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The degree distribution in unlabelled
2-connected graph families

Veronika Kraus1†

1Institute of Discrete Mathematics and Geometry, TU Wien, Wiedner Hauptstraße 8-10/104, 1040 Wien

We study the random variable Xk
n , counting the number of vertices of degree k in a randomly chosen 2-connected

graph of given families. We prove a central limit theorem for Xk
n with expected value EXk

n ∼ µkn and variance
VXk

n ∼ σ2
kn, both asymptotically linear in n, for both rooted and unrooted unlabelled 2-connected outerplanar or

series-parallel graphs.
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1 introduction
An outerplanar graph is a planar graph which can be embedded in the plane such that all nodes lie on
the outer face. A series-parallel graph is a graph which is the result of series (subdivision) or parallel
(doubling) extensions of the edges of a forest. (Both graph families can be described via families of
forbidden minors {K4,K23} and {K4}, respectively, where K4 denotes the complete graph on 4 vertices
and K23 denotes the complete bipartite graph with 2 vertices of one and 3 vertices of the second color).

Both the family of outerplanar and the family of series-parallel graphs are block-stable families of graphs,
that is, a graph belongs to the family iff all of it’s 2-connected components belong to the family. Block-
stable families admit a decomposition into blocks and vertices (cf. Figure 1).

Further, both families mentioned above are so-called subcritical graph families. This are block-stable
families where all 2-connected components in the decomposition are asymptotically of comparable and
small size. In contrast, there are other families where a giant maximal block appears, which contains
almost all nodes and the other components are of sublinear size (this phenomenon appears e.g. in planar
graphs [14]). More examples for subcritical families are cacti graphs or graphs with a finite number of
3-connected components.
A lot of work has been done recently on labelled block stable families, starting with the enumeration
of labelled outerplanar, series-parallel [4] and planar graphs [11]. Results on the degree distribution
are known for labelled outerplanar and series-parallel graphs [2, 9, 13], and also some weak results for all
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Fig. 1: An example for the decomposition of an outerplanar graph - the black and white dots denote vertices while
the circles labelled with B denote 2-connected components

planar graphs [8]. In the more involved unlabelled framework, where symmetries make enumeration more
difficult, less is known. Unlabelled outerplanar graphs have been counted by Fusy et al. in [3], general
subcritical families are asymptotically counted in [7], where partial results on the degree distribution are
also obtained. In this paper, we focus on maximal 2-connected components of outerplanar and series-
parallel graphs. We study the distribution of degrees among the vertices of 2-connected outerplanar and
series-parallel graphs, which completes the distributional results presented in [7]. Let B be the family of 2-
connected components of either unlabelled outerplanar or series-parallel graphs. We prove the following
theorem:

Theorem 1 The random variable that counts the number of vertices of degree k in a randomly chosen
member of B, Xk

n , satisfies a central limit theorem with expected value EXk
n = µkn+O(1) and variance

VXk
n = σ2

kn+O(1), where µk and σk are real constants.

A corresponding result holds for connected and all unlabelled outerplanar and series-parallel graphs,
and even for any block-stable subcritical family, without further knowledge on the degree distribution in
their 2-connected components, which is proven in [7]. This is due to the fact that a connected block-
stable graph C is built by many (almost independent) 2-connected components, such that the number of
vertices of degree k in C corresponds to a sum of weakly dependant random variables, that is, the sum
of the numbers of vertices of degree k in each of its blocks. This suggests a central limit theorem. For
2-connected graphs, there is no such decomposition into “smaller” components, therefore they have to be
treated separately and it is a priori not clear that a central limit theorem will hold. However, it holds in the
outerplanar and series-parallel case.

2 Methods and Approach
We consider unlabelled classes of graphs, both general families G as well as their derived families G′. The
derived family G′ is the family of graphs in G where one vertex is distinguished (rooted) and is not counted.
In order to obtain results on the degree distribution we refine the procedure of counting graph families,
taking into account vertices of given degree. For this purpose, we use a generating functions approach.
In the labelled case, families G̃ are counted via exponential generating functions G̃(x) =

∑
n≥1 g̃n

xn

n! ,
where g̃n is the number of objects of size n in G̃. The exponential generating function of the derived
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family is then given by

G̃′(x) =
∂

∂x
G̃(x).

In the unlabelled framework, we have to take into account all symmetries arising from permutations on
the set of vertices. Therefore, in order to obtain ordinary generating functionsG(x) =

∑
n≥1 gnx

n which
count unlabelled families, we have to work with cycle index sums, a theory going back to Pólya, see e.g.
[12]. Let ZT (σ) = sλ1

1 sλ2
2 · · · be the cycle type of a permutation σ, that is, σ contains λi cycles of length

i for i ≥ 1. Then, the cycle index sum of a combinatorial class G is given by

ZG(s1, s2, . . .) =
∑
G∈G

1

|SG|
∑
σ∈SG

ZT (σ),

where SG is the set of permutations on the vertices of the object G ∈ G. The cycle index sum of the
derived family G′ is given by

ZG′(s1, s2, . . .) =
∂

∂s1
ZG(s1, s2, . . .).

