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Ordered increasing k-trees: Introduction and
analysis of a preferential attachment network
model

Alois Panholzer and Georg Seitz †

Institut für Diskrete Mathematik und Geometrie
Technische Universität Wien
Wiedner Hauptstr. 8-10/104
A-1040 Wien, Austria.
Alois.Panholzer@tuwien.ac.at, Georg.Seitz@tuwien.ac.at

We introduce a random graph model based on k-trees, which can be generated by applying a probabilistic preferential
attachment rule, but which also has a simple combinatorial description. We carry out a precise distributional analysis
of important parameters for the network model such as the degree, the local clustering coefficient and the number of
descendants of the nodes and root-to-node distances. We do not only obtain results for random nodes, but in particular
we also get a precise description of the behaviour of parameters for the j-th inserted node in a random k-tree of size
n, where j = j(n) might grow with n. The approach presented is not restricted to this specific k-tree model, but can
also be applied to other evolving k-tree models.
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1 Introduction
Since the pioneering work of [WS98] on real-world networks (as social networks, biological networks or
computer networks), various random network models have been introduced that capture at least part of
the typical properties observed frequently. Such properties (see, e.g., [WS98, BA99]) are, e.g., a small
average node-to-node distance, a high clustering coefficient, and a power-law degree distribution.

One of the most famous of such random graph models has been introduced by [BA99]. It uses the idea
of “preferential attachment” (or “success breeds success”), where, starting with a set of nodes, succes-
sively nodes are added and linked to a set of nodes by using a specific stochastic growth rule, namely
that the probability that a new node is attached to an already existing node is proportional to the degree
of that node. A mathematically rigorous definition of this model together with an analysis of important
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parameters has been given in [BR03]. It has been pointed out in that work that plane-oriented recursive
trees, an important and heavily analyzed tree model (see, e.g., [MS95] for a definition and early results),
are a special instance of the Bárabasi-Albert graph model.

In this work we introduce a random graph model, which is based on so-called k-trees(i) (see, e.g., [BP69,
Moo69]), but where we apply a preferential attachment rule in order to generate them. Starting with a
k-clique (a complete connected graph with k vertices) of nodes (the so-called root-clique) labelled by
01, 02, . . . , 0k, successively the nodes with labels 1, 2, . . . , n are inserted, where in each step the inserted
node will be attached to all of the nodes of an already existing k-clique. But instead of choosing a clique at
random we use the probabilistic growth rule that the probability that a new node is attached to an already
existing k-clique is proportional to one plus the number of nodes that have been previously attached to
this k-clique (the so-called children of the k-clique). In order to also obtain a combinatorial description
of these graph families we will consider increasingly labelled ordered k-trees and speak about the model
of “ordered increasing k-trees”; a precise definition will be given in Section 2.

From the construction of k-trees it is apparent that for k = 1 one obtains the model of plane-oriented
recursive trees; thus the here studied ordered increasing k-trees can be considered as graph families that are
generalizations of plane-oriented recursive trees. Quite recently k-trees have been introduced as network
models in [Gao09, ADS10] and an analysis of important parameters has been given. In contrast to the
model we are introducing the considered k-trees are there generated by a uniform attachment rule, i.e.,
in each step a new node is attached to a randomly chosen already existing k-clique. Combinatorially one
might speak then about the model of “unordered increasing k-trees”, which leads for the special instance
k = 1 to the model of (uniform) recursive trees.

We will give a precise distributional analysis of important parameters in ordered increasing k-trees
such as the degree, the local clustering coefficient and the number of descendants of the nodes and root-
to-node distances. We are here not only interested in a study of quantities for random nodes, but a main
emphasis is given on describing the behaviour of parameters for the j-th inserted node in a random k-
tree of size n, depending on the growth of j = j(n): we can give a complete characterization of the
limit laws appearing; partially we even obtain exact results. Thus the local behaviour of the nodes during
the graph evolution process is described quite well. Furthermore, using this precise information on the
behaviour of the parameters for the j-th inserted node we will easily deduce also the limiting behaviour
for randomly selected nodes in the k-tree (partially we obtain again even exact results). In particular we
can show that the distribution of the node-degrees follows asymptotically a so-called power law, i.e., the
probability that a randomly selected node has degree d behaves asymptotically as ∼ cd−2− 1

k , and that
the expected local clustering coefficient is rather high (e.g., for k = 2 it is asymptotically, for n → ∞,
given by 23− 9

4π
2 ≈ 0.793390 . . . ). Moreover the root-to-node distance of node n (but also of a random

node), is asymptotically Gaussian with expectation∼ 1
(k+1)Hk

log n and variance∼ H
(2)
k

(k+1)H3
k

log n, where

Hk =
∑n
`=1

1
` and H(2)

k =
∑n
`=1

1
`2 denote the first and second order harmonic numbers.

