
AofA’10 DMTCS proc. AM, 2010, 359–372

Random Generation Using Binomial
Approximations

Dominique Gouyou-Beauchamps1,2 and Cyril Nicaud3†

1Univ Paris-Sud, Laboratoire LRI, UMR 8623, Orsay, F-91505 ;
2CNRS, Orsay, F-91405.
3Univ Paris-Est & CNRS, Laboratoire LIGM, UMR 8049, Marne-la-Vallée, France.

Generalizing an idea used by Alonso to generate uniformly at random Motzkin words, we outline an approach to build
efficient random generators using binomial distributions and rejection algorithms. As an application of this method,
we present random generators, both efficient and easy to implement, for partial injections and colored unary-binary
trees.

Keywords: random generation, binomial distribution

1 Introduction
Let C be a combinatorial class, and let Cn be the set of elements of size n in C. We are interested in
designing an efficient algorithm, the random generator, that given the input n returns an element of Cn
uniformly at random.

Several generic methods have been proposed for this purpose, such as the “recursive method” [NW78,
FZC94], Boltzmann samplers [DFLS04, FFP07, BFKV07] and Markov chain techniques (see [PW96]
for instance). Since Markov chain techniques usually lead to less efficient algorithms, they are only used
when other methods fail or when the generating time is not an issue; we will not discuss them further here.

The recursive method uses a preprocessing of the values of |Ck|, for 0 ≤ k ≤ n, which can be done
in O(n2) arithmetic operations (in fact one can do much better using advanced techniques [vdH02]); the
random generation of an element then requires O(n log n) operations [FZC94]. The main issue with this
method is that one has to deal with big integers since |Cn| is often of exponential or even factorial growth.
The method also requires quite some memory as n such integers must be stored in the preprocessing.
Note however that these numbers can be approximated by floating point numbers with only a slight loss
in uniformity [DZ99].

Boltzmann samplers generate random structures of size approximately n (i.e. in [(1− ε)n, (1 + ε)n]).
They work with floating point numbers and can often produce an algorithm of linear complexity with

†The second author was supported by ANR GAMMA - project BLAN07-2 195422

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmAMind.html

360 Dominique Gouyou-Beauchamps and Cyril Nicaud

almost no preprocessing. If one wants objects of size exactly n, a rejection method can be used; this often
leads, however, to superlinear average time complexities.

Besides those generic methods, ad hoc random generators have been developed for specific classes. A
famous example is Rémy’s algorithm [Rémy85] for generating random binary trees in linear time. The
advantage of such methods is that they are usually efficient, exact (in the sense of not using floating point
approximation) and only “small” numbers are manipulated.

In this direction, Alonso [Alo94] described an algorithm to generate Motzkin words (and therefore
unary-binary trees), with linear average time complexity. His method consists in generating the number
k of binary nodes with the correct probability law; then a unary-binary tree with n nodes having k binary
nodes can easily be generated using standard techniques. The number of trees with k binary nodes is over-
approximated by values that follow a binomial distribution: choosing k is therefore done using random
generations for a binomial law and rejections. As a result, the algorithm is linear on average and easy to
implement. In some sense, it is a discrete version of ideas developed by Devroye in the continuous case
(we refer to his book [Dev86] for more details).

In this paper we present how Alonso’s method can be reused for some other combinatorial classes. We
first apply it to generate partial injections on average time O(n5/4) (it is presented in Section 4). On the
way, we identified properties that are sufficient in order to apply this method (we present it first in this
paper, in Section 2). As an illustration we designed a random generator for colored unary-binary trees that
is linear on average (Section 5). The main feature of this method is that only small integers are handled
(at most polynomial in n) and that it only relies on a discrete uniform random generator of elements in
{1, · · · ,m}, where m is at most polynomial in n. Hence, these algorithms are still efficient if one uses a
one-bit generator only, which multiplies the average complexity by log n. Note that a first adaptation of
Alonso’s algorithm can be found in Denise’s PhD thesis [Den94].

In the following, [n] denotes the set of integers {1, · · · , n}. For any nonempty finite setX , Uniform(X)
is a black box procedure that returns an element of X uniformly at random. Its complexity is O(1) in
the unit-cost RAM model and O(log |X|) in the log-cost RAM model. The time needed to perform each
instruction or arithmetic operation is Θ(1) in the unit-cost RAM model, whereas it is proportional to the
logarithm of the size of the operands in the log-cost RAM model.

