
AofA’10 DMTCS proc.AM, 2010, 513–526

Square root singularities of infinite systems of
functional equations

Johannes F. Morgenbesser†

Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040
Wien, Austria

Infinite systems of equations appear naturally in combinatorial counting problems. Formally, we consider functional
equations of the formy(x) = F (x,y(x)), whereF (x,y) : C × ℓp → ℓp is a positive and nonlinear function, and
analyze the behavior of the solutiony(x) at the boundary of the domain of convergence. In contrast to the finite
dimensional case different types of singularities are possible. We show that if the Jacobian operator of the function
F is compact, then the occurring singularities are of square root type, as it is in the finite dimensional setting. This
leads to asymptotic expansions of the Taylor coefficients ofy(x).
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1 Introduction
Functional equations occur naturally in enumeration theory. For example, ifb(x) =

∑

bnx
n is the

generating function of binary trees (bn is the number of binary trees withn internal nodes), thenb(x)
satisfiesb(x) = 1 + xb(x)2. Indeed, if a combinatorial object has a recursive description, then the
corresponding generating functiony(x) usually satisfies an equation of the form

y(x) = F (x, y(x)).

Using this relation, it is often possible to extract then-th coefficient (denoted by[xn]y(x)) or the asymp-
totic behavior of[xn]y(x) (see for example [Drm09, FS09]). Under certain assumptionsonF (see The-
orem 1 for a finite dimensional system), one can show that the solution of the functional equation has a
so-called square root singularity on the boundary of the domain of convergence,i.e., y(x) has a represen-
tation of the form

y(x) = g(x)− h(x)

√

1− x

x0
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locally around some pointx0, whereg(x) andh(x) are analytic functions. Ify(x) has an analytic contin-
uation to a∆-domain∆(x0, η, δ) = {x : |x| < x0 + η, | arg(x/x0 − 1)| > δ}, then the Transfer Lemma
of Flajolet and Odlyzko (see [FO90]) implies that

[xn]y(x) ∼ c

xn
0n

3/2
,

wherec is a positive constant. Drmota, Lalley and Woods (see [Drm97, Lal93, Lal01, Woo97]) general-
ized this result, based on the idea of using systems of functional equations. For example, Drmota proved
the following theorem (cf. [BBY09, Drm09]):

Theorem 1 LetF (x,y) = (F1(x,y), . . . , FN (x,y)) be a nonlinear system of functions analytic around
x = 0 andy = (y1, . . . , yN) = 0, whose Taylor coefficients are all nonnegative, such thatF (0,y) =
0, F (x,0) 6= 0 andFx(x,y) 6= 0. Furthermore assume that the dependency graph(i) of F is strongly
connected and that the region of convergence ofF is large enough such that the system

y = F (x,y), r

(

∂F

∂y
(x,y)

)

= 1,

has a real and positive solution(x0,y0) in its interior, wherer (∂F/∂y(x,y)) denotes the spectral radius
of the Jacobian matrix. Lety(x) denote the solution of the systemy = F (x,y) with y(0) = 0. Then
there existsε > 0 such that the functionsyj(x) admit a representation of the form

yj(x) = gj(x) − hj(x)

√

1− x

x0

for |x− x0| < ε andarg(x− x0) 6= 0, wheregj andhj are analytic functions.

Here, it is important that the system of functional equations is nonlinear. Indeed, in the linear case, one
easily obtains that the singularity can only be a simple pole. Thus, for finite dimensional and strongly
connected systems there can only occur square root singularities or poles.

The main goal of this work is to consider infinite systems of functional equations. Actually, the study of
singularities in the infinite dimensional setting is much more involved. Even in the case of linear infinite
systems, there can arise different types of singularities,as the following examples show (see [Pro04] for
details): LetF : C× ℓ∞ → ℓ∞ be defined by

F1(x,y) = 1 + xy2,

Fi(x,y) = xyi−1 + xyi+1, (i > 2),

wherey = (y1, y2, . . .). This function can also be written in the formF (x,y) = A(x)y+b, whereA(x)
is the linear operator

A(x) =















0 x 0 0 · · ·
x 0 x 0 · · ·
0 x 0 x 0 · · ·
0 0 x 0 x 0 · · ·
...

...
. ..

. . .
. . .