To show our results we use both descriptions of ordered increasing k-trees, namely (i) the description
via the graph evolution process which often gives rise to a “bottom-up approach” when considering the
parameter before and after inserting node n, and (ii) the combinatorial description as ordered increasing
k-trees which often allows a “top-down approach” when using a decomposition of the k-tree with respect
to the root-clique, see Section 2. The latter approach has been applied with success in [DS09, ADS10] to
(i) Here k ≥ 1 is always an integer. The term k-trees, also called k-dimensional trees, is somewhat misleading, since, for k ≥ 2,

these graphs are no more trees. In particular they should not be confused with k-ary trees, which are indeed trees.
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other k-tree models as in particular to randomly labelled k-trees. Both descriptions turn out to be quite
useful when analyzing parameters in ordered increasing k-trees; to show our results for the node-degree,
the local clustering coefficient and the number of descendants we use the bottom-up approach, whereas
for obtaining results on the root-to-node distance we use the top-down approach.

2 Ordered increasing k-trees
k-trees are families of simple graphs, which have been introduced by [BP69]. k-trees might be defined
recursively in a way analogous to trees: a k-tree T is either a k-clique (i.e., a complete connected graph
with k vertices) or there exists a node u (one might call u endnode), which is incident to exactly k edges
that connect this node to all of the vertices of a k-clique, such that, when removing u and the k incident
edges from T , the remaining graph is itself a k-tree. In this paper we will always consider rooted k-trees,
which means that in each k-tree one k-clique is distinguished as the root-clique (the nodes contained in the
root-clique are called root nodes, whereas the remaining nodes are non-root nodes; for the k-tree model
studied in this work we will also call the non-root nodes “inserted nodes”). Then, apart from the edges
connecting the root nodes with each other, this induces a natural orientation on the edges. Thus, for each
non-root node, we can distinguish between ingoing edges (coming from the direction of the root-clique)
and outgoing edges, which also defines the in-degree d−(u) and the out-degree d+(u) of a node u; for
a root node we will only define the out-degree. It is immediate from the definition that each non-root
node u has exactly k ingoing edges, and these edges connect u with a k-clique K = {w1, . . . , wk}. We
might then say that u is a child of the k-clique K or that u is attached to K and that w1, . . . , wk are the
parents of u. For the degree d(u) of a node u it holds that d(u) = d+(u) + k for a non-root node and
d(u) = d+(u) + k − 1 for a root node. We also define the out-degree d+(K) of a k-clique K as the
number of children of K.

Unlike in previously considered k-tree models it is for our purpose important to introduce ordered k-
trees, i.e., we assume that the children of each k-clique are linearly ordered (thus one might speak about
the first, second, etc. child of a k-clique). Furthermore, we introduce specific labellings of the nodes of
ordered k-trees, which might be called increasing labellings (in analogy to the corresponding term for
trees, see, e.g., [FBS92]). Given an ordered k-tree with n non-root nodes we label the set of root nodes
by {01, 02, . . . , 0k}, whereas the non-root nodes are labelled by {1, 2, . . . , n} in such a way that the label
of a node is always larger than the labels of all its parent nodes (of course, in this context the value
of 0`, 1 ≤ ` ≤ k, is defined as 0). The graph family “ordered increasing k-trees” can then be described
combinatorially as the family of all increasingly labelled ordered k-trees. It is apparent from the definition
that for k = 1 one gets the tree family of plane-oriented recursive trees. In what follows we will often
use as an abbreviation the term k-tree without further specification, but the meaning should always be
“ordered increasing k-tree”. Furthermore, we will often identify a node with its label, so node j always
has the meaning of “the node labelled by j”.

Throughout this paper we use the convention that the size |T | of a k-tree T is given by the number of
non-root nodes; thus the k-tree consisting only of the root-clique K0 = {01, . . . , 0k} has size 0. Let Tn
denote the number of ordered increasing k-trees of size n (we do not explicitly express the dependence
on k, which is of course given). Obviously it holds T0 = T1 = 1. To get an enumeration formula for
Tn we observe that when inserting a node into a k-tree this always increases the number of possible ways
of attaching a further node by k + 1 (k due to the newly generated k-cliques and a further one due to a
new available position at the parent k-clique). Thus there are always 1 + (k+ 1)(n− 1) possible ways of
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Fig. 1: All 4 different 2-trees of size 2. In the third and the fourth 2-tree in the picture the linear order on the children
1 and 2 of the root-clique is expressed by drawing 1 in front of 2 or vice versa.

inserting node n into a k-tree of size n− 1. Since each k-tree of size n is uniquely obtained from a k-tree
of size n− 1 and inserting node n in a possible way it holds that Tn = (1 + (k+ 1)(n− 1))Tn−1, which
shows that the number of different ordered increasing k-trees of size n is given by