2 Description of the Method
Let An,k be a double sequence of non-negative integers such that, for any integer n, An =

∑
k∈NAn,k is

finite. Note that necessarily, for fixed n, An,k is nonzero for a finite set of values for k. For any given n,
we aim at generating an integer with probability law pn(k) = An,k/An.

The combinatorial framework is the following: we consider a combinatorial class A, and a function
ν : A → N mapping each structure A in A to the value ν(A) of a parameter. This could be the number
of cycles in a permutation, the number of leaves in a unary-binary tree, etc. Assume that it is not difficult
to generate uniformly at random an element of A of size n and parameter value equal to k. The problem
of generating uniformly at random an element of A can then be reduced to the problem of choosing the
value of the parameter with correct probability: the probability for the parameter to be equal to k must
be An,k/An where An is the number of elements of size n and An,k is the number of elements of size n
with parameter value k.

When it is not directly possible to generate the value of the parameter with probability law pn, the
method we present here consists in finding an integer sequence Bn,k such that:

Random Generation Using Binomial Approximations 361

Conditions to apply the method

(a) For any k ∈ N, Bn,k ≥ An,k.

(b) One can easily generate the value of the parameter with probability law qn(k) = Bn,k/Bn,
where Bn =

∑
k∈NBn,k.

(c) One can easily check if a random integer x in [Bn,k] satisfies x ≤ An,k.

(d) The ratio Bn/An does not grow too fast, as n tends toward infinity.

Following and generalizing Alonso’s idea for generating Motzkin words, we focus on the case where
for any fixed n ∈ N, An,k is an unimodal sequence in k and use a binomial law for qn(k) = Bn,k/Bn.
That is, Bn,k will be of the form

Bn,k =
Cnr

k
n

k!(vn − k)!
, for 0 ≤ k ≤ vn,

for some integer vn and some rationals Cn and rn. This ensure that Condition (b) is satisfied.
The values of Cn, rn and vn, are chosen such that the two sequences (An,k)k∈N and (Bn,k)k∈N reach

their maximum around k = un, with the same order of magnitude, because of Condition (d), and so that
Condition (a) is satisfied.

If all the required conditions are met, the algorithm is the following, where the nonzero values of Bn,k
are all in [vn]:

Generic algorithm
Compute vn1

repeat2

Draw k following a binomial law Binom(vn,
rn
rn+1)3

until Uniform([Bn,k]) ≤ An,k4

return a random object of size n and parameter k5

A direct computation proves that when passing Line 4, k is selected with probability pn(k) = An,k/An
as intended.

Note that this is fairly general, as distributions of parameters in combinatorial structures are often
unimodal. And if the condition 0 ≤ k ≤ vn is not a good range of value for k, a change of variable can
be done easily (permutations with n− k cycles, trees with k + 3 leaves, etc).

If such a sequence Bn,k has been chosen, the main points to check for this method to work are Condi-
tions (a) and (c). And the complexity of the algorithm depends on Conditions (c) and (d): the complexity
of one loop of the algorithm depends on the complexity of Condition (c), and the average number of iter-
ations is Bn/An, as usual for rejection algorithms. Condition (c) will be satisfied when An,k/Bn,k can
be written as a product of fractions with small numerators and denominators, An,k/Bn,k =

∏
i∈I

αi

βi
, in

such a way that Line 4 in the Generic algorithm is equivalent to Uniform([βi]) ≤ αi for all i. By “small
integer”, we mean an integer that is at most polynomial in n.

362 Dominique Gouyou-Beauchamps and Cyril Nicaud

Bn

An

To draw uniformly at random an element
according to the gray distribution on the
picture, a rejection algorithm is used: re-
peatedly draw an element in the white
shape, reject it if it is not in the gray one,
stop if it is. The white shape follows a
binomial repartition, making the random
generation of one of its elements easy and
efficient.

Fig. 1: Illustration of the method.

The following proposition uses basic properties of binomial distributions to ensure that the average
number of iterations of the generic algorithm is in O(

√
n) if the maximum of Bn,k and An,k have the

same order of magnitude and r is fixed.

