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An optimal cardinality estimation algorithm
based on order statistics and its full analysis
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Building on the ideas of Flajolet and Martin (1985), Alon et al. (1987), Bar-Yossef et al. (2002), Giroire (2005),
we develop a new algorithm for cardinality estimation, based on order statistics which, according to Chassaing and
Gerin (2006), is optimal among similar algorithms. This algorithm has a remarkably simple analysis that allows us
to take itsfine-tuningand thecharacterization of its propertiesfurther than has been done until now. We prove that,
asymptotically, it isstrictly unbiased(contrarily to Probabilistic Counting, Loglog, Hyperloglog), we verify that its
relative precision is about1/

√
m− 2 whenm words of storage are used, and we fully characterize the limit law of

the estimates it provides, in terms of gamma distribution—this is the first such algorithm for which the limit law has
been established. We also develop a Poisson analysis for thepre-asymptotic regime. In this way, we are able to devise
a complete algorithm, covering all cardinalities ranges from0 to very large.

1 Introduction
Given a largemultisetS of size|S| (the number of elements contained inS), we are interested in a basic
quantity, thecardinalityn which is the number ofdistinctelements inS.

The problem of determining or estimating the cardinality ofa (large) multiset is historically tied to
database query optimization, but it also has a wide variety of other practical applications in many fields,
ranging from data mining to network security (as is further detailed in Flajolet’s survey [5]). Solving it
exactly without additional knowledge on the nature of the data requires linear space. For the orders of
magnitude considered, multisets containing millions, if not billions, of elements, this is impractical.

Probabilistic algorithms, which advantageously trade accuracy for speed, have proven remarkably ele-
gant and useful: see Alon et al.’s synthesis study [1]. The algorithms we are interested in all resort to hash
functions to transform the input data into what can be virtually considered as uniform random variables
(see Knuth [11]). Anobservableis a function of the underlyingsetof hashed values; that is, a quantity
independent of replications.

From here, two broad categories of observables have emerged, corresponding to two different ways of
viewing the hashed values.

• The “continuous view”, where the hashed values are seen as real numbers on the set[0, 1], and
only the relative order of elements is taken into account: observables studied under this model are
calledorder statistics. In particular thek-th order statistic, for any given (constant)k, is thek-th
smallest value of the underlying set. These are relevant because, for instance, thek-th order statistic
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of n uniformly random variables is an observable and its expected value isk/(n+ 1), thus it must
convey some information on the cardinalityn. Algorithms which fit into this category are due to
Bar-Yossef et al. [2], and more recently to Giroire [9, 10], Chassaing and Gerin [3].

• The “discrete view”, in which the hashed values are considered as strings of bits. Observables are
then based onbit-patterns, such as the longest run of zeroes at the beginning of a string. The papers
by Flajolet et al. [4, 6, 7] belong to this category, as does (in a way) linear counting, a special
method introduced by Whang et al. in [12], but one that consumes linear space.

Algorithms based on pattern observation produce estimators that, for well understood reasons, tend to
involve small periodic fluctuations. While inconsequential from a practical standpoint, these introduce
a residual error which means the estimators are not totally asymptotically unbiased. Our algorithm, by
virtue of being based on order statistics, does not have thislimitation and is trulyasymptotically unbiased.

Giroire’s thesis [9] extensively studies several estimators based on order statistics observables; Chas-
saing and Gerin in [3] suggest (without a detailed analysis)that another estimator, the inverse of an
arithmetic mean, is optimal—in the sense that its variance is less than that of any other estimator based on
order statistics. This is the estimator which we have chosento use in our algorithm. It gives it a relative
precision which is1/

√
m− 2 (wherem is the amount of memory used, see Theorem 2).

Counting with hash functions. Hash functions are very relevant to cardinality estimations algorithms.
On the one hand, they simulate uniform random variables, which allow for relatively easy calculations; on
the other hand, this simulated randomness isreproductible, in the sense that with a given hash function the
same element will always be hashed to the same value. So in effect, hash functions allow us to study the
underlyingset(of cardinalityn) of a multiset as though we were dealing withn uniform random variables.
There is an additional point: we need to choose a function of the hashed values that is insensitive to
repetitions, for example, theminimumof all hashed values.