. . .
. . .















(i) The dependency graphG = (V,E) is defined in the following way: The verticesV = (y1, . . . , yN ) are the unknown functions
and an ordered pair(yi, yj) is contained in the edge setE if and only if ∂Fi/∂yj 6= 0 (i.e., Fi really depends onyj).
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andb = (1, 0, 0, . . .). The functiony(x) = (y1(x), y2(x), . . .) defined by

yi(x) =
1

x

(

1−
√
1− 4x2

2x

)i

is the unique and analytic solution of the equationy(x) = F (x,y(x)) with y(0) = b. The functions
yj(x) have a square root singularity atx = 1/2 sinceyi(x) = gi(x) − hi(x)

√
1− 2x, wheregi(x) and

hi(x) are given by

gi(x) =
1

2ixi+1

⌊ i

2⌋
∑

k=0

(

i

2k

)

(1− 4x2)k and hi(x) =

√
1 + 2x

2ixi+1

⌊ i−1

2 ⌋
∑

k=0

(

i

2k + 1

)

(1− 4x2)k.

This example is related to nonnegative lattice paths and appeared as an exercise in Knuth’s book [Knu75].
As a second example we consider a linear system that is related to so-called Knödel walks. LetF :
C× ℓ∞ → ℓ∞ be defined by

F1(x,y) = xy2,

F2(x,y) = 1 + xy1 + xy3

F3(x,y) = xy1 + xy2 + xy4

Fi(x,y) = xyi−1 + xyi+1, (i > 4).

Again, there exists a solutiony = y(x) of the functional equationy(x) = F (x,y(x)) (with y(0) =
(0, 1, 0, 0, . . .)). However, this time there is a singularity of the form(1− 2x)−1/2 atx = 1/2.

Also in the case of nonlinear systems different types of singularities are possible. The next example
is related to the vertical profile of trees (cf. Bousquet-Mélou [BM06] and Bouttier et al. [BDFG03], see
also [Drm09, Section 5.1]). LetF : C× ℓ∞ → ℓ∞ be defined by

F1(x,y) = 0,

Fi(x,y) = 1 + xyi(yi−1 + yi + yi+1), (i > 2).

This system leads to a solutiony(x) that has a dominant singularity of the form(1 − 12x)3/2. An-
other nonlinear system was studied by Lalley. In his work on random walks on infinite free products of
groups [Lal02] he considered the operator (acting onℓ1) that is related to the recursive system

Fi;x(z) = z







piqx + p∅Fi;x(z) +
∑

y∈Γi\{x}

piqyFi;y−1x(z) +
∑

j 6=i

∑

y∈Γi

pjqyFj;y−1(z)Fi;x(z)







,

whereΓi, i > 1 are finite groups andpi andqx are certain probabilities. It turns out that in this case there
is a square root singularity. Note, that the Jacobian operator of the corresponding functionF is the sum
of a compact operator and a scalar multiple of the identity (see [Lal02, Lemma 4.1]).
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2 General Setting and Main Theorem
We have seen in the preceding section that infinite dimensional systems do not behave in general like finite
dimensional ones. In this work we want to show that under the additional assumption of compactness of
the Jacobian operator ofF we indeed obtain quite the same behavior as for finite systemsof functional
equations.

Before we state the main result, we recall some definitions from the field of functional analysis in
order to be able to specify the basic setting. LetB be a Banach space andU the open unit ball inB.
An operatorT : B → B is compact, if the closure ofT (U) is compact inB (or, equivalently, if every
bounded sequence(xn)n>0 in B contains a subsequence(xni

)i>0 such that(Txni
)i>0 converges inB).

A functionF : B → B is called Fréchet differentiable atx0 if there exists a bounded linear operator
(∂F/∂x)(x0) such that

F (x0 + h) = F (x0) +
∂F

∂x
(x0)h+ ω(x0, h) and ω(x0, h) = o(‖h‖), (h → 0). (1)

The operator∂F/∂x is called the Fréchet derivative ofF . If B is a complex vector space and (1) holds
for all h, thenF is said to be analytic inx0. F is analytic inΩ ⊆ B, if it is analytic for all x0 ∈ Ω.
Analyticity is equivalent to the fact that for allx0 ∈ Ω there exist anr > 0 and continuous symmetric
n-linear formsAn such that

∑

n>1 ‖An‖ rn < ∞ and

F (x0 + h) = F (x0) +
∑

n>1

An

n!
(hn)

in a neighborhood ofx0 (see [Dei85, Section 7.7 and 15.1]). (The “coefficients”An are equal to the
(iteratively defined)n-th Fréchet derivatives ofF ).