The ordinary generating functions can be obtained from the cycle index sums by substituting si = xi:
G(x) = ZG(x, x2, x3, . . .). Note that G̃(x) = ZG(x, 0, 0, . . .).
To obtain our results, we will use multivariate generating functions

B(x, v1, v2, . . . , vk, v∞) =
∑

n,n1,...,nk,n∞

bn,n1,...,nk,n∞x
nvn1

1 · · · vnkk vn∞∞ ,

where bn,n1,...,nk,n∞ is the number of unlabelled 2-connected graphs with n = n1 + · · · + nk + n∞
vertices, where n` vertices have degree `, 1 ≤ ` ≤ k, and n∞ vertices have degree greater than k.
Therefore, we need to define cycle index sums for multiple variables si, uj,i, i ≥ 1, j = 1, . . . , k,∞,
where si counts cycles of ordinary vertices while uj,i counts cycles of vertices with given degree j. To
obtain the multivariate generating function, we substitute si = xi and uj,i = vij for i ≥ 1.
Our first goal will be to set up a core system of functional equations y(x,v) = F(x,y,v) where
y(x,v) = (y1(x,v), . . . , yN (x,v)) and v = (v1, . . . , vk, v∞), using combinatorial decompositions, such
that the generating function of blocks is determined by a functional relation B(x,v) = R(x,y(x,v), v).
A powerful help in counting combinatorial structures is the following

Theorem 2 (dissymetry Theorem on trees(cf. [1])) Let T be a family of unrooted trees, and let T◦ be
the corresponding family of trees rooted at a vertex, T◦−◦ the family rooted at an edge and T◦→◦ the
family rooted at an oriented edge. Then there exists a bijection such that:

T + T◦→◦ = T◦ + T◦−◦. (1)

Our second goal is to interpret the functions generated in the combinatorial part as analytic functions,
examining their singular behaviour. We can then apply results from singularity analysis (see e.g. [6, 10])
to obtain asymptotic results such as a limiting degree distribution. Suppose that the system obtained in
the combinatorial part is analytic and positive, that is, all coefficients are nonnegative and F(x,0,v) 6= 0,
and that it is strongly connected, that is, no subsystem can be solved before the whole system can be
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solved. Then, under suitable analytic conditions, a general result (Drmota-Lalley-Woods Theorem, see
[6, Theorem 2.33]) proves that all yi(x,v) allow representations of the form

yj(x,v) = gj(x,v)− hj(x,v)

√
1− x

ρ(v)
,

where gj(x,v) and hj(x,v) are analytic functions around v = 1 and x = ρ(1).

In general, we call a local representation y(x,v) = g(x,v) − h(x,v)
(

1− x
ρ(v)

)α
a local singular ex-

pansion of y(x,v) of order α for α /∈ N.
Given a generating function y(x,v) =

∑
yn(v)xn, which allows a singular expansion of order α /∈ N, a

well-known result (a corollary of the quasi power theorem, see [6, Theorem 2.35]) shows that a random
variable which fulfills

EvXn =
yn(v)

yn(1)
,

satisfies a central limit theorem
1√
n

(Xn − EXn)
d→ N(0, σ2),

with EXn = µn+O(1) and VXn = σ2n+O(1), where

µ = −ρ
′(1)

ρ(1)
, σ2 = −ρ

′′(1)

ρ(1)
+ µ2 + µ.

3 Outerplanar graphs
As mentioned before, outerplanar graphs are planar graphs which can be embedded in the plane such that
all nodes lie on the outerface. In this section, we will prove Theorem 1 for the family of 2-connected
unlabelled outerplanar graphs B. As a byproduct, we also obtain a central limit theorem for the derived
family B′:
Theorem 3 Let B be the family of random 2-connected unlabelled outerplanar graphs and B′ be it’s
derived family. Then the random variable that counts the number of vertices of degree k in a randomly
chosen member of B,Xk

n, and the corresponding random variableX ′kn for a member of the derived family,
satisfy a central limit theorem with expected value EXk

n ∼ EX ′kn ∼ µkn and variance VXk
n ∼ VX ′kn ∼

σ2
kn where µk = 2(k − 1)(

√
2− 1)k and σ2

k is a computable constant.

Proof: As indicated in Section 2, the proof is divided into a combinatorial and an analytic part. Our first
goal is to find a core system of functional equations with suitable properties for a subfamily of 2-connected
outerplanar graphs. This system will lead to a local singular expansion for the bivariate generating func-
tion B′(k)(x, v) of rooted 2-connected graphs, where v counts vertices of degree k. Analytic integration
will lead to the result for the unrooted class.

3.1 Combinatorial part
Note that a 2-connected outerplanar graph can be interpreted as a dissection of a polygon. We set up a
system of functional equations for the cycle index sums of oriented outer-edge rooted dissections, whose
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automorphism group consists of the identity only.
An oriented outer-edge rooted dissection Ao can be decomposed in the following way: Considering the
(inner) face containing the root edge, which is either a triangle or a k-gon, with k > 3. If it is a triangle,
the 2 edges other than the root edge are either single edges or can be considered as root-edges of other
oriented outer-edge rooted dissections, the orientation of the edge is implied by the orientation of the root
edge of the dissection. If k > 3, we insert a virtual edge connecting the endpoint of the root edge with
the starting point of the edge connecting to the starting point of the root edge. This imaginary edge is
root-edge of another oriented outer-edge rooted dissection, just as the remaining edge is either root-edge
or outer-edge (cf. Figure 2).