The minimum ofn uniform random variables has expectation1/(n + 1); taking the inverse of this
minimum to estimate cardinality seems straightforward enough. Unfortunately, this alone turns out to
be less than useful for two reasons: the standard deviation of this minimum is of the same order as its
expectation, which means that it fluctuates a lot; concurrently, the inverse function diverges in0, and the
inverse of the minimum has infinite expectation.

Fluctuations can be circumvented by taking the average of several experiments (herem minima), each
of which would be performed using a different hash function and the same multiset. While this works, the
overhead of hashingeachelement of the multisetm times is vastly prohibitive(i).

Stochastic averaging. As early as one of the first papers on probabilistic cardinality estimation, Flajolet
and Martin introduced a technique they calledstochastic averaging[7], to simulatem different hash
functions with a single hash function, by splitting the input stream into several substreams.

To this end, we assign each element a given substream uniformly at random, with the condition that
every repetition of a given element must be assigned the samesubstream—which is why the averaging is
termedstochastic. Because every instance of an element has to be given the samesubstream, we again
resort to hash functions. More specifically, given the hashed valueh(x) ∈ (0, 1), we use⌊mh(x)⌋+ 1 as

(i) Especially as we have in mind algorithms with a precision of one or a few percent, which require to take values ofm in the range
of thousands.



An optimal cardinality estimation algorithm 491

the substream, and we then take the fractional part,(mh(x) − ⌊mh(x)⌋) ∈ (0, 1), as the hashed value(ii) .
Whenm = 2l is a power of two (as we will assume in our final implementation, in Section 5), this can

be done very efficiently by sampling thel high bits of the hashed value of the element (these bits will then
have to be discarded or they will introduce a correlation that will bias the estimate in unpredictable ways).

Approach and results. Our main purpose is to concurrently develop analgorithm for cardinality esti-
mations and itsanalysis. The analysis here serves several purposes:

1. to develop an asymptotically unbiased estimator (Theorem 1);

2. to determine its accuracy, measured in terms of standard error (Theorem 2) and characterize the risk
of error by way of the limit distribution of the estimate (Theorem 3);

3. to take into account the non-asymptotic regime so as to obtain a fully operational algorithm that
provably covers all cardinality ranges from0 to extremely large (Theorem 4 and Proposition 4.2).

The core algorithm is given in Figure 1. The mean and varianceanalysis (bias correction and standard
error estimation) are the subject of Section 2, as is the limit distribution result. The core algorithm presents
a non-asymptotical regime that is not directly usable: Section 3 details the analysis of an intermediate
regime (n andm proportional), which is amenable to a Poisson approach and allows for the necessary
corrections.

Section 4 reaps the crop. It adds a correction for the case when n is very small (Subsection 4.1), de-
velops the corrections provided by the Poisson analysis (Subsection 4.2), finally resulting in the complete
algorithm, which covers the entire range of small-to-very-large values as announced.

CORE ALGORITHM (fully analyzed in Section 2)

Parameter:m control parameter
Input: a streamS = (s1, . . . , sN )

initialize m registersM1 throughMm to 1

forall x ∈ S do
A := h(x) { hashx, with h(x) ∈ (0, 1)}
j := ⌊mA⌋+ 1 { index of the substream assigned tox}
Mj := min (Mj,mA− ⌊mA⌋) { update the minimum of thej-th substream}

return Z∗ =
m(m− 1)

M1 + . . .+Mm
{ estimation function}

Fig. 1: Pseudo-code for the core algorithm, introducing some notations we will use throughout this article. An ex-
tended estimation function applies either one of two corrections, linear counting or Poisson correction, depending on
the observed load—that is the proportion of non-empty registers.

(ii) Alternatively, we could use two hash functions:h1 to select the substream andh2 to give the value attached to an element, but
it is hard enough to find (and then costly to compute) two hash functions with the sought properties—let alone two which, in
addition, will also have to be independent.
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2 Analysis of the core algorithm
The core algorithm (given in Figure 1, and so called because our final algorithm includes several additional
significant corrections), as we have said, relies on stochastic averaging. Because of the way we split the
input stream, the size of the resulting substreams isnot deterministic. This is an issue in calculating the
estimator’s moments. We are lead to obtain a multi-dimensional integral parameterized byn, which we
approximate using Laplace’s method. Finally, after mean and variance estimates, we conclude this section
with a characterization of the limit (largen) distribution of the estimator.