Proposition 1 Let (An,k)n,k∈N be a double sequence of non-negative integers such that for any n, the
sequence (An,k)k∈N is unimodal and finitely many times non-zero. Let

Bn,k =
Cnr

k

k!(vn − k)!
,

for some rationals Cn, r and integer vn, such that vn = Θ(n) and for all k, n ∈ N, An,k ≤ Bn,k.
Suppose that maxk Bn,k is in Θ(maxk An,k), then

Bn
An

=

∑
k∈NBn,k∑
k∈NAn,k

= O(
√
n).

In the following sections we will see different examples where this method can be applied: Motzkin
words done by Alonso are briefly described, then random generators for partial injections, and colored
unary-binary trees are presented.

3 Motzkin Words
In this section we briefly describe the method due to Alonso [Alo94] to generate uniformly at random
Motzkin words. The setM⊂ {a, x, y}∗ of Motzkin words can be defined inductively as follow:

• The empty word is inM.

• For all u ∈M, au ∈M.

• For all u, v ∈M, xuyv ∈M.

Random Generation Using Binomial Approximations 363

Motzkin words are in bijection with unary-binary trees, each a symbol corresponding to a unary node,
and the symbols x and y encoding the Dyck word associated to the remaining binary structure.

In Alonso’s article [Alo94], the parameter chosen to apply the method is the number k of x symbols. If
Mn,k denote the number of Motzkin words of size n having k symbols x, one has

Mn,k =
1

n+ 1

(
n+ 1

k, k − 1, n− 2k + 2

)
, for 1 ≤ k ≤ n

2
+ 1.

The binomial sequence chosen to upper bound the Mn,k is

Nn,k =
1

n+ 1

(
n+ 1

b(n+ 1)/3c

)(d2(n+ 1)/3e
k

)
.

Conditions (a) and (b) are verified, and so is Condition (c) since for 1 ≤ k ≤ n/2 + 1 the ratio is of
the form: Mn,k/Nn,k =

(
an
cn

)
/
(
bn
cn

)
, with bn ≥ an and Mn,k = 0 for other values of k. Therefore,

the probability Mn,k/Nn,k is equal to the probability that a random subset of [bn] of size cn has all its
elements smaller than or equal to an.

Some classical asymptotic results prove that Condition (d) is also satisfied, as Nn/Mn →
√

3 when
n → ∞. And finally, since one can build a random Motzkin word of size n with a fixed number k of x
symbols in linear time, the overall average complexity of the method is linear in the unit-cost RAM model
and O(n log n) in the log-cost RAM model.

4 Partial Injections
4.1 Definitions and Motivations
Let In denotes the set of partial injections from [n] to [n]. As studied in [BNW08] random partial in-
jections are used to generate uniformly at random finitely generated subgroups of a free groups. Our
main motivation to study partial injection is to try to improve the algorithm given in [BNW08], which
relies on the recursive method [FZC94] and therefore uses a lot of memory for the preprocessing of I` for
1 ≤ ` ≤ n, since I` ≥ `!. Ω(` log `) bits are thus required to store them. The time complexity of the
algorithm is linear in the unit-cost RAM model, but Θ(n2 log2 n) in the log-cost RAM model.

For any integer n ≥ 1, let In,k denotes the number of partial injections of In whose domain of definition
contains k elements. For instance, for the injection of I5 defined by {1 7→ 3, 4 7→ 4} the value of k is 2.
Since determining an injection of In with k elements having an image consists in choosing those k values
and then their k images, one has

In,k =

(
n

k

)
n!

(n− k)!
=

n!2

k!(n− k)!2
.

The following estimation [FS08, BNW08] of In will be useful to verify that Condition (d) is satisfied:

In
n!
∼ e−1/2

2
√
π
n−1/4e2

√
n. (1)

364 Dominique Gouyou-Beauchamps and Cyril Nicaud

4.2 Application of the Method
First notice that the sequence In,k is unimodal, as it is log-concave.

Lemma 1 For any n ≥ 1, the sequence (In,k)0≤k≤n is log-concave.

To compute the value un of k for which In,k is maximal, one checks that

In,k
In,k−1

=
n!2(k − 1)!(n− k + 1)!2

n!2k!(n− k)!2
=

(n− k + 1)2

k
.

Hence, In,k ≥ In,k−1 for any k such that 0 ≤ k ≤ n + 3
2 − 1

2

√
4n+ 5 and In,k ≤ In,k−1 for n + 3

2 −
1
2

√
4n+ 5 ≤ k ≤ n. Therefore, the maximum is obtained for k = un with

un = bµnc = µn − αn, with 0 ≤ αn < 1 and µn = n+
3

2
− 1

2

√
4n+ 5.