= +Ao
1 +Ao

1 + Âo
Ao1 + Âo

Fig. 2: decomposing an oriented outer-edge rooted dissection

Translating the above decomposition by the symbolic method (see e.g. [10]), we obtain the following
system for the cycle index sums ZAoi,j (s1;u1) of oriented outer-edge rooted dissections, where the ver-
tices of the root edge have degrees i and j for i, j ∈ {1, . . . , k} and degree greater than k for i, j = ∞
and are not counted.
For brevity, we use the notation (s1;u1) := (s1, u1,1, . . . , uk,1, u∞,1; s2, u1,2, . . . , uk,2, u∞,2; . . .). Note
that ZAo1,1(s1;u1) = 1, ZAo1,j (s1;u1) = 0 for j 6= 1 and ZAoi,j (s1;u1) = ZAoj,i(s1;u1) for 1 ≤ i, j ≤ k
or i, j =∞.

Lemma 4 The functions ZAoi,j (s1;u1) fulfill the following strongly connected system of equations:

ZAoi,j (s1;u1) =
∑

l1+l2≤k

ul1+l2,1ZAoi−1,l1
(s1;u1)ZAoj−1,l2

(s1;u1)

+ s1u∞,1

( ∑
l1+l2>k

ZAoi−1,l1
(s1;u1)ZAoj−1,l2

(s1;u1)

)
+

∑
l1+l2≤k+1

ul1+l2−1,1ZAoi−1,l1
(s1;u1)ZAoj−1,l2

(s1;u1)

+ s1u∞,1

( ∑
l1+l2>k+1

ZAoi−1,l1
(s1;u1)ZAoj,l2

(s1;u1)

)
, ∀ 2 ≤ i ≤ j ≤ k + 1. (2)

Proof: A close look at the recursive description depicted in Figure 2 leads to this system of equa-
tions. Strong connectivity is given as every equation depends on ZAo∞,∞(s1;u1) and the equation for
ZAo∞,∞(s1;u1) depends on all other variables. 2

From the above system, we can deduce generating functions Aoi,j(x,v), v = (v1, . . . , vk, v∞), where the
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variable x counts all vertices while variables vi, i ∈ {1, . . . , k}, count vertices of degree i and v∞ counts
vertices of degree greater than k, by substituting s` = x`, ui,` = v`i .

We will further need the cycle index sum of symmetric outer-edge rooted dissections, where the auto-
morphism group contains the identity and a reflection which fixes the root edge. They fulfill the following
decomposition.

As =

1
+
A

o 1
+
A
o

1 +As

1

+

Ao

1

+

Ao

As

1

+

Ao

1

+

Ao

+ +

Fig. 3: The decomposition of a symmetric outer-edge rooted dissections

Analyzing the decomposition, we obtain a system of equations for the cycle index sums ZAsi,i(s1;u1)

of reflective dissections, where ZAs+i,i (s1;u1) represents the identity while ZAs−i,i (s1;u1) represents the
reflecting part. Thus

ZAsi,i(s1;u1) =
ZAs+i,i

(s1;u1) + ZAs−i,i
(s1;u1)

2
.

For shorter notation, we use
∑k,∞
`=1 f(`) to denote the sum

∑k
`=1 f(`) + f(> k) and (s`;u`) to denote

the set of variables (s`, u1;`, . . . , u∞;`; s2`, u1;2`, . . . , u∞;2`; . . .). In (sr` ,u
r
`) every member of the set of

variables is taken to the power r: (sr` , u
r
1,`, . . . , u

r
∞,`; . . .). Note that indices arising through the construc-

tions below which are greater than k correspond to index∞ and that for the summand with index i =∞,
index∞− 1 means index ≥ k (that is k and∞).

ZAs+i,i
(s1;u1) = s1

k,∞∑
l=1

(
ZAoi−1,l

(s21;u2
1)u2l;1

)

+ s21

(
k,∞∑
l=1

ZAoi−1,l
(s21;u2

1) ·
(
k,∞∑
l=1

u2l+i;1ZAs+i,i
(s1;u1)

))

+ s21

(
k,∞∑
l=1

ZAoi−1,l
(s21;u2

1) ·
(
k,∞∑
i=2

z2l+i−1;1ZAs+i,i
(s1;u1)

))
,
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ZAs−i,i
(s1;u1) = s1

k,∞∑
l=1

(
ZAoi−1,l

(s2;u2)u2l;1

)

+ s2

(
k,∞∑
l=1

ZAoi−1,l
(s2;u2) ·

(
k,∞∑
l=1

ul+i;2Z
s−
Ai,i(s1;u1)

))

+ s2

(
k,∞∑
l=1

ZAoi−1,l
(s2;u2) ·

(
k,∞∑
i=2

zl+i−1;2ZAs−i,i
(s1;u1)

))
. (3)

With the appropriate substitution, we obtain generating functions Asi (x,v).
Let B′oi denote oriented vertex rooted dissections and B′si denote reflective vertex-rooted dissections, both
rooted at a vertex of degree i. With the help ofAoi,j andAsi,i we obtain equations for the cycle index sums
ZB′oi (s1;u1) and ZB′s−i (s1;u1):

ZB′oi (s1;u1) = s1

k,∞∑
j=1

uj,1ZAoij (s1;u1),

ZB′s−i
(s1;u1) =



s1

k+1∑
l=1

u2l−1;1ZAom,l(s2;u2) for i = 2m− 1,

s2

(
k+1∑
l=1

ZAom,l(s2;u2)·

k+1∑
j=1

ZAs−j,j
(s1;u1)uj+l;2

+

k+1∑
j=2

ZAs−j,j
(s1;u1)uj+l−1;2

 for i = 2m.