The minimumM of n independent random variables uniformly distributed over[0, 1] has a distribution
characterized by

Pn[M ∈ [x, x+ dx]] = n(1− x)n−1 dx. (1)

The expectation ofM satisfiesEn[M ] = 1/(n+1), but this observation alone is not enough, because the
expectation of the inverse ofM diverges.

Splitting the stream. Stochastic averaging involves uniformly splitting the input stream into substreams,
then proceeding as though each of these substreams is representative of the entire input stream. In our
algorithm, this means that ifn is the cardinality of the input stream, we expect each of the substreams to
have a cardinality close ton/m.

From an analytical viewpoint, splitting then elements of the stream intom substreams, places us in the
classicalballs-in-urns model. Let Nj be the (random) number of elements assigned thej-th substream,
the probability distribution of the vectorN = (N1, . . . , Nm) is multinomial

Pn[N1 = n1, . . . , Nm = nm] =
1

mn

(

n

n1, . . . , nm

)

. (2)

Combining (1) and (2) gives us the joint distribution of them minima(M1, . . . ,Mm) associated to them
substreams. LetMj be the event:Nj = nj andMj ∈ [xj , xj + dxj ]. Then,

Pn





m
⋂

j=1

Mj



 =
1

mn

(

n

n1, . . . , nm

) m
∏

j=1

nj(1− xj)
nj−1 dxj . (3)

In this context, the random variableZ defined by

Z :=
m

M1 + . . .+Mm

is a viable cardinality estimator(iii) as we will show in the remainder of this section.

2.1 Moments of the inversed mean of minima
Lemma 1 Ther-th moment of the random variableZ (inverse mean of minima) is given by

En[Zr] =
(n)m
nm−r

∫

[0, n
m ]

m



1− 1

n

m
∑

j=1

tj





n−m

dt1 · · · dtm
(t1 + . . .+ tm)

r (4)

(iii) Or more precisely, we expectZ to estimaten/m rather thann, i.e.,mZ is expected to estimaten. In fact as we prove below
(Theorem 1), the unbiased estimator is(m − 1)Z.
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using the following notation for falling factorials,(n)m := n(n− 1) · · · (n−m− 1).

Proof: This follows from (3), summed over all possible values ofn1, . . . , nm and simplified using the
multinomial formula after differentiation,

∑

n1,...,nm

(

n

n1, . . . , nm

)

n1a
n1−1
1 · · ·nmanm−1

m =
∂m

∂a1 · · ·∂am
(a1 + . . .+ am)n

=
n!

(n−m)!
(a1 + . . .+ am)

n−m .

Next, the normalizationxj =
m
n tj brings ther-th moment under its form in (4). 2

Lemma 2 Under the regime wheren tends to infinity, whilem remains fixed,

En[Zr] =
nr

r ·
(

m−1
r

) (1 + o(1)). (5)

Proof: This result is obtained from the exact formula of Lemma 1, by using Laplace’s method: we split
the integration domain

[

0, n
m

]m
into two,

IC =

[

0,
δ(n)

m

]m

and IT =
[

0,
n

m

]m

\ IC (6)

whereIC is thecentral domain, in which the integral turns out to be concentrated and can beapproxi-
mated, andIT is thetail which can be bounded by a vanishingly small term; the quantity δ(n) is some
function to be chosen later.

Central approximation:when integrating onIC , we have0 6
∑

ti 6 δ(n). The approximation

(

1− x

n

)n

= e−x(1 + o(1)) (7)

is only verified forx = o(
√
n); we thus pickδ(n) = n1/10, for instance. We can then use the asymptotic

equivalence (7).
With the integral representation of the Gamma function on integers, valid fory ∈ R>0 andn ∈ N, we

get
∫ ∞

0

e−ayar−1 da =
(r − 1)!

yr
. (8)

as it crucially allows us to separate the integration variables of the denominator. After which, it is a
simple matter of grouping exponentials, switching integral and sum, to finally obtain (we have simplified
in passing by a factorar−1)

∫

IC

(

1− 1

n

m
∑

i=1

ti

)n−m m
∏

i=1

exp (−ati) dti ∼
(

∫
δ(n)
m

0

e−(a+1)w dw

)m

=

(

1− e−(a+1) δ(n)
m

a+ 1

)m
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keeping in mind thatn is considered to be large (compared tom). Becausee−(a+1) δ(n)
m 6 e−