In what follows, we mainly deal with the Banach spaceℓp = ℓp(N) (1 6 p < ∞) of all complex valued
sequences(tn)n∈N satisfying‖(tn)‖pp :=

∑∞
n=1 |tn|p < ∞. (The spaceℓ∞ = ℓ∞(N) is the space of all

bounded complex sequences(zn) with norm‖(zn)‖∞ = supn>1 |zn| < ∞.) In this case, the Fréchet
derivative is also called Jacobian operator (in analogy to the finite dimensional case). We call a function
F : C× ℓp → ℓp positive (inU × V ), if there exist nonnegative real numbersaij,k such that for allk > 1
and for all(x,y) ∈ U × V ,

Fk(x,y) =
∑

i,j

aij,kx
iyj,

wherej ∈ NN, only finitely many components are nonzero, andyj = yj11 yj22 yj33 · · · .
As already indicated above, the compactness of the Jacobianoperator∂F/∂y will play a crucial role

in our considerations. Moreover, we have to assume that∂F/∂y is irreducible. In order to be able to
define this property, we recall some basic notion from functional analysis onℓp spaces. Any bounded
linear operator on anℓp space (1 6 p < ∞) is uniquely determined by an infinite dimensional matrix
(aij)16i,j<∞ via the equation

(Ax)i =

∞
∑

k=1

aikxk,

where(xk)16k<∞ is written with respect to the canonical standard bases inℓp. We call the matrix
(aij)16i,j<∞ the matrix representation ofA (and writeA = (aij)16i,j<∞ or just A = (aij)). An
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operatorA is called positive, if all entries of the matrix representation of A are nonnegative. A positive
operatorA = (aij) is said to be irreducible, if for every pair(i, j) there exists an integern = n(i, j) > 0,

such thata(n)ij > 0, where

An =
(

a
(n)
ij

)

16i,j<∞
.

Finally, if A is a bounded operator on a Banach space, thenr(A) denotes the spectral radius ofA (i.e.,
r(A) = supλ∈σ(A) |λ|, andσ(A) is the spectrum ofA).

Theorem 2 Let1 6 p < ∞ andF : C× ℓp → ℓp, (x,y) 7→ F (x,y) be an analytic and positive function
defined in an open neighborhoodU × V of (0,0) satisfying:

(i) F (0,y) = 0 for all y ∈ V ,

(ii) F (x,0) 6≡ 0 in U ,

(iii) ∂F
∂y (x,y) is a compact operator onℓp for all (x,y) ∈ U × V and irreducible for strictly positive
(x,y) ∈ U × V .

Furthermore, assume that the system

y = F (x,y), (2)

r

(

∂F

∂y
(x,y)

)

= 1,

has a positive solution(x0,y0) ∈ U × V . Then there exists an analytic solution of

y = F (x,y) (3)

with y(0) = 0 such that the following holds: There existsε > 0 such thaty(x) admits a representation
of the form

y(x) = g(x)− h(x)

√

1− x

x0
(4)

for |x− x0| < ε andarg(x− x0) 6= 0, whereg(x) andh(x) are analytic functions.
Moreover, if there exist two integersn1 andn2 that are relatively prime such that[xn1 ]y1(x) > 0 and

[xn2 ]y1(x) > 0, thenx0 is the only singularity ofy(x) on the circle|x| = x0 and we obtain for every
j > 1 an asymptotic expansion for[xn]yj(x) of the form

[xn]yj(x) ∼
cj

xn
0n

3/2
.

wherecj is a positive constant.