Tn =

n−1∏
`=0

(
1 + (k + 1)`

)
= n!(k + 1)n

(
n− k

k+1

n

)
, for n ≥ 0. (1)

In Figure 1 we give all 4 different 2-trees of size 2.
When studying parameters in ordered increasing k-trees we always assume the “random ordered in-

creasing k-tree model”, which means that we assume that each of the Tn ordered increasing k-trees of
size n appears with the same probability. It is easily seen that for this model the k-trees can be obtained
indeed by the probabilistic preferential-attachment growth rule figured out in the introduction. One just
has to take in mind that when a k-clique K in a k-tree has ` children, i.e., d+(K) = `, then there are
always exactly `+ 1 possible ways of attaching a new node to K, namely as the first child, second child,
. . . , (`+ 1)-th child. Thus the following evolution process generates ordered increasing k-trees uniformly
at random:

• Step 0: start with the root clique labelled by 01, 02, . . . , 0k.

• Step n: the node with label n is attached to any k-cliqueK in the already grown k-tree of size n−1
with a probability p(K) given by

p(K) =
d+(K) + 1

1 + (k + 1)(n− 1)
.

We will also use the combinatorial decomposition of ordered increasing k-trees with respect to the
root-clique. To describe this decomposition it is advantagous to introduce two families T and S of com-
binatorial objects (they depend on k, but we do not explicitly express this). T is just the family of ordered
increasing k-trees, whereas S consists of all ordered increasing k-trees, where the root-clique has exactly
one child. Of course, an object of T , where the root-clique has exactly ` children, can be obtained, af-
ter identification of the root nodes and an order-preserving relabelling, by a sequence of ` objects of S.
Furthermore, when considering objects in S the child-node attached to the root-clique has to be labelled
by 1, and together with all choices of k − 1 nodes from the root-clique it is forming exactly k different
k-cliques, which, after relabelling, can themselves be considered as root-cliques of objects of T . Thus we
obtain the following formal description of the families T and S (see, e.g., [FS09] for an explanation of
such formal specifications):

T = S0 ∪̇ S1 ∪̇ S2 ∪̇ S3 ∪̇ · · · = SEQ(S),

S = {1} × T k = Z� ∗ T k.
(2)
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When denoting by Tn and Sn the number of objects in the families T and S , respecively, of size n and
by T (z) :=

∑
n≥0 Tn

zn

n! and S(z) :=
∑
n≥0 Sn

zn

n! their exponential generating functions, we obtain by
using the symbolic method (see again, e.g., [FS09]) immediately the following system of equations:

T (z) =
1

1− S(z)
, S′(z) = T (z)k, S(0) = 0,

which has the solution

T (z) =
(
1− (k + 1)z

)− 1
k+1 and S(z) = 1−

(
1− (k + 1)z

) 1
k+1 . (3)

Extracting coefficients from T (z) and S(z) shows again that the number Tn of ordered increasing k-trees
of size n is given by (1), whereas Sn = (n− 1)!(k + 1)n−1

(n−1− 1
k+1

n−1

)
, n ≥ 1.

3 Parameters studied and results
3.1 Parameters studied
Next we give a definition of the quantities studied in random ordered increasing k-trees. For better read-
ability we do not explicitly express the dependence of the quantities on k, which is of course always given,
in the notations.

The r.v. Yn,j counts the out-degree (see Section 2) of node j in a random k-tree of size n, whereas the
r.v. Ȳn counts the out-degree of a random inserted node in a random k-tree of size n, i.e., the out-degree
of a node picked at random from the non-root nodes {1, 2, . . . , n}. The r.v. Yn,0 counts the out-degree
of the root-node 01 in a random k-tree of size n; of course, due to symmetry, the corresponding r.v. are
identically distributed for each of the root-nodes 01, . . . , 0k and do not have to be introduced separately.

The r.v. Cn,j counts the local clustering coefficient of node j in a random k-tree of size n. The local
clustering coefficient has been introduced by [WS98] and is considered as an important parameter in the
study of real-world networks. The local clustering coefficient CG(u) of a node u in a graph G(V,E) is
defined as the proportion of edges between neighbours of u divided by the number of edges between the
neighbours that could possibly exist; formally CG(u) is given by

CG(u) =

{ |{e∈E : e=(x,y) with x,y∈N(u)}|
(d(u)

2 )
, if d(u) ≥ 2,

0, if d(u) = 0 or d(u) = 1,
(4)

where N(u) denotes the set of neighbours (i.e., adjacent nodes) of u. The r.v. C̄n counts the local
clustering coefficient of a randomly selected node (amongst the root nodes and the inserted nodes) in a
random k-tree of size n.