δ(n)
m is

exponentially small, we further have the approximation,

ar−1

(

1− e−(a+1) δ(n)
m

a+ 1

)m

=
ar−1 +O

(

e−
δ(n)
m

)

(a+ 1)m
. (9)

Tail estimates:when integrating onIT , at least one of the variablesti is larger thanδ(n)/m,
(

1− 1

n

m
∑

i=1

ti

)n
1

t1 + . . .+ tm
6

(

1− 1

n

m
∑

i=1

ti

)n

6

(

1− δ(n)

nm

)n

∼ e−
δ(n)
m

hence an upper bound of the tail that is an exponentially small term,

∫

IT

(

1− 1

n

m
∑

i=1

ti

)n
dt1 · · · dtm

t1 + . . .+ tm
6

nm

mm
e−

δ(n)
m . (10)

A similar exponentially small bound holds withm replaced byn−m, as in (4).
Final result: by combining equations (9) and (10), and integrating ona, we can now give an asymptotic

equivalent to the entire integral,

∫

[0, n
m ]m



1− 1

n

m
∑

j=1

tj





n−m

dt1 · · · dtm
(t1 + . . .+ tm)r

=

∫ ∞

0

ar−1 da

(a+ 1)m
(1 + o(1)).

Hence the equivalence (5) of the statement. 2

2.2 Asymptotically unbiased estimator
According to Lemma 2, the expected value of the estimatorZ is asymptotically equivalent ton/(m− 1),
which means we can trivially define a new asymptoticallyunbiasedestimator.

Theorem 1 The estimatorZ⋆ defined by

Z⋆ := (m− 1)Z =
(m− 1)m

M1 + . . .+Mm
, (11)

is asymptotically unbiased, in the sense that:

En[Z⋆] = n(1 + o(1)). (12)

Proof: Follows directly from Lemma 2. 2

Theorem 2 The precision of estimatorZ⋆, expressed in terms of standard error, satisfies(iv)

σn[Z⋆]

n
∼ 1√

m− 2
. (13)

(iv) We use ‘∼’ to represent asymptotic equivalence; that is,f(n)∼ g(n) asn → ∞, if lim
n→∞

f(n)/g(n) = 1.
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Fig. 2: A summary of one hundred executions (each with a different hash function) of the core algorithm on an
English document of size≈ 109 words, containing aboutn = 115 000 different words, withm = 100. Thex-axis
is labeled with the exact cardinality, they-axis with the normalized estimator (Z⋆/n). The average is very close
to x = 1, which illustrates Theorem 1. The sample standard deviation appears to be within±10%, which is in
agreement with Theorem 2, as1/

√
m− 2 ≈ 0.101. Additional curves give an idea of the dispersion: 90% of all

estimates are within the two extreme curves. [The algorithmused here incorporates corrections developed below.]

Proof: From the previous results, we derive

Vn[Z] = En

[

Z2
]

− En[Z]
2 ∼ n2

(m− 1)(m− 2)
− n2

(m− 1)2
=

n2

(m− 1)2(m− 2)
,

thus the result, by the definition ofZ⋆ given in equation (11). 2

Figure 2 experimentally validates the results of Theorems 1and 2.

2.3 Limit law of the main algorithm

The simplicity of estimatorZ⋆ allows us to relatively simply calculate its limit law. Our starting point is
the same: we recall that whenM (ν) is the minimum ofν random variables uniform in[0, 1],

P

[

M (ν) ∈ [x, x + dx]
]

= ν(1 − x)ν−1 dx, (14)

and the expectation ofM is of order1/n, so that for largen

lim
n→∞

P

[

νM (ν) ∈ [t, t+ dt]
]

= e−t dt,

which represents the familiar exponential distribution and results plainly from the usual exponential ap-
proximation.

It is well known that the sum ofm independent exponentially (with parameterα = 1) distributed
random variables is gamma-distributed, with density

wm(t) = e−t tm−1

(m− 1)!
. (15)
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Fig. 3: Plots of the density of the limit distribution ofZ⋆/n (solid blue) and of a normal law with matching mean
and standard deviation (dotted black), form = 4, 8, 16, 32, 64 and1024.