Note also that µn satisfies
µn = (n− µn + 1)2. (2)

The following lemma will be used to ensure that the conditions are satisfied.

Lemma 2 The following properties hold:

1. For all j ∈ {0, · · · , un − 1}, (n− un + 1 + j)2 ≥ un + j.

2. For all j ∈ {2, · · · , n− un + 1}, (n− un + 1− j)2 ≤ un − j.

3. For all n, (n− un)2 ≤ un + 1.

To apply the method we choose vn = 2un − 1 and for 0 ≤ k ≤ vn:

Bn,k =
Cn

k!(vn − k)!
, with Cn =

un + 1

un − 1

n!2(un − 1)!

(n− un)!2
.

The term n!2(u−1)!
(n−u)!2 is obtained by solving Bn,un = In,un . The term un+1

un−1 is a small multiplicative
factor, induced by Lemma 2, and due to the integer rounding of µn. It does not significantly change the
complexity of the final algorithm since un+1

un−1 → 1 as n→∞.
For any k ∈ N such that 0 ≤ k ≤ un, a direct computation proves that

In,k
Bn,k

=
un − 1

un + 1

u−k−1∏
j=0

un + j

(n− un + 1 + j)2
. (3)

And for k ∈ N such that un < k ≤ n, similarly:

In,k
Bn,k

=
un − 1

un + 1

k−un∏
j=1

(n− un + 1− j)2

un − j
. (4)

Using Stirling formula, one can prove the following lemma, which will be used for Condition (d).

Random Generation Using Binomial Approximations 365

Lemma 3 As n tends toward infinity,

1

n!
Bn =

1

n!

vn∑
k=0

Bn,k ∼
e−1/2

2
√
π
e2
√
n.

Lets verify that the conditions to apply the method are satisfied:

(a) It is a direct application of Lemma 2 to Equation (3) and Equation (4).

(b) The distribution of parameter k follows the distribution Binom(vn,
1
2).

(c) This is easily done as both Equation (3) and Equation (4) are a product of terms of the form α
β . For

each such fraction, randomly draw a number in [β] and check whether it is in [α] or not. There is
a minor adaption to be done for the first term in Equation (4) that must be multiplied by the term
un−1
un+1 , forming α

β = (un−1)(n−un)2

(un+1)(un−1) = (n−un)2

un+1 .

(d) By Equation (1) and Lemma 3, Bn/In ∼ n1/4.

4.3 Algorithm
Adapting the generic algorithm to the specific case of partial injection, using the previous sections, one
obtains the algorithm of Figure 2.

Theorem 1 The average time complexity of the algorithm that generates random partial injections is
Θ(n5/4) in the unit-cost RAM model, and Θ(n5/4 log n) in the log-cost RAM model.

Proof: From previous considerations, the average number of iterations to choose k is equivalent to n1/4.
The complexity of each iteration is linear (resp. Θ(n log n)) in the unit-cost (resp. log-cost) RAM model.

Using standard algorithms, the random permutations can be generated without increasing the complex-
ity, in both models. 2

Hence, though our algorithm is a bit outperformed by the recursive one (by a factor n1/4) in the unit-
cost RAM model, it is better in the log-cost model, with an average complexity Θ(n5/4 log n) against
Θ(n2 log2 n). The latter model must be more realistic here since In ≥ n!. An implementation in C of this
algorithm allowed us to generate a partial injection of size 108 in a couple of seconds.

5 Colored Unary-Binary Trees
Random generation of colored Motzkin words has recently been considered in [MS10], using properties
of their prefixes together with the recursive method. It results in an algorithm whose complexity is linear
on average, but which uses either big numbers or floating point approximations.