The r.v. Xn,j counts the number of descendants of node j in a random k-tree of size n. Whether a node
w is a descendant of u might be defined recursively: w is a descendant of u if either u = w or if w has a
parent node, which is a descendant of u. One might then also say that u is an ancestor of w. The r.v. X̄n

counts the number of descendants of a random inserted node in a random k-tree of size n.
The r.v. Dn counts the distance between the root node 01 and node n in a random k-tree of size n. As

usual the distance between nodes in a graph is measured by the minimal number of edges contained in a
path amongst all paths connecting these nodes. Again the corresponding r.v. are identically distributed
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Fig. 2: An example of a 2-tree of size 11. Node 4 has out-degree three and five descendants (counting the node as
a descendant of itself). The local clustering coefficient of node 4 is 0.4, since there are four edges between the five
neighbours of this node (see the definition of the local clustering coefficient). The distance of node 4 to the root node
01 is one.

for each of the root-nodes 01, . . . , 0k. Furthermore, as a direct consequence of the evolution process of
random k-trees one obtains that the distance Dn,j between the root node 01 and node j in a random k-tree
of size n is distributed as Dj and thus does not have to be studied separately. The r.v. D̄n counts the
distance between the root node 01 and a random inserted node in a random k-tree of size n.

In Figure 2 we give an example of a 2-tree together with the parameters studied.

3.2 Results
Degree of the nodes
Theorem 1 The r.v. Yn,j , which counts the out-degree of node j in a random k-tree of size n, has the
following exact distribution:

P{Yn,j = m} =

(j− k
k+1

j

)
(
n− k

k+1
n

)(
n
j

) m∑
`=0

(
m

`

)
(−1)`

(
n− k(2+`)

k+1

n− j

)
, for n ≥ j ≥ 1 and m ≥ 0.

The limiting distribution behaviour of Yn,j is, for n → ∞ and depending on the growth of j, charac-
terized as follows.

• The region for j fixed. The normalized random variable n−
k
k+1Yn,j converges in distribution to a

r.v. Yj , i.e., n−
k
k+1Yn,j

(d)−−→ Yj , which is fully characterized by its moments. The s-th moments of
Yj are, for s ≥ 0, given by

E(Y sj ) =
s!Γ(j + 1

k+1 )

Γ(j + 1 + k(s−1)
k+1 )

.

• The region for j small: j → ∞ such that j = o(n). The normalized random variable
(
j
n

) k
k+1Yn,j

is asymptotically exponentially distributed with parameter 1:(
j
n

) k
k+1Yn,j

(d)−−→ Exp(1), i.e.,
(
j
n

) k
k+1Yn,j

(d)−−→ Y , where the s-th moments of Y are, for s ≥ 0,
given by

E(Y s) = s!.
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• The central region for j: j → ∞ such that j ∼ ρn, with 0 < ρ < 1. The random variable Yn,j is
asymptotically geometrically distributed with success probability ρ

k
k+1 :

Yn,j
(d)−−→ Geom(ρ

k
k+1 ), i.e., Yn,j

(d)−−→ Yρ, where the probability mass function of Yρ is given by

P{Yρ = m} = ρ
k
k+1
(
1− ρ

k
k+1
)m
, for m ≥ 0.

• The region for j large: j →∞ such that j̃ := n− j = o(n). It holds that P{Yn,j = 0} → 1.

Theorem 2 The r.v. Yn,0, which counts the out-degree of the root node 01 in a random k-tree of size n,
has the following exact distribution:

P{Ȳn,0 = m} =

(
m− k−1

k
m

)(
n− k

k+1
n

) m∑
`=0

(
m

`

)
(−1)`

(
n− 1− k`

k+1

n

)
, for m ≥ 0.

For n → ∞, the normalized random variable n−
k
k+1Yn,0 converges in distribution to a r.v. Y0, i.e.,

n−
k
k+1Yn,0

(d)−−→ Y0, which is fully characterized by its moments. The s-th moments of Y0 are, for s ≥ 0,
given by

E(Y s0 ) =
Γ( 1

k+1 )Γ(s+ 1
k )

Γ( 1
k )Γ( k

k+1s+ 1
k+1 )

.

Theorem 3 The r.v. Ȳn, which counts the out-degree of a random inserted node in a random k-tree of
size n, has the following exact distribution:

P{Ȳn = m} =
1

n
(
n− k

k+1
n

) m∑
`=0

(
m
`

)
(−1)`

k(`+ 2) + 1

((
n+ 1

k+1

n

)
−
(
n− k(`+2)

k+1

n

))
, for m ≥ 0.

For n→∞, Ȳn converges in distribution to a discrete r.v. Ȳ , i.e., Ȳn
(d)−−→ Ȳ , with

P{Ȳ = m} = pm :=
k + 1

k(m+ 1)
(
m+2+ 1

k
m+1

) , for m ≥ 0.