From here, we deal with the sumS := M1 + . . . +Mm which involves partial dependency, because the
Mj are bound(v). We can recycle previous computations to get the Laplace transform ofS as

E
[

e−wS
]

=
∑

n1,...,nm

1

mn

(

n

n1, . . . , nm

)∫

[0,1]m
e−w(x1+...+xm)

m
∏

i=1

ni(1 − xi)
ni−1 dxi

=
(n)m
mn

∫

[0,1]m
e−w(x1+...+xm)

(

m−
m
∑

i=1

xi

)n−m

dx1 · · · dxm.

The same approximations we used in Subsection 2.1 apply hereas well, to the effect that on[0, 1]m,

E
[

e−wS
]

∼
(∫ ∞

0

e−te−wm
n
t dt

)m

=
(

E
[

e−wY m
n

])m
(16)

whereY is an exponentially distributed random variable with parameterα = 1.
Thus by the shape of its Laplace transform, the quantityS asymptotically behaves like the sum ofm

independentrandom variables, each exponentially distributed with parameterλ = m/n. The rescaled
quantityS∗ := n/m ·S asymptotically obeys a gamma law with densitywm(t) as given in equation (15).

Now if S∗ is gamma distributed according to (15), then1/S∗ has a distribution with the induced density

wm(u) = e−1/u u−m−1

(m− 1)!
. (17)

Hence:

Theorem 3 For a fixedm > 1, asn tends to infinity, the estimatorZ⋆ satisfies

lim
n→∞

Pn

[Z⋆

n
6 y

]

=

∫ y/(m−1)

0

e−1/u u−m−1

(m− 1)!
du.

Proof: An immediate consequence of the calculation (17) above and of the continuity theorem for Laplace
transforms. 2

(v) Recall thatMj = M (Nj). Thus indeed, theMj are interdependent: eachMj is the minimum ofNj uniform random variables,
for some randomNj which satisfies

∑
j Nj = n.
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Fig. 4: Bar diagram of the distribution ofk = 10 000 estimates of the cardinality of an English dictionary with
n = 115 794 andm = 50, to which has been super-imposed the curve of a rescaled normal law of expected value
µ = 115 794 and standard deviationσ = 1/

√
48. The distribution of the estimates (for this value ofm) is somewhat

skewed with regards to the normal law, in accordance with thetheoretical results for the limit distribution.

With this theorem, we can quantify the probabilities of our estimates substantially deviating from the
norm.

For example, for values ofm of practical use, namelym > 32, the probability of deviating from
more than three times the standard deviation is expected to be less than 0.27% and the distribution of the
estimates is expected to be barely distinguishable to what the normal law predicts. This phenomenon is
illustrated in both Figures 3 and 4.

On the theoretical side, we note that, by restricting the argument of the Laplace transform to imagi-
nary values and making use of Berry-Esseen inequalities, wecould bound the speed of convergence to
the inverse-gamma law: we expect this speed to be roughly of order1/

√
n. Also simulations reveal the

possibility of a stronger convergence in the sense of alocal limit law [8, §9.9], meaning that the individ-
ual probabilities are themselves well approximated by the density of the inverse-gamma law: this could
conceivably be established by applying the saddle point method to the inverse Laplace integral transform.
These two aspects will be further investigated in my forthcoming PhD thesis.

3 Poisson analysis of the intermediate regime

Stochastic averaging, the technique which involves simulating the use ofm hash functions by uniformly
splitting the input stream into substreams, brings computational efficiency at the cost of a delayed asymp-
totical regime. This drawback, however, can be compensatedfor: experimental results have shown that
estimates within the non-asymptotical regime are stronglybiased, but that they do not appear any more
dispersed than estimates within the asymptotical regime; this suggested that the bias can, to some extent,
be corrected so as to provide estimates with a similar precision to those of the asymptotical regime.

The analysis of this section validates the existence of thisintermediate regimeand gives us a precise
theoretical basis from which to effect the bias correction.
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Poisson model. As we now focus on pre-asymptotic calculations,n will be assumed to be relatively
small compared tom. We consider them substreams to be urns, in which we distributen values according
to a Poisson law (as it is well known that the Poisson distribution is a good approximation of the binomial
urn allocation), and we consider the values to be real valueduniform variables of the unit interval.