5.1 Definitions and Motivations
Let Ω0, Ω1 and Ω2 be three finite nonempty sets of symbols that are pairwise disjoint. We are interested
in the class A(Ω0,Ω1,Ω2) of nonempty rooted plane unary-binary trees whose binary nodes are labelled
by symbols in Ω2, unary nodes are labelled by symbols in Ω1 and leaves are labelled by symbols in Ω0.
For technical reasons, the size of such a tree is defined as its number of edges, i.e. its number of nodes

366 Dominique Gouyou-Beauchamps and Cyril Nicaud

Random Partial Injection
Compute un = bn+ 3

2 − 1
2

√
4n+ 5c1

Set vn = 2un − 12

// Choosing k
repeat3

Stop=True4

Draw k following a binomial law Binom(vn,
1
2)5

if k > n then Stop=False6

if k ≤ un then7

if Uniform([un + 1]) > un − 1 then Stop=False8

for j ∈ {0, · · · , un − k − 1} do9

if Uniform([(n− un + 1 + j)2]) > u+ j then10

Stop=False11

else12

if Uniform([un + 1]) > (n− un)2 then Stop=False13

for j ∈ {2, · · · , k − un} do14

if Uniform([u− j]) > (n− un + 1− j)2 then15

Stop=False16

until Stop==True17

// Building the partial injection f
for x ∈ [n] do f(x) = undefined18

σ = random permutation of [n]19

τ = random permutation of [n]20

for i ∈ [k] do f(σ(i)) = τ(i)21

return f22

Fig. 2: In this algorithm, Steps 7-11 and Steps 12-16 consist in checking the rejection according to Equation (3) and
Equation (4) respectively. The partial injection, once k is chosen, is generated during Steps 18-21.

minus one. Note also that the number of leaves of such a tree is equal to its number of binary nodes plus
one.

As depicted in Figure 3, the main motivation for considering such trees is that they directly encode a
large variety of expressions. Consider for instance the class of nonempty regular expressions R on the
alphabet A = {a, b}, recursively defined by (ε denotes the empty word, ∗ the star operator and • the
concatenation): 

a, b, ε ∈ R
∗
|
R
∈ R, ∀R ∈ R
∪
/\

R1 R2

,
•
/\

R1 R2

∈ R, ∀R1, R2 ∈ R

One can notice that R = A({a, b, ε}, {∗}, {∪, •}). Similarly, one can define objects such as arithmetic
expressions, LTL formulas (linear time logic [Pnu77]), etc. Note that if |Ω0| = |Ω1| = |Ω2| = 1, we are

Random Generation Using Binomial Approximations 367

•

∪ *

a ε b

U

⋄ or

a b c

+

exp ×

x x cst

Fig. 3: Three examples of colored trees: a rational expression, an LTL formula and a function of R → R, where cst
is replaced by a random constant number thereafter.

in the case of unary-binary trees corresponding to Alonso’s article and described in Section 3.
First remark that the generation of an element of A(Ω0,Ω1,Ω2) can be reduced to the generation of

an element of A({◦},Ω1,Ω2 × Ω0), which will be denoted by A(Ω1,Ω2 × Ω0). Indeed, any element
of A({◦},Ω1,Ω2 × Ω0) with k binary nodes has exactly k + 1 leaves; order its binary nodes, using a
depth-first search for instance, and order its leaves. Then if the i-th binary node is labelled by (ω2, ω0),
label it by ω2 and label the i-th leaf with ω0. The result is almost an element ofA(Ω0,Ω1,Ω2), as only the
(k + 1)-th leaf is not properly labelled, but this can be done uniformly by drawing randomly an element
of Ω0. This construction is a bijection from A(Ω1,Ω2 × Ω0) × Ω0 onto A(Ω0,Ω1,Ω2). Hence, in the
following, we shall work with two parameters only, the number |Ω2| of binary labels and the number |Ω1|
of unary labels, with no loss in generality.

Let An,k be the number of trees of size n in A(Ω1,Ω2) having k binary nodes. Recall that n is the
number of edges. Let a = |Ω2| and b = |Ω1|, it is a classical result that for 0 ≤ k ≤ n/2:

An,k =
akbn−2k

n+ 1

(
n+ 1

k, k + 1, n− 2k

)
=

akbn−2kn!

k!(k + 1)!(n− 2k)!
. (5)

The functional equation satisfied by the generating function A(z) that counts such trees according to
the number of nodes is given as follows:

A(z) =
∑

A∈A(Ω1,Ω2)

z|A|+1 = z + bzA(z) + azA(z)2.

Using classical results on simple varieties of trees [FS08], one finds:

Lemma 4 As n tends toward infinity,

An ∼ K(2
√
a+ b)nn−3/2, with K =

1

2

(2
√
a+ b)3/2

√
πa3/4

.

As we shall see, the case 4a = b2 is a degenerated case, that will be treated separately. We first analyze
the generic case.