Finally, we obtain for the cycle index sum of rooted unlabelled 2-connected outerplanar graphs

ZB′(s1,u1) =

k,∞∑
i=1

ui,1
ZB′oi (s1;u1) + ZB′s−i

(s1;u1)

2
,

and, again by substitution, we obtain a functional equation for the generating function B′(x,v).

3.2 Analytic part
In a first step we analyze the core system (2) established in the previous part in terms of generating
functions Ao = F(x,Ao,v), Ao = (Aoi,j)i,j∈{1,...,k,∞} to obtain information on the singular behaviour.
We obtain a distributional result on the derived family B′ from there, which we can extend to the unrooted
family B by analytic integration.

Note that
k,∞∑
i=1

k,∞∑
j=1

Aoi,j(x,1) = Ao(x)
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is the ordinary generating function of oriented outer-edge rooted dissections with arbitrary root degree.
We know from [3] that Ao(x) has singularity ρ = 3 − 2

√
2 and a local singular expansion of order 1

2

around it: Ao(x) = go(x) − ho(x)
√

1− x
ρ . As the system of equations (2) is strongly connected and

positive, all functions Aoi,j(x,1) have the same singularity. Theorem [6, 2.33], as mentioned in Section 2,

leads to a local singular expansion of order 1
2 for the generating functionsAo(k)i,j (x, v), where only vertices

of degree k are counted:

A
o(k)
i,j (x, v) = Aoi,j(x, 1, . . . , 1, v, 1)

= gij(x, v)− hij(x, v)

√
1− x

ρ(v)
,

with ρ(1) = 3− 2
√

2. We further know that

k,∞∑
i=1

Asi,i(x,1) = As(x)

has radius of convergence
√
ρ > ρ. In the system of equations (3) functions Aoi,j only appear in variables

skj with exponents k ≥ 2 and by strong connectivity and positivity, the same is true for every function
Asi,i(x,1), and thus, also

A
s(k)
i,i (x, v) = Asi,i(x, 1 . . . , 1, v, 1)

has radius of convergence larger than ρ(v) for v sufficiently close to 1.
We are interested in the number of nodes of degree k in a member of B′ chosen uniformly at random,

Xk
n . The probability, that a random graph of size n has m vertices of degree k is given by [xnvm]B′(x,v)

[xn]B′(x) ,
where [xn] denotes the coefficient of xn in the generating function. Thus, Xk

n is of the form

EuX
k
n =

[xn]B′(x, v)

[xn]B′(x, 1)
.

The local singular expansion of B′(x, v) of order 1
2 leads to a central limit theorem for the derived family

B′ by means of Theorem [6, 2.35], as mentioned in Section 2.
To obtain a result on the unrooted family, we will use integration. Therefore we isolate variable s1 and

count vertices of degree k, obtaining a trivariate generating function:

B
′(k)
i (s, x, v) = ZB′i(s, 1, . . . , 1, v, 1;x2, 1, . . . , 1, v2, 1;x3, 1, . . . , 1, v3, 1; . . .).

FunctionsB′(k)(s, x, v) of rooted 2-connected outerplanar graphs with arbitrary root degree are then given
by

B′(k)(s, x, v) =

k−1∑
i=1

B
′(k)
i (s, x, v) + vB

′(k)
k (s, x, v) +B′(k)∞ (s, x, v).

As indicated in Section 2, the generating function of unrooted unlabelled 2-connected outerplanar graphs
is then given by B(x, v) = B(x, x, v), where

B(s, x, v) =

∫ s

0

B′(t, x, v)dt+B(0, x, v). (4)
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It is important to note that B(0, x, v) has bigger radius of convergence than B′(x, x, v) and thus has
no influence on the asymptotic behaviour. B(s, x, v) has a functional equations representation in terms of
the core system (2) and (3), cf. Remark 5. The corresponding equations can be found in the Appendix.
With these equations, it can be shown directly that B(0, x, v) is analytic at ρ(v).

Integration of B′(s, x, v) leads to a local singular expansion of order 3
2

B(s, x, v) = g(s, x, v)− h(s, x, v)

(
1− s

ρ(x, v)

) 3
2

.

It remains to prove that for s = x, B(x, x, v) has a local singular expansion of order 3
2 around it’s

singularity ρ(v). If we set s = x, the singular term can be rewritten to(
1− x

ρ(x, v)

) 3
2

= κ(x, v)

(
1− x

ρ2(v)

) 3
2

,

where κ(x, v) and ρ2(v) are analytic. Since x = ρ(x, v) if and only if x = ρ2(v), it follows that
ρ2(v) = ρ(v) and B(x, v) has a local singular expansion of order 3

2 . From this expansion, the central
limit theorem follows.
The expected value EXk

n ∼ EX ′kn ∼ µkn is asymptotically given by µk = −ρ
′(1)
ρ(1) . Since the singularity

ρ(v) is the same as in the labelled case, we can adopt the result from the labelled case [6, Chapter 9],
where µk = 2(k − 1)(

√
2− 1)k. This matching of the singularities is due to the fact that the core system

of equations in the labelled and unlabelled case are exactly the same and thus yield the same singularity.
The other terms appearing in the unlabelled equations are analytic at ρ(v), as seen before, and have no
influence on the asymptotic result.