Formally, letλ := n/m. We havem urns, and in each urn fallsNj ∈ Poi(λ) values. Each of these
Nj values is a uniform random variable on[0, 1], calledU1 throughUNj

. We will be interested in the
minimal value to have fallen in each urnj; if no value has fallen in urnj, by convention (and because it
makes algorithmical and mathematical sense), we have that the minimum of that urn is1.

Suppose a given urnj is not empty: its minimumMj belongs to the interval[x, x+ dx] with probability

∞
∑

ν=1

P[Nj = ν]Pν [Mj ∈ [x, x+ dx]] =

∞
∑

ν=1

e−λλ
ν

ν!
ν(1 − x)ν−1 dx = λe−λx dx.

In addition, urnj can also beempty: this means thatMj has an extra probabilitye−λ of being equal to1.
Thus we finally get

P[Mj ∈ [x, x+ dx]] = λe−λx dx+ e−λ
1{x=1} (18)

where1ε is the indicator function of the eventε.
Now letDk be the event:exactlyk urns are non-empty, and the rest are empty. Under this hypothesis,

the expectation of our estimator (up to a multiplicative factor) can be expressed as

EDk

[

1

M1 + . . .+Mm

]

=

(

n

k

)∫

[0,1]k





k
∏

j=1

λe−λxj





(

e−λ
)m−k dx1 · · · dxk

x1 + . . .+ xk + (m− k)
.

Using the integral representation (8) as before, we obtain

EDk

[

1

M1 + . . .+Mm

]

=

∫ ∞

0

(

n

k

)(

λ · 1− e−a−λ

a+ λ

)k
(

e−a−λ
)m−k

da. (19)

Naturally, equation (19) begs only to be summed over all possible values ofk,

E

[

1

M1 + . . .+Mm

]

=

m
∑

k=0

EDk

[

1

M1 + . . .+Mm

]

=

∫ ∞

0

f(a)m da, (20)

with

f(a) :=
λ+ ae−a−λ

a+ λ
. (21)

The resulting integral of (20) can then be approximated using Laplace’s method.

Laplace approximation. We expandf(a)m = exp (m log(f(a))) and consider thata is in the neigh-
borhood of0, as usual to be quantified precisely later, so that we can use the natural logarithm’s expansion,

log(f(a)) = −Ca+ o(a2), C :=
e−λ − 1

λ
(22)
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then by combining (20) and (22), we have for a suitableδ(m)

∫ ∞

0

f(a)m da∼
∫ δ(m)

0

e−mCa da. (23)

A further development through Laplace’s method yields Theorem 4.

Theorem 4 In the intermediate regime,n/m = λ with λ bounded away from0, and bounded from above
by a positive constant, withZ⋆ the (usual) estimator defined in(11)

En[Z⋆]∼ n

1− e−λ
. (24)

We observe, as confirmed by simulations (see Figure 5), that in this regime, the core algorithm overesti-
mates the actual cardinality (e.g.: by about 58% whenn ≈ m) and that this situation strongly degrades as
λ becomes smaller than1.

Our core algorithm observes some estimateζ, which, in the pre-asymptotic regime, is roughly equal to
the right hand side of (24). As we want to retrieve a correctedestimate,n, we need to solve the following
equation inλ

y =
λ

1− e−λ
(25)

wherey := ζ/m.
From subsequent developments, a couple of things appear noteworthy. First, this correction needs

only be applied fory ∈ [2.3, 6]; second, equation (25) can be solved approximatively (and satisfactorily)
through several means: a quadratic form either obtained through an asymptotic development of (25), or
through empirical determination; the classical iterationprocess, which converges quite quickly.

4 Correcting the non-asymptotic regime of stochastic averaging
The stochastic averaging algorithm only provides sufficiently precise estimates once it has entered its
asymptotic regime. We have just seen in Section 3 how to develop an intermediate range correction.

Fig. 5: A plot of the accuracy of estimates function of the exact cardinality and, super-imposed, the curve of the
functionf(y) := 1/(1− e−λ). Note the latter follows the center of the distribution perfectly. (Herem = 4086.)
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Even smaller cardinalities however, which are important inpractice(vi), must be estimated through other
means—one possible solution would be to maintain an exact cardinality count up until a certain threshold.

