Canadian Journal of Mathematics, 11:34–38, 1959.

P. Erdős, M. Saks, and V. T. Sós. Maximum induced trees in graphs. Journal of Combinatorial Theory,
Series B, 41:61–79, 1986.

P. Haxell, O. Pikhurko, and A. Thomason. Maximum acyclic and fragmented sets in regular graphs.
Journal of Graph Theory, 57(2):149–156, 2008.

C. Hoppen and N. Wormald. Induced forests in regular graphs with large girth. Combinatorics, Probability
and Computing, 17(3):389–410, 2008.

W. Hurewicz. Lectures on Ordinary Differential Equations. MIT Press, Cambridge, Mass., 1958.

R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computation, pages
85–103. Plenum, New York, 1972.

G. Kirchhoff. Über die auflösung der gleichungen, auf welche man bei der untersuchung der linearen
verteilung galvanischer ströme geführt wird. Ann. Phys. Chem., 72:497–508, 1847.

N. Wormald. Differential equations for random processes and random graphs. The Annals of Applied
Probability, 5(4):1217–1235, 1995.

N. Wormald. Analysis of greedy algorithms on graphs with bounded degrees. Discrete Mathematics, 273:
235–260, 2003.

386 Carlos Hoppen

	Introduction and main results
	The algorithm
	A framework for analysis
	Proof of Theorem 1.1