This result implies that the symmetries arising in 2-connected outerplanar graphs through unlabelling
are very few and hence do not influence the asymptotic result. In the connected case, this is no longer
true, as an exponential number of symmetries appears which alters the singularity of generating functions
(see [7]). 2

Remark 5 The step of analytic integration could be omitted by using the dissymetry theorem on trees and
the fact that the dual graph of a dissected polygon is a tree. One would then need to set up functional
equations for the generating functions of inner-edge and face rooted dissections, which can be decom-
posed combinatorially into oriented and symmetric outer-edge rooted dissections. In [3] this method is
used for counting unlabelled outerplanar graphs. In the case of multivariate cycle index sums like we use
to count vertex degrees, systems of equations become very large and it is hardly possible to prove that
the singularity is of type (1 − x

ρ(v) )
3
2 . Still, as we need them to prove that the radius of convergence of

B(0, x, v) is large enough and for comparison, the corresponding systems of equations can be found in
the Appendix.

4 Series-Parallel Graphs
In the case of unlabelled 2-connected series-parallel graphs, we can proceed in a similar manner and
obtain an analogous result as in the previous section, also obtaining a central limit theorem on the derived
family as a byproduct.



462 Veronika Kraus

Theorem 6 Let B be the family of random 2-connected unlabelled series-parallel graphs and B′ be it’s
derived family. Then the random variable that counts the number of vertices of degree k in a randomly
chosen member of B,Xk

n, and the corresponding random variableX ′kn for a member of the derived family,
satisfy a central limit theorem with expected value EXk

n ∼ EX ′kn ∼ µkn and variance VXk
n ∼ VX ′kn ∼

σ2
kn where µk and σk are computable constants.

Proof: The subfamily of 2-connected series-parallel graphs, which provides us with a core system of
equations are series-parallel networks. A series-parallel network is obtained via series-parallel extensions
of a single edge, thus it is a series-parallel graph with 2 distinguished nodes (the endpoints of the original
edge), which we call the poles and which we denote by 0 and∞.

Let’s denote byD the set of series-parallel networks. We distinguish 2 types: Series networks S, which
have a series decomposition, and parallel networks P , which have a parallel decomposition. A single edge
is also considered a network, which is neither series nor parallel. For the generating functions Dij(x,v),
Sij(x,v) and Pij(x,v) of networks with pole degrees i and j and D̄i(x,v), S̄i(x,v) and P̄i(x,v) of
symmetric networks where a pole-exchanging symmetry is applied, we obtain (strongly connected) sys-
tems of equations for 1 < i < j (note that Dij = Dji), see Appendix, Systems (6) and (7). This systems
will be the core system of the proof.

For 2-connected graphs we use a decomposition into series, parallel and 3-connected components
(which do not exist in our case as K4 is exluded as a minor) which goes back to Tutte [15] and is de-
scribed in detail in [5]. This decomposition leads to a bipartite tree with nodes colored R and nodes
coloredM, where R denotes ring components andM denotes multiedge components, both with at least
3 edges. Series-parallel graphs are then obtained by replacing the edges of those ring- and multiedge
components by parallel and series networks, respectively.

This decomposition applies for the rooted class as well as for the unrooted class, with the only difference
that ring and multiedge components are rooted or not. In both cases we obtain systems of equations in
terms of the core system on networks.

We proceed as in the outerplanar case and set up systems for the rooted class and use integration for
unrooting. Nevertheless, systems of equations both for rooted and unrooted unlabelled series-parallel
graphs can be found in the Appendix. To obtain a system of equations for the generating function of
2-connected series-parallel graphs we apply dissymetry theorem (Theorem 2) to the bipartite tree and
obtain

B′ = 1 + BR′ + BM′ − BRM,
where BR′ = R′ ◦e (D − S) denotes rings whose edges are substituted by non-series networks D − S,
BM′ =M′ ◦e (S) denotes multiedges whose edges are substituted by series networks S and at most one
edge, and BRM = x · P · S denotes an R −M tree rooted at an edge, that is at the intersection of a ring
and multiedge component. The additional 1 counts the single edge which is also considered a 2-connected
component.

4.1 Analytic part
We can express the core system of equations for networks (6) in terms of just one network typeD,S or P .
Then we can proceed as in the previous section and note that

∑k,∞
i=1

∑k,∞
j=1 Dij(x,1) = D(x) is the ordi-

nary generating function of unlabelled series-parallel networks. The same applies for
∑
i

∑
j Sij(x,1) =

S(x) and
∑
i

∑
j Pij(x,1) = P (x).
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We know from [7] that D(x), S(x) and P (x) have a singularity 0 < ρ < 1 and a square-root singular ex-
pansion around it. Thus by the same arguments of [6, Theorem 2.33] all functions Dij(x, v), specialized
to count only vertices of degree k, have square root singular expansions

Dij(x, v) = Dij(x, 1, . . . , 1, v, 1) = gij(x, v)− hij(x, v)

√
1− x

ρ(v)
,

while D̄i has bigger radius of convergence. B′(x, v) fulfills functional equations in terms of Dij and D̄i

for i, j ∈ {1, . . . , k,∞}, and thus has the same square root expansion. Again, the random variable Xk
n

counting the number of vertices of degree k in a random unlabelled rooted 2-connected series-parallel
graph of size n is of the form:

EuX
′k
n =

[xn]B′(x, v)

[xn]B′(x, 1)
,

and thus Theorem [6, 2.35] applies and leads us to a central limit theorem for the derived family B′ of
unlabelled series-parallel graphs.