Since pm ∼ k+1
k Γ

(
2 + 1

k

)
m−2− 1

k , for m → ∞, it follows that Ȳn follows asymptotically a power-law
distribution with exponent 2 + 1

k .

Local clustering coefficient
Lemma 1 For any k-tree T the local clustering coefficient CT (u) of a node u only depends on the degree
d(u) of u. It holds then for d(u) ≥ k ≥ 2:

CT (u) =
2(k − 1)

d(u)
− (k − 1)(k − 2)

d(u)(d(u)− 1)
.
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k ck = lim
n→∞

E(C̄n) numerically

2 23− 9
4π

2 0.793390 . . .

3 −5 + 16
3 Ψ′( 4

3 ) 0.843184 . . .

4 1051
96 −

75
128Ψ′( 1

4 ) 0.871356 . . .

5 512
125 −

72
625Ψ′(− 4

5 ) 0.889998 . . .

k ck = lim
n→∞

E(C̄n) numerically

6 148003
57024 −

2695
62208Ψ′(− 11

6 ) 0.903449 . . .

10 0.933975 . . .

50 0.982804 . . .

100 0.990885 . . .

Tab. 1: The limit ck of the expected local clustering coefficient E(C̄n) for small values of k.

Theorem 4 Let the r.v. C̄n count the local clustering coefficient of a random node in a random k-tree
of size n. Then the expected local clustering coefficient E(C̄n) behaves, for n → ∞, as follows (here
Ψ(x) = (ln Γ(x))′ denotes the Psi-function and Ψ′(x) its derivative):

E(C̄n)→ ck :=
∑
m≥0

(k + 1)(k − 1)

k(m+ 1)(m+ k)
(
m+2+ 1

k
m+1

)(2− k − 2

m+ k − 1

)

= (k + 1)

(
1

k − 1
+

3

k

(
k − 4− 1

k

k − 2

) k−2∑
`=1

1

`2
(`+3+ 1

k−k
`

) +
3

k

k−3∑
`=0

(−1)`

(`+ 1)(`− 1− 1
k )
(
k−3
`

)
− 3

k

(
k − 4− 1

k

k − 2

)
Ψ′
(
4 +

1

k
− k
))
.

It further holds that ck → 1, for k →∞.

Number of descendants
Theorem 5 The r.v. Xn,j , which counts the number of descendants of node j in a random k-tree of size
n, has the following exact distribution:

P{Xn,j = m} =

(m−1− 1
k+1

m−1

)(n−m−1+ 2
k+1

n−m−j+1

)
(n− k

k+1

n−j

) , for n ≥ j ≥ 1 and m ≥ 1.

The limiting distribution behaviour of Xn,j is, for n → ∞ and depending on the growth of j, charac-
terized as follows.

• The region for j fixed. The normalized random variable Xn,j
n is asymptotically Beta-distributed,

Xn,j
n

(d)−−→ β( k
k+1 , j − 1 + 2

k+1 ), i.e., Xn,jn
(d)−−→ Xj , where the s-th moments of Xj are, for s ≥ 0,

given by

E(Xs
j ) =

(
s− 1

k+1
s

)(
s+j− k

k+1
s

) .
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• The region for j small: j → ∞ such that j = o(n). The normalized random variable j
nXn,j

is asymptotically Gamma-distributed, j
nXn,j

(d)−−→ γ( k
k+1 , 1), i.e., j

nXn,j
(d)−−→ X , where the s-th

moments of X are, for s ≥ 0, given by

E(Xs) = s!

(
s− 1

k+1

s

)
.

• The central region for j: j → ∞ such that j ∼ ρn, with 0 < ρ < 1. The shifted random variable

Xn,j − 1 is asymptotically negative binomial-distributed, Xn,j − 1
(d)−−→ NegBin( k

k+1 , ρ), i.e.,

Xn,j − 1
(d)−−→ Xρ, where the probability mass function of Xρ is given by

P{Xρ = m} =

(
m− 1

k+1

m

)
ρ

k
k+1 (1− ρ)m, for m ≥ 0.

• The region for j large: j →∞ such that j̃ := n− j = o(n). It holds that P{Xn,j = 1} → 1.

Theorem 6 The r.v. X̄n, which counts the number of descendants of a random inserted node in a random
k-tree of size n, has the following exact distribution (with m ≥ 1):

P{X̄n = m} =

(m−1− 1
k+1

m−1

)
n
(
n− k

k+1
n

) m−1∑
`=0

(
m−1
`

)
(−1)`

(k + 1)(`+ 1) + k

((
n+ 1

k+1

n

)
−
(
n− `− 2 + 2

k+1

n

))
.

For n→∞, X̄n converges in distribution to a discrete r.v. X̄ , i.e., X̄n
(d)−−→ X̄ , with

P{X̄ = m} =
k

(k + 1)(m+ k
k+1 )(m− 1

k+1 )
, for m ≥ 1.