5.2 Application of the Method for 4a 6= b2

The following lemma proves that the sequence (An,k)0≤k≤n/2 is unimodal.

Lemma 5 For any n ≥ 1, the sequence (An,k)0≤k≤n/2 is log-concave.

368 Dominique Gouyou-Beauchamps and Cyril Nicaud

The maximum of (An,k)0≤k≤n/2 is reached for k = µn, where µn is the solution less than or equal to
n
2 of the equation

a(n− 2µn + 1)(n− 2µn + 2) = b2µn(µn + 1). (6)

Assuming from now on that 4a 6= b2 (this case will be analyzed in Section 5.4), one finds that

µn =
b2 + 6a+ 4an−

√
4ab2(n2 + 5n+ 5) + b4 + 4a4

2(4a− b2)
.

Let un be the integer part of µn, that is, un = bµnc = µn − αn with 0 ≤ αn < 1.
The sequence Bn,k is the binomial sequence defined by:

Bn,k =
Cnr

k
n

k!(n− un − k)!
, with Cn =

aunbn−2unn!

run
n (un + 1)!

.

The choice of vn = n−un in the generic algorithm has been made in order to simplify the computations.
The parameter of the binomial distribution pn = rn/(rn+1) is not equal to 1/2 here, because of the term
akbn−2k in Equation (5). Cn is chosen so that Bn,un

= An,un
. And fixing rn = a(n−2un+2)

b2(un+1) guarantees
that (An,k)k∈N and (Bn,k)k∈N both have their maximum near k = un.

From direct computations, one find that for any k ∈ {0, · · · , un}

An,k
Bn,k

=

un−k−1∏
i=1

un + 1− i
un + 1

un−k−1∏
i=0

n− 2un + 2

n− 2k − i . (7)

And, for k ∈ {un + 1, · · · , n}

An,k
Bn,k

=

k−un+1∏
i=1

un + 1

un + 1 + i

k−un−1∏
i=0

n− un − k − i
n− 2un + 2

. (8)

Moreover, using Stirling formula, one can prove the following lemma.

Lemma 6 As n tends toward infinity,

Bn =

n−un∑
k=0

Bn,k = Θ((2
√
a+ b)nn−3/2).

The conditions of the general method are therefore satisfied:

(a) It is direct from Equation (7) and Equation (8).

(b) The distribution of parameter k follows the distribution Binom(n− un, rn
rn+1). And rn is a rational

number.

(c) This is easily done as both Equation (7) and Equation (8) are a product of terms of the form α
β ,

where both α and β are smaller than n. For each such fraction, randomly draw a number in [β] and
check whether it is in [α] or not.

(d) From Lemma 4 and Lemma 6, one has Bn/An = Θ(1) as n→∞.

Random Generation Using Binomial Approximations 369

Random Colored Tree
Compute un and rn1

// Choosing k
repeat2

Stop=True3

Draw k following a binomial law Binom(n− un, rn
1+rn

)4

if k > bn2 c then Stop=False5

if k ≤ un then6

for i ∈ {1, · · · , un − k − 1} do7

if Uniform([un + 1]) > un + 1− i then Stop=False8

for i ∈ {0, · · · , un − k − 1} do9

if Uniform([n− 2k − i]) > n− 2un + 2 then Stop=False10

else11

for i ∈ {1, · · · , k − un + 1} do12

if Uniform([un + 1 + i]) > un + 1 then Stop=False13

for i ∈ {0, · · · , k − un − 1} do14

if Uniform([n− 2un + 2]) > n− un − k − i then Stop=False15

until Stop==True16

// Building the tree T
T = random unary-binary tree with k binary nodes and n edges17

randomly color the nodes of T18

return T19

Fig. 4: In this algorithm, Lines 7-10 and Lines 12-15 consist in checking the rejection according to Equation (7) and
Equation (8) respectively. Line 17 is done using standard algorithms [FS08][p. 74]. And the colors of Line 18 are
chosen uniformly in Ω1 for unary nodes, and in Ω2 for binary nodes.

5.3 Algorithms

The algorithm to generate uniformly at random colored binary trees is described in Figure 4.

Theorem 2 The average complexity of the algorithm that generates colored unary-binary trees is O(n)
in the unit-cost RAM model and O(n log n) in the log-cost RAM model.