To obtain the result for the unrooted class, we will again use integration. We have to isolate variable s1
and obtain trivariate generating functions B′(s, x, v). Then

B(s, x, v) =

∫ s

0

B′(t, x, v)dt+B(0, x, v)

and B(x, v) = B(x, x, v).
We need to check that B(0, x, v) has bigger radius of convergence than B′(x, x, v). Then Integration

of B′(s, x, v) leads to a local singular expansion of order 3
2 around (B(ρ, 1), ρ(1), 1). By applying the

same arguments as in the case of unlabelled outerplanar graphs, this expansion translates to a expansion
around (ρ(1), 1) at s = x. Thus, we obtain a central limit theorem for the class of unrooted unlabelled
2-connected series-parallel graphs again by [6, Theorem 2.35].

Remark 7 In the series-parallel case, we cannot be sure that the expected value EXk
n will be the same as

in the labelled case, where it is asymptotically given by ck−
3
2 qk, with constants c, q. The reason for that

is the different core system of equations, where cycle index sums of symmetric groups appear in contrary
to the labelled system. Giving an explicit representation of µk would require numerical calculation on the
singularity ρ(v) of the core system (6).

2
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Appendix
We state here equations not stated in the above proof as well as according figures.

Missing equations in the outerplanar case
As mentioned in Remark 1 in Section 3 the dual graph of a dissection of a polygon is a tree (cf Figure 4).
Vertex degrees are preserved by this duality, as the degree of a vertex in the dissection is equivalent to the
distance between the 2 outer dual vertices neighbouring this vertex.

b b

b

b

b

bb

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

bbb

b

b

b

b

Fig. 4: The dual tree of a dissection

We use the dissymetry theorem (Theorem 2) to set up a system of equations for the multivariate cycle
index sums ZD(s1,u1) of unrooted unlabelled dissections, where the variables s1 = s1, s2, . . . count
cycles of vertices while the variables u1 = (ui,1, ui,2, . . .)i∈{1,...,k,∞} count cycles of vertices of degree
i for i = 1, . . . , k and vertices of degree greater than k for i = ∞. Translating the dissymetry theorem,
we obtain

T = D
T◦→◦ = 2Do + 2Di − 2Di(s) +Df(s)

T◦ = Do +Df

T◦−◦ = Do +Di,
whereD denotes the family of unrooted dissections,Do dissections rooted at an outer edge,Di dissections
rooted at an inner edge,Di(s) dissections rooted at a symmetry edge,Df dissections rooted at a face,Df(s)
rooted at a face containing a symmetry edge. Thus we obtain for ZD:

ZD = ZDf − ZDf(s) − ZDi + 2ZDi(s) , (5)

In Section 3 we have set up systems of equations for oriented (2) and symmetric (3) outer-edge rooted
dissections. We can use them to build systems for all other classes needed in the above equation.
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We use the same notation as in previous chapters and write ZG(s1,u1) for the cycle index sum of a
structure G with (s1,u1) being the set of variables (s1, u1,1, . . . , uk,1, u∞,1; s2 . . .) and (s`,u`) denoting
the modified set of variables (sl, u1,`, . . . , uk,`u∞,`; s2`, u1,2`, . . . , uk,2`, u∞,2`; . . .) for some ` ≥ 2.

Inner edge rooted dissections: Inner edge rooted dissections follow a decomposition into 2 outeredge
rooted dissections, glued together at their root edge. Taking into account all symmetries, we obtain 4
classes of inner-edge rooted dissections, which we denote by Di1,Di2,Di3 and Di4(cf. Figure 5):
This decomposition translates to the following system in the language of cycle indey sums:

Ao

Ão

id
Di

1

AoAo

Di
2

Ao

Ao

	
Di

3 Di
4

As

Ãs

Fig. 5: Decomposition of inner edge rooted dissections

ZDi1(s1,u1) = s21

k,∞∑
i1=2

k,∞∑
j1=2

k,∞∑
i2=2

k,∞∑
j2=2

ui1+i2−1;1uj1+j2−1;1ZAoi1,j1
(s1,u1)ZAoi2,j2

(s1,u1),

ZDi2(s1,u1) = s21

k,∞∑
i=2

k,∞∑
j=2

u2i−1;1u2j−1;1ZAoi,j (s2;u2),

ZDi3(s1,u1) = s2

k,∞∑
i=2

k,∞∑
j=2

ui+j−1;2ZAoi,j (s2;u2),

ZDi4(s1,u1) = s2

k,∞∑
i1=2

k,∞∑
i2=2

ui1+i2−1;2ZAs−i1,i1
(s1;u1)ZAs−i2,i2

(s1;u1),

ZDi(s1,u1) =
ZDi1(s1,u1) + ZDi2(s1,u1) + ZDi3(s1,u1) + ZDi4(s1,u1)

4
.

Symmetric inner-edge rooted dissections consist of Di2,Di3 and Di4 only.