4.1 Small cardinality estimation
It turns out that a subtle shift in viewpoint provides the most elegant and efficient solution. In stochastic
averaging, we distributen values intom sub-intervals, and then average the minimum of each of the
m intervals. Whenn is too small with respect tom, this average is distorted because too many sub-
intervals are empty. In this case, a sharper estimation of cardinality is obtained from observinghow many
sub-intervals are empty.

This idea was first developed by Whang and al. [12] in their “linear counting” algorithm; it has already
been used as a palliative measure in Loglog and Hyperloglog.For completeness, we offer in the annex a
succinct analysis of the algorithm.

Proposition 4.1 Letn andm tend to infinity in such a way that their ratioλ is bounded from above. Let
V be the number of empty buckets after hashingn values inm buckets, then

E[logV ] = log (m · exp (−λ)) + o(1).

This property directly suggests a cardinality estimator.

Proposition 4.2 Letn andm tend to infinity in such a way that their ratioλ is bounded from above. Let
φ be the cardinality estimator defined by

φ(V,m) := −m log
V

m

whereV is the empirical number of empty buckets observed during thehashing ofn values intom buckets.
The estimatorφ is asymptotically unbiased, in the sense thatE[φ]∼n.

Proof: From proposition 4.1, by linearity of expectation. 2

4.2 Joining methods together
In this article, we have given three different methods to estimate cardinality, and to each cardinality range
(low, mid, and large) corresponds a method which is most efficient. Through our analyses, we have a
relatively complete view of the properties of each of these methods, and we now need to assemble them
to devise a single algorithm capable of estimating the entire range of possible cardinalities.

This portion of our work is in part suggested by our theoretical work, but also relies on empirical ob-
servations—both made from large amounts of actual data (extracted, for instance, from the Gutenberg
Project) and from randomly generated data. In the process, we also experimentally validate our results.

Figure 6 is a plot of the error (ratio between the cardinalityestimate and the exact cardinality) as a
function of the exact cardinality—the threshold for switching from linear counting to the core algorithm
has been determined approximatively. Three regimes are apparent:

(vi) To put things in perspective: when monitoring a network— that is, estimating the number of active connections—very small and
small cardinalities are the rule; however very large cardinalities, while the exception, must also be readily detectable as they are
fairly often symptomatic of an attack.
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Fig. 6: The error of cardinality estimates ranging from0 to 50 000, with m = 4086, first using the linear counting
algorithm (Subsection 4.1) and then the core algorithm (Section 2).

• first, forn ranging from0 to about2.5m, the linear counting method is used and we notice that the
error increases progressively (estimates are dispersed progressively further from1);

• starting atn = 2.5m, our core algorithm is used, and forn ranging from2.5m to about6m, we
notice a bias—and indeed not a loss of precision, because theestimates are not any more dispersed
than further along the plot: they are just shifted with respect to the actual cardinality;

• fromn = 6m on, our core algorithm has reached its asymptotical regime and the resulting estimates
are satisfyingly precise.

In short, this means that we roughly have two parameters to determine: the threshold at which we switch
from linear counting to the core algorithm, and the correction function for the intermediate region.

Switching threshold. As an increasing number of them substreams are assigned at least one value,
the accuracy of the estimates provided by linear account decreases. Thus, in choosing when to switch
methods, we have to determine when the linear counting method starts to become less accurate than the
core algorithm approximately corrected (as suggested by the Poisson analysis).

This was done empirically as a two step process. First, by determining when to switch methods in

Fig. 7: Experimentally determining the threshold at which to switch estimation methods; plot of the relative accuracy
(y-axis) function of the exact cardinalityn (x-axis). Note that the value ofm varies from the first plot to the other
two (for scale purposes).
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function ofn, as is illustrated by Figure 7: the second plot stresses thatthe linear counting should not
be past a certain point as it very much degrades; the third plot is a snapshot of an experiment where the
cut-off threshold was moved until the accuracy was most satisfactory. But through this we get a threshold
that is a function of the exact value ofn, whereas this is precisely what the algorithm is attemptingto
estimate, thus is it not a parameter that is known when choosing which method to use. Consequently,
second, we need to “translate” this threshold into a quantity that is plainly measurable by the algorithm:
in our case, theload factor(proportion of substreams that have been assigned at least one element, or in
the balls-in-urns view, the proportion of urns that are not empty). Further experimentation reveals that the
linear counting is best used up to an 86% load, at which point we are better off switching methods.