Proof: From previous considerations, the algorithm performs a bounded number of iterations on average,
and each iteration is done in time O(n) and O(n log n) in the unit-cost and log-cost models, respectively.
Once k is chosen, the tree is built using standard algorithm and each node is colored uniformly at random,
with no increase in the complexity. 2

Once again, the algorithm is very simple to implement and very efficient. Very large colored unary-
binary trees can be generated in a few seconds.

370 Dominique Gouyou-Beauchamps and Cyril Nicaud

5.4 The Case 4a = b2

Recall that the set B of (possibly incomplete) rooted binary plane trees is the set of trees is recursively
defined by:

• ◦ is in B;

• for any B ∈ B,
◦
/
B
∈ B and

◦
\
B
∈ B;

• for any B1, B2 ∈ B,
◦
/\

B1 B2

∈ B.

The case 4a = b2, i.e. b = 2λ and a = λ2 for some positive integer λ, is a degenerate case. Indeed,
for such parameters, the objects in A(Ω1,Ω2)× [λ] are in bijection with the (possibly incomplete) rooted
binary plane trees with k colors: see Ω1 as [λ]×{left, right} and change unary nodes labelled by (i, left)
into left unary nodes labelled by i, and unary nodes labelled by (i, right) into right unary nodes labelled
by i. Then, seeing Ω2 as [λ]× [λ], label the binary nodes and the leaves as described in Section 5.1.

As rooted binary plane trees with n nodes are in bijection with complete rooted binary plane trees with
2n+ 1 nodes, one can generate them efficiently using Rémy’s algorithm [Rémy85].

References
[Alo94] Laurent Alonso. Uniform generation of a Motzkin word. TCS, 134(2):529–536, 1994.

[BFKV07] Manuel Bodirsky, Éric Fusy, Mihyun Kang, and Stefan Vigerske. An unbiased pointing op-
erator for unlabeled structures, with applications to counting and sampling. In Nikhil Bansal,
Kirk Pruhs, and Clifford Stein, editors, SODA, pages 356–365. SIAM, 2007.

[BNW08] Frédérique Bassino, Cyril Nicaud, and Pascal Weil. Random generation of finitely generated
subgroups of a free group. IJAC, 18(2):375–405, 2008.

[Den94] Alain Denise. Méthodes de génération aléatoire d’objets combinatoires de grande taille et
problèmes d’énumération. PhD Thesis, Université Bordeaux I, 1994.

[Dev86] Luc Devroye. Non-uniform random variate generation. Springer Verlag, 1986.

[DFLS04] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann sam-
plers for the random generation of combinatorial structures. Combinatorics, Probability &
Computing, 13(4-5):577–625, 2004.

[DZ99] Alain Denise and Paul Zimmermann. Uniform random generation of decomposable structures
using floating-point arithmetic. TCS, 218(2):233–248, 1999.

[FFP07] Philippe Flajolet, Éric Fusy, and Carine Pivoteau. Boltzmann sampling of unlabelled struc-
tures. In David Appelgate, editor, Proceedings of the Ninth Workshop on Algorithm Engineer-
ing and Experiments and the Fourth Workshop on Analytic Algorithmics and Combinatorics,
pages 201–211. SIAM Press, 2007.

Random Generation Using Binomial Approximations 371

[FS08] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2008.

[FZC94] Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. A calculus for the random
generation of labelled combinatorial structures. TCS, 132(2):1–35, 1994.

[MS10] Donatella Merlini and Renzo Sprugnoli. The relevant prefixes of coloured motzkin walks: An
average case analysis. Theor. Comput. Sci., 411(1):148–163, 2010.

[NW78] Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic Press, 1978.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE, 1977.

[PW96] James G. Propp and David B. Wilson. Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures and Algorithms, 9(1&2):223–252,
1996.

[Rémy85] Jean-Luc Rémy. Un procédé iteratif de dénombrement d’arbres binaires et son application à
leur génération aléatoire. RAIRO Inform. Théor., 19:179–195, 1985.

[vdH02] Joris van der Hoeven. Relax, but don’t be too lazy. J. Symb. Comput., 34(6):479–542, 2002.

372 Dominique Gouyou-Beauchamps and Cyril Nicaud

	Introduction
	Description of the Method
	Motzkin Words
	Partial Injections
	Definitions and Motivations
	Application of the Method
	Algorithm

	Colored Unary-Binary Trees
	Definitions and Motivations
	Application of the Method for 4a=b2
	Algorithms
	The Case 4a = b2