Face rooted dissections: Let l ≥ 3 be the size of the root face. Then, face rooted dissections follow
a decomposition into outer-edge rooted dissections, as outer-edge rooted dissections are attached to the
l ≥ 3 edges of the root-face. Cycle index sums for face rooted dissections fulfill the following system
of equations, where ZFo(s1,u1) denotes oriented face rooted dissections (only cyclic permutations are
allowed here), while ZFm1 (s1,u1),ZFm2 (s1,u1) and finally ZFs(s1,u1) denote face rooted dissection
where a reflection is applied.
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ZFo(s1,u1) =

=
∑
l≥3

1

l


∑
d|l

ϕ(d)


∑

i1,i2,...,i l
d

j1,j2,...,j l
d

l
d−1∏
m=1

(
uim+1+jm,dui l

d
+j1,dZAoimjm (sd,ud)

)
ZAi l

d

j l
d

(s1,u1)


 .

For l = 2m+ 1

ZFm1 (s1,u1) = s1

k,∞∑
i=0

ZAs−ii
(s1,u1)

 ∑
i1,i2,...,im
j1,j2,...,jm

m−1∏
t=1

ui+i1,2ujt+it+1,2u2jmZAoitjt
(s2,u2)

 ,

for l = 2m+ 2

ZFm2 (s1,u1) = s21

 ∑
i1,i2,...,im+1

j1,j2,...,jm+1

m∏
t=1

u2i1,1ujt+it+1,2u2jm+1,1ZAoitjt
(s2,u2)


ZFm3 (s1,u1) =

k,∞∑
i=0

ZAs−ii
(s1,u1)

k,∞∑
î=0

ZAs−
îî

(s1,u1)

×

 ∑
i1,i2,...,im
j1,j2,...,jm

m−1∏
t=1

ui+i1,2ujt+it+1,2ujm+î,2ZAoitjt
(s2,u2)

 ,

ZFs(s1,u1) =
∑
m≥1

ZFm1 (s1,u1) + ZFm2 (s1,u1) + ZFm3 (s1,u1).

Missing equations in the Series-Parallel case

For the sake of brevity, equations in this part are given in terms of ordinary generating functions, i.e. the
substitution sr ← xr, ui;r ← vri has already been made. We denote by (x`,v`) = (x`, v`1, . . . , v

`
k, v

`
∞).

Core system for series-parallel networks for 1 < i < j, i, j ∈ {1, . . . , k,∞}:
Si denotes the cycle index sum of the full symmetric group on i elements and the notation Si[G(x,v)]
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denotes the substitution si ← G(xi, vi1, . . . , v
i
k, v

i
∞).

Dij(x,v) = Sij(x,v) + Pij(x,v)

Sij(x,v) = x

(
k,∞∑
`1=2

k,∞∑
`2=1

v`1+`2Pi`1(x,v)D`2j(x,v)

)

Pij(x,v) =
∑

`1+2`2+...+i`i=i

 ∑
σ∈Si:∑
σ(i)`σ(i)=j

i∏
r=1

Slr [Sr,σ(r)(x,v)]



+
∑

`1+2`2+...+(i−1)`i−1=i−1

 ∑
σ∈Si:∑
σ(i)`σ(i)=j

i∏
r=1

Slr [Sr,σ(r)(x,v)]


−
k,∞∑
i=1

k,∞∑
j=1

Sij(x,v) (6)

D̄i(x,v) = S̄i(x,v) + P̄i(x,v)

S̄i(x,v) =

k,∞∑
`=1

(Di`(x
2,v2)

xv2` + x2v2`+1 + x

k,∞∑
j=1

v2`+jP̄j(x,v)


P̄i(x,v) =

∑
`1+2`2+...+i`i=i

(
i∏

r=1

Slr [s2s−1 ← S̄r(x
2s−1,v2s−1), s2s ← Srr(x

2s,v2s), s ≥ 1]

+
∏
`t=`t̃
t 6=t̃

S`t [S`t`t̃(x
2,v2)]


+

∑
`1+2`2+...+(i−1)`i−1=i−1

(
i∏

r=1

Slr [s2s−1 ← S̄r(x
2s−1v2s−1), s2s ← Srr(x

2s,v2s), s ≥ 1]

+
∏
`t=`t̃
t 6=t̃

S`t [S`t`t̃(x
2,v2)]

 −
k,∞∑
i=1

S̄i(x,v) (7)
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For i = 1 we have:

D11(x,v) = 1 + S11(x,v),

D1j(x,v) = S1j(x,v) for j > 1

D̄1(x,v) = 1 + S̄1(x,v),

S11(x,v) = xv2 + x2

(
k,∞∑
`1=1

k,∞∑
`2=1

v`1+1v`2+1D`1`2(x,v)

)
,

S1j(x,v) = x

(
k,∞∑
`=1

v`+1D`j(x,v)

)
for j > 1,

S̄1(x,v) = xv2 + x2

(
k,∞∑
`=1

v2`+1D̄i(x,v)

)
.

Equations for rooted unlabelled 2-connected series-parallel graphs:
Remember that the cycle index sum of rooted 2-connected series parallel graphs is given by

ZB′(s1,u1) = 1 + ZBR′ (s1,u1) + ZBM′ (s1,u1)− ZBRM(s1,u1).

The same equation holds for generating functions:

B′(x,v) = 1 +BR′(x,v) +BM ′(x,v)−BRM (x,v).