Correcting the core algorithm’s pre-asymptotic regime. As stated previously, our Poisson analysis
gives us a precise,implicit, equation that characterizes the bias of the pre-asymptotic regime. Two obvious
ways of exploiting this equation to reverse the bias are: using a polynomial expansion inn/m or using
iteration to get a reasonably good approximation of the equation’s solution.

However at this point, we have settled for a prior, simple solution in which we have fit the curve of
the bias with a certain function quadratic inm/n, which we use for bias inversion (for instance, this was
activated in the last plot of Figure 7). This function presents the flaw that it may introduce numerical
errors when its parameter (the biased estimate) is too large, so we stop using it once the load has reached
100%.

Extensions. As we have already mentioned, alocal limit law seems within reach, and this information
would shed even more light on our algorithm. In addition, we would like to find out whether the Poisson
correction developped in Section 3 can be pushed to the extent that we no longer need the separate lin-
ear counting method of analyzed in Subsection 4.1—while answering this particular question is of little
practical interest, it would be intellectually satisfying.

Finally, we are interested in providing a similar limit law result for the Hyperloglog algorithm, as
well as reuse and extend our analyses to algorithms which usecardinality estimation as a black box (text
classification, bimodal network traffic analysis, etc.).
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A Proof of Proposition 4.1
Let m be the number of buckets andn, the number of distinct values that are hashed. Whenm andn
both tend to infinity while their ratioλ := n/m remains within a closed interval ofR>0, the numberV of
buckets to which no value is hashed is such that

E[V ]∼m · exp(−λ) and σ[V ]∼ c(λ)
√
m with c(λ) :=

√

exp(−λ) − exp(−2λ). (26)

Chebyshev’s inequality implies that, for all realt > 0,

P
[

|V −m · exp(−λ)| > t · c(λ)
√
m
]

6
1

t2
. (27)

The starting point of this proof is the formula

E[logV ] =
∞
∑

i=1

log i · P[V = i] . (28)
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Let t0 be a function ofm (to be determineda posteriori), ra andrb be bounds defined by

ra :=
⌊

m · exp(−λ)− t0 · c(λ)
√
m
⌋

and rb :=
⌊

m · exp(−λ) + t0 · c(λ)
√
m
⌋

.

We are going to split the sum of (28) according to three intervals,[1, ra], [ra +1, rb] and[rb +1,∞[, then
use inequality (27) to show that the two extremal sums, the “tails”, are negligible.

Tails: thus
ra
∑

i=1

log i · P[V = i] 6 log
(

m · e−λ
)

ra
∑

i=1

P[V = i]

6 log
(

m · e−λ
)

P[V 6 ra]

6 log
(

m · e−λ
)

P
[

t0 · c(λ)
√
m 6 m · e−λ − V

]

6 log
(

m · e−λ
) 1

t0
2 . (29)

And by a similar method, we also show that

∞
∑

i=rb+1

log i · P[V = i] =

m
∑

i=rb+1

log i · P[V = i] 6
logm

t0
2 . (30)

By choosingt0 appropriately (by which we meant0 ≫ √
logm), both sums are bounded by a term that

tends to0 whenm tends to infinity—and thus both sums are negligible whenm is sufficiently large.
Central approximation:The central part requires more stringent bounding. We first determine an upper

bound,

rb
∑

i=ra+1

log i · P[V = i] 6 log rb

rb
∑

i=ra+1

P[V = i] 6 log rb (31a)

and then a lower bound,

rb
∑

i=ra+1

log i · P[V = i] > log ra ·
(

1− 1

t0
2

)

. (31b)

Finally,

log
(

m · e−λ ± t0 · c(λ)
√
m
)

= log

(

m · e−λ

(

1± t0 · c(λ)√
m · e−λ

))

= log
(

m · e−λ
)

+O

(

t0√
m

)

.

(31c)

Therefore, by choosingt0 ≪ √
m, we centrally approximate the integrand by the asymptotic equivalent

log
(

m · e−λ
)

.
Finally: combining equations (29), (30) and (31c), witht0 = m1/10, we obtain

E[logV ] = log (m · exp (−λ)) + o(1), (32)

which is the desired result.