Root-to-node distance
Theorem 7 The r.v. Dn, which measures the distance between the root node 01 and node n in a random
k-tree of size n, is, for n → ∞, asymptotically Gaussian distributed, where the rate of convergence is of
order O

(
1√

logn

)
:

sup
x∈R

∣∣∣∣∣ P
{
Dn − E(Dn)√

V(Dn)
≤ x

}
− Φ(x)

∣∣∣∣∣ = O
( 1√

log n

)
,

and the expectation E(Dn) and the variance V(Dn) satisfy

E(Dn) =
1

(k + 1)Hk
log n+O(1), V(Dn) =

H
(2)
k

(k + 1)H3
k

log n+O(1).

Corollary 1 The r.v. D̄n, which measures the distance between the root node 01 and a random inserted
node in a random k-tree of size n, is, for n→∞, asymptotically Gaussian distributed:

P
{
D̄n−E(D̄n)√

V(D̄n)
≤ x

}
→ Φ(x), for all x ∈ R, with expectation and variance satisfying E(D̄n) =

1
(k+1)Hk

log n+O(1) and V(D̄n) =
H

(2)
k

(k+1)H3
k

log n+O(1).

Here Φ(x) denotes the distribution function of the standard normal distribution N (0, 1).
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4 Brief outline of the proof of the results
4.1 Degree of the nodes
In order to get a suitable description of the r.v. Yn,j we consider the graph evolution process of k-trees.
The following observation is crucial to our approach: each node x attached to node j increases the number
of possibilities of attaching a new node to j by exactly k (1 possibility more at the k-clique where node x
is attached and k − 1 possibilities more due to the k − 1 new k-cliques containing x and j). Thus if node
j ≥ 1 has out-degree m there are exactly (m + 1)k possibilities of attaching a new node that increases
the out-degree of node j, whereas the remaining possibilities will keep the out-degree unchanged.

Thus if we count by Tn,j,m := TnP{Yn,j = m} the number of k-trees of size n such that node j has
out-degree m, we immediately get the following recurrence:

Tn,j,m =
(
(k + 1)n− km− 2k

)
Tn−1,j,m + kmTn−1,j,m−1, for n > j ≥ 1 and m ≥ 0,

with Tj,j,0 = Tj , for j ≥ 1, and Tj,j,m = 0, form > 0. Introducing the generating functions T [j](z, v) :=∑
n≥j

∑
m≥0 Tn,j,m

zn−j

(n−j)!v
m leads to the following linear first order partial differential equation:(

1− (k+1)z
)
T [j]
z (z, v)+kv(1−v)T [j]

v (z, v)−
(
k(j−1+v)+ j+1

)
T [j](z, v) = 0, T [j](0, v) = Tj ,

which can be solved by applying the method of characteristics. The solution is given by the following
expression:

T [j](z, v) =
Tj(

1− v
(
1− (1− (k + 1)z)

k
k+1
))(

1− (k + 1)z
) kj−k+j+1

k+1

,

and extracting coefficients immediately shows the exact formula for the probabilities P{Yn,j = m} given
in Theorem 1. To show the limiting distribution results given in Theorem 1 we use, depending on the
growth behaviour of j = j(n), different approaches (see [KP07] for similar considerations on the node-
degree of increasing trees). For the two cases j fixed and j → ∞, such that j = o(n), we use the
method of moments, where we study the explicit expression for the s-th factorial moments obtained after
extracting coefficients from the s-th derivative of T [j](z, v) w.r.t. v evaluated at v = 1. For the remaining
two cases j ∼ ρn, with 0 < ρ < 1, and n − j = o(n) we directly study the exact expression for the
probabilities.

To show Theorem 2 concerning the out-degree of the root node 01 one can use the same approach as
for a non-root j, but one has to start with a slightly different recurrence. The asymptotic considerations
are similar to the case j fixed.

For obtaining Theorem 3 one simply uses the relation P{Ȳn = m} = 1
n

∑n
j=1 P{Yn,j = m} and

Theorem 1. In order to get the explicit expression for the probabilities given in the theorem we use a
hypergeometric identity for simplifying it.

4.2 Local clustering coefficient
The crucial observation for analyzing the local clustering coefficient in k-trees is that the local clustering
coefficient CT (u) of a node u in a k-tree T only depends on the degree d(u) of the corresponding node;
the exact relation is expressed in Lemma 1. To show this we will, according to the definition (4), count the
number M(u) of edges between neighbours of u. Consider a node u in a k-tree; then it always holds that
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d(u) ≥ k − 1. If d(u) = k − 1 then the k-tree can consist only of a single root-clique and u is one of the
root nodes; thus all k − 1 neighbours of u are connected with each other, which implies M(u) =

(
k−1

2

)
.