This leads to

BR′(x,v) = x

k∞∑
i=1

viBR′i(x,v)

BR′i(x,v) =
1

2

 ∑
i1+j1=i

∑
`≥3

 ∑
i2,i3,...,i`
j2,j3,...,j`

`−1∏
r=1

(
vir+jr (D − S)irjr+1

(x,v)(D − S)i`j1(x,v)
)

+
∑
m≥1

 ∑
i1,i2,...,im
j1,j2,...,jm

m−1∏
r=1

v2jr+irv
2
imjm(D − S) i

2 j1
(x2,v2)(D − S)irjr+1(x2,v2)(D̄ − S̄)im

+ x
∑

i1,i2,...,im
j1,j2,...,jm+1

m∏
r=1

v2jr+irv
2
2jm+1

(D − S) i
2 j1

(x2,v2)(D − S)irjr+1
(x2,v2)



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BM ′(x,v) = x

k∞∑
i=1

viBM ′i(x,v)

BM ′i(x,v) = x

( ∑
`1+2`2+...+i`i=i

(∑
σ∈Si

v∑i
r=1 σ(i)`σ(i)

i∏
r=1

Slr [Sr,σ(r)(x,v)]

)

+
∑

`1+2`2+...+(i−1)`i−1=i−1

(∑
σ∈Si

v1+
∑i
r=1 σ(i)`σ(i)

i∏
r=1

Slr [Sr,σ(r)(x,v)]

)

−
k,∞∑
j=1

Sij(x,v)

BRM (x,v) =
1

2
x

(
k,∞∑
`1=1

k,∞∑
`2=1

k,∞∑
`3=1

k,∞∑
`4=1

v`1+`2v`3+`4S`1`3(x,v)P`2`4(x,v)

)

+
1

2
x

(
k,∞∑
`1=1

k,∞∑
`2=1

v2`1+`2 S̄`1(x,v)P̄`2(x,v)

)

Equations for unrooted unlabelled 2-connected series-parallel graphs:
The cycle index sum of unrooted 2-connected series parallel graphs is given by a similar equation. The
only difference is that the ring- and multiedge components are no longer rooted:

ZB(s1,u1) = 1 + ZBR(s1,u1) + ZBM(s1,u1)− ZBRM(s1,u1).

Again, the equation can be translated into generating functions:

B(x,v) = 1 +BR(x,v) +BM (x,v)−BRM (x,v),

Also in this part, we will state equations in terms of generating functions. The function BRM (x,v) is
nearly identical to the rooted one, with the only difference that we have to count the additional vertex:

BRM (x,v) =
1

2
x2

(
k,∞∑
`1=1

k,∞∑
`2=1

k,∞∑
`3=1

k,∞∑
`4=1

v`1+`2v`3+`4S`1`3(x,v)P`2`4(x,v)

)

+
1

2
x2

(
k,∞∑
`1=1

k,∞∑
`2=1

v2`1+`2 S̄`1(x,v)P̄`2(x,v)

)
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The other two generating functions, on the contrary, are more involved. This is due to the cyclic permuta-
tions and reflections that can be applied to the rings and multiedges now that they are unrooted:

BR(x,v) =
∑
`≥3

1

`
x`
∑
d|`

ϕ(d)


∑

i1,i2,...,i `
d

j1,j2,...,j `
d

`
d−1∏
r=1

(
vjr+ir+1vj `

d
+i1(D − S)irjr (x

d,vd)
)


+
∑
m≥1

x k,∞∑
i=1

∑
i1,i2,...,im
j1,j2,...,jm

m−1∏
r=1

v2i1v
2
jr+ir+1

u2jr+1(D − S)irjr (x
2,v2)(D̄ − S̄)i(x,v)

+

k,∞∑
i=1

k,∞∑
j=1

∑
i1,i2,...,im
j1,j2,...,jm

m−1∏
r=1

v2i+i1v
2
jr+ir+1

v2j+jm(D − S)irjr (x
2,v2)(D̄ − S̄)i(D̄ − S̄)j)(x,v)

+ x2
∑

i1,i2,...,im+1

j1,j2,...,jm+1

m∏
r=1

v22i1v
2
jr+ir+1

v22jm+1
(D − S)irjr (x

2,v2)


BM (x,v) =

∑
i1,i2,...,ik,i∞

∑
σ∈Sk+1

(
(v∑k,∞

`=1 `i`
v∑k,∞

`=1 σ(`)jσ(`)
+ v∑k,∞

`=1 `i`+1v
∑k,∞
`=1 σ(`)jσ(`)+1)

×
k,∞∏
r=1

S`r [Sr,σ(r)(x,v)]

)
− (v20 + v21)

−
k,∞∑
i=1

k,∞∑
j=1

(vivj + vi+1vj+1)Sij(x,v)−
∑

i1,i2,j1,j2
∈{1,...,k,∞}

vi1+i2vj1+j2
Si1j1(x,v)Si2j2(x,v) + Si1j1(x2,v2)

2

+
∑

i1,i2,...,ik,i∞

(v2∑k,∞
`=1 `i`

+ v2∑k,∞
`=1 `i`+1

)

×
(

i∏
r=1

Slr [s2s−1 ← S̄r(x
2s−1,v2s−1), s2s ← Srr(x

2s,v2s), s ≥ 1]

+
∏
`t=`t̃
t6=t̃

S`t [S`t`t̃(x
2,v2)]


− (v0 + v1)−

k,∞∑
i=1

(v2i + v2i+1)S̄i(x,v)−
∑

i1,i2,j1,j2
∈{1,...,k,∞}

v2i1+i2
S̄i1(x,v)S̄i2(x,v) + Si1i2(x2,v2)

2
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