In order to determine M(u) when d(u) ≥ k we observe that in any k-tree holds that when increasing the
degree of a node u by 1 then the number of edges between neighbours of u increases exactly by k − 1;
this holds since a new node w adjacent to u generates a k-clique, such that w is also adjacent to k − 1
neighbours of u. ThusM(u) =

(
k−1

2

)
+(k−1)(d(u)−k+1), for d(u) ≥ k−1, which implies Lemma 1.

Of course, due to Lemma 1, one can immediately obtain distributional relations between r.v. measuring
the degree (or out-degree) and the local clustering coefficient of nodes in k-trees. In particular we are
interested in the r.v. C̄n measuring the local clustering coefficient of a random node in a random k-tree
of size n (of course, similar considerations for the local clustering coefficient of node j can be made also,
but we skip them here). One gets then

C̄n
(d)
=

2(k − 1)

Ỹn
− (k − 1)(k − 2)

Ỹn(Ỹn − 1)
,

where Ỹn measures the degree of a randomly selected node (amongst the root nodes and inserted nodes) in
a k-tree of size n. Of course, the distribution of Ỹn, and thus also the distribution of C̄n is fully determined

by the previously studied r.v. Ȳn and Yn,0. In particular it easily follows that Ỹn
(d)−−→ Ȳ + k, where the

distribution of the discrete random variable Ȳ is characterized in Theorem 3. The main quantity of interest

in this context is the expected local clustering coefficient of a random node. Since Ỹn
(d)−−→ Ȳ + k, with

Ȳ a discrete r.v., and since the function f(m) = 2(k−1)
m − (k−1)(k−2)

m(m−1) is uniformly bounded for m ≥ k, it
immediately follows that

E(C̄n)→ ck :=
∑
m≥k

P{Ȳ + k = m}
(2(k − 1)

m
− (k − 1)(k − 2)

m(m− 1)

)
,

which leads to the first expression for ck given in Theorem 4. The second one, which is advantageous
when computing ck for small k, can be obtained by rather lengthy manipulations with beta integrals and
their derivatives.

4.3 Number of descendants
For a recursive description of the r.v. Xn,j we consider the graph evolution process of k-trees. Here the
following observation is crucial: each node x attached to a descendant of node j increases the number
of possibilities of attaching a new node to a descendant of j by exactly k + 1 (1 possibility more at the
k-clique where node x is attached and k possibilities more due to the k new k-cliques containing x). Thus
if node j ≥ 1 has m descendants there are exactly (k+ 1)m− 1 possibilities of attaching a new node that
increases the number of descendants of node j, whereas the remaining possibilities will keep the number
of descendants unchanged.

This description allows a recursive approach analogeous to the one sketched in Subsection 4.1. Also
the asymptotic considerations are very similar to the ones discussed there, but somewhat simpler, due to
the closed formulæ for the exact results.

4.4 Root-to-node distance
In order to study the distance between node n and the root node 01 in a k-tree it is natural to study
the distance between node n and all root nodes 01, . . . , 0k simultaneously. To do this we first introduce
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the notion dist(u,K), which gives the distance between a node u and a k-clique K = {w1, . . . , wk}
via dist(u,K) := min1≤`≤k{dist(u,w`)} (where dist(x, y) denotes the distance between the nodes x
and y). We introduce then the r.v. D̃n, which counts the distance between node n and the root-clique
K0 = {01, . . . , 0k} in a random k-tree of size n. Since the distance between node n and an arbitrary
root node in a k-tree is always either the same as the distance between n and the root-clique K0 or one
more, there are always ` root nodes, with 1 ≤ ` ≤ k, which are at the same distance to node n like the
root-clique is, and k − ` root nodes with a distance one larger. Due to symmetry it suffices to introduce
the following k different events E`, 1 ≤ ` ≤ k, which describe the different situations that can occur:

E` :=
{

dist(n, 01) = · · · = dist(n, 0`) < dist(n, 0`+1) = · · · = dist(n, 0k)
}
.

Then the distribution of the r.v. Dn we are interested in can be described as follows (amongst the
(
k
`

)
possible situations symmetric to event E` one has to distinguish whether node 01 is at the same distance
to n or is one larger than the distance between n and the root-clique):

P{Dn = m} =

k∑
`=1

P{D̃n = m∧E` occurs}
(
k − 1

`− 1

)
+

k∑
`=1

P{D̃n = m−1∧E` occurs}
(
k − 1

`

)
. (5)

When introducing the generating functions

T`(z, v) :=
∑
n≥1

∑
m≥0

TnP{D̃n = m ∧ E` occurs} zn−1

(n− 1)!
vm, 1 ≤ ` ≤ k,

S`(z, v) :=
∑
n≥1

∑
m≥0

SnP{D̃[S]
n = m ∧ E` occurs} zn−1

(n− 1)!
vm, 1 ≤ ` ≤ k,

where D̃[S]
n denotes the corresponding r.v. for objects in the family S, one obtains by using the combina-

torial decomposition of k-trees w.r.t. the root-clique (and after a study of the possibilities for the distance
between node 1 and node n in objects of S leading to event E`) given by (2) the following system of
equations, with T (z) and S(z) given in (3):

T`(z, v) =
S`(z, v)

(1− S(z))2
,

∂

∂z
S`(z, v) = (k − `)T (z)k−1

(
T`(z, v) + T`+1(z, v)

)
, 1 ≤ ` ≤ k − 1,

Tk(z, v) =
Sk(z, v)

(1− S(z))2
,

∂

∂z
Sk(z, v) = kvT (z)k−1T1(z, v).

This leads to the following system of linear differential equations for the functions S`(z, v):

∂

∂z
S`(z, v) =

(k − `)
(
S`(z, v) + S`+1(z, v)

)
1− (k + 1)z

, 1 ≤ ` ≤ k − 1,
∂

∂z
Sk(z, v) =

kvS1(z, v)

1− (k + 1)z
.

Since it is possible to get from this system of differential equations a single differential equation for
Sk(z, v), which is of Euler type, it can be solved explicitly; thus all functions T`(z, v), 1 ≤ ` ≤ k, can
also be given explicitly.



Ordered increasing k-trees: Introduction and analysis of a preferential attachment network model 561

Since the generating function T (z, v) :=
∑
n≥1

∑
m≥0 TnP{Dn = m} zn−1

(n−1)!v
m is due to equation (5)

completely determined by the functions T`(z, v), 1 ≤ ` ≤ k, via

T (z, v) =

k∑
`=1

((
k − 1

`− 1

)
+

(
k − 1

`

)
v

)
T`(z, v),

it is possible to also get an explicit solution for T (z, v). One eventually obtains that

T (z, v) =

k∑
j=1

Bj(v)

(1− (k + 1)z)αj(v)+ 2
k+1

, (6)

with α1(v), . . . , αk(v) the roots of the equation

k!v

(k + 1)k
=

k−1∏
r=0

(
α− r

k + 1

)
, (7)

and where the functions Bj(v), 1 ≤ j ≤ k, can be given explicitly (see [Pan04] for such considerations
on a related problem); for our purpose it is sufficient to state that all functions Bj(v) are analytic in a
neighbourhood of v = 1. By considerations as in [Mah92] one can show that for v = 1 all roots αj(1),
1 ≤ j ≤ k, of (7) are simple. It is easily observed that k

k+1 is a root of (7) when v = 1; moreover, it is the
root with largest real part. Let α1(v) denote the root of (7), which satisfies α1(1) = k

k+1 . Then from (6)
we obtain the following asymptotic expansion of the moment generating function of Dn:

E
(
eDns

)
= e

(α1(es)− k
k+1 ) logn+log

(Γ(1+ 1
k+1

)B1(es)

Γ(α1(es)+ 2
k+1

)

)
·
(
1 +O(n−η)

)
, with an η > 0.

An application of the quasi-power theorem of Hwang, see [HKH98], immediately shows Theorem 7.
Corollary 1 can be deduced from it easily.

5 Conclusion
We introduced a network model which is based on k-trees and which can either be described by a proba-
bilistic growth rule using preferential attachment or combinatorially by considering increasing labellings
of the nodes and a linear ordering of the children of k-cliques. We gave a precise analysis of various
parameters and could show that the distribution of the node-degrees follows asymptotically a power law,
that the expected local clustering coefficient is high, and that the root-to-node distance of node n is asymp-
totically Gaussian distributed with expectation and variance of order log n. The approach we used is not
restricted to the introduced model, but can also be easily applied to further evolving k-tree models; in
particular the previously introduced uniform attachment model for k-trees can be treated in the same way.
But also further k-tree models such as, e.g., ones with a “saturation rule”, where at most up to d children
can be attached to a k-clique and where the probability that a new node is attached is proportional to the
number of “free places”, can be introduced and analyzed (the special instance d = 1 gives the so-called
Apollonian networks). One can even go a step further and introduce weighted ordered k-trees (with or
without increasing labellings), where each k-clique in the k-tree gets a weight depending on the number
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of attached children. This, in analogy to simply generated tree families, see [FS09], leads then to “sim-
ple families of k-trees” (if unlabelled or arbitrarily labelled) or “simple families of increasing k-trees”
(if increasingly labelled). By choosing specific weights for increasingly labelled ordered k-trees all the
before-mentioned evolution models for k-trees can be obtained; a complete characterization of possible
k-tree evolution models as has been given in [PP07] for simple families of increasing trees is possible.
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