Remark 1 Lalley [Lal02] uses a different method in his work on random walks in order to study the
dominating singularity of the system stated in Section 1. Inthe proof of Theorem 2 given below (see Sec-
tion 5), we use a reduction of the infinite system of functional equations which allows us to take advantage
of the positivity assumptions (see Section 4). This makes the Theorem more generally applicable, since
we directly obtain asymptotic expansions of the Taylor coefficients.
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Remark 2 Let F be a linear function (or more precisely an affine map),i.e. F (x,y) = A(x)y + b(x),
whereA(x) is a linear operator andb(x) a vector inℓp. Then it follows (under the assumption thatA(x)
is positive and compact,F (0,y) = 0 andF (x,0) 6≡ 0) that

y(x) = (I −A(x))−1b(x)

is a solution of the functional equationy = F (x,y) as long as the spectral radius ofA(x) is smaller
than1. Furthermore, the resolvent operator(I − A(x))−1 has a pole ifr(A(x)) = 1. Hence, in the
case of compact Jacobian operators we obtain the same types of singularities as in the finite dimensional
case. (The linear operators in Section 1 are clearly not compact). Note, that the assumptions onF and the
existence of the solution(x0,y0) satisfying (2) imply that we are actually dealing with nonlinear functions
in Theorem 2.

Remark 3 The examples in Section 1 show that the assumption of compactness of the Jacobian operator
cannot be canceled without stating any other restrictions on F . In order to prove Theorem 2, we use
excessively the special structure of the spectrum and the resolvent of compact operators. It seems possible
to extend the result to operators which have similar spectral properties as compact operators (for example
Riesz operators). In the example of Lalley, the spectrum of the Jacobian operator is a shifted spectrum of
a compact operator. Even though Theorem 2 does not include such cases, a similar argumentation should
imply the desired result. The Jacobian operator in the example of Bousquet-Mélou and Bouttier et al. is
“far away” from being compact. And indeed, they even get a dominant singularity different from the one
stated in our theorem.

Remark 4 In order to use this theorem for showing central limit results, one has to include an additional
continuous parameter similar to the parameteru in [Drm09, Theorem 2.33] (i.e., F is of the formF :
C× ℓp × ℓp → ℓp, (x,y,u) 7→ F (x,y,u) and the functional equation has solutionsy = y(x,u)).

3 Tree counting problems with degree restrictions
In this section we apply Theorem 2 to a counting problem. Our combinatorial objects are rooted labeled
trees. More precisely, ifT is a tree of sizen (i.e., a tree withn nodes), then all nodes are labeled by
1, 2, . . . , n and there exists a specific node that is marked (the root).

Let Tn be the set of all rooted labeled trees of sizen with the property that each node with out-degree
k has successors with out-degreek − 1 or k + 1 (see Figure 1). The first few members of the sequence
(#Tn)n>1 are given by(1, 2, 0, 0, 60, 360, 0, . . .).

In what follows, we show that there exist positive constantsc andx0 with 1/e 6 x0 6 1 such that(ii)

#Tn ∼ c

xn
0n

3/2
n!. (5)

Note, that such a result is quite natural in this context (cf. [BBY06], where it is shown that a law of the
form c x−n

0 n−3/2 occurs frequently when counting rooted trees.) Letyk(x) be the exponential generating
function

yk(x) =

∞
∑

n=0

bkn
n!

xn,

(ii) This example can be easily generalized to families of trees with other degree restrictions.
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Fig. 1: Two considered trees of size5 and6 (the roots are marked gray)

wherebkn counts the number of treesT in Tn, such that the root has degreek. Note, that we have
y0(x) = x. The recursive structure ofTn easily implies that the functionsyk(x) satisfy

yk(x) = x
(yk−1(x) + yk+1(x))

k

k!

for all k > 1. Hence,y(x) = (y1(x), y2(x), . . .) satisfies the functional equationy(x) = F (x,y(x)),
whereF : C× ℓ1 → ℓ1 is defined by

F1(x,y) = x(y2 + x) and Fk(x,y) = x
(yk−1 + yk+1)

k

k!
, (k > 2).

First, we have to show thatF is indeed a function fromC× ℓ1 to ℓ1. Lety = (y1, y2, . . .) ∈ ℓ1. Then we
have

∞
∑

k=1

|Fk(x,y)| = |x||y2 + x|+ |x|
∞
∑

k=2

|yk−1 + yk+1|k
k!

6 |x||y2|+ |x|2 + |x|
∞
∑

k=2

2k(|yk−1|k + |yk+1|k)
k!

(6)

6 |x| ‖y‖∞ + |x|2 + 2|x|
∞
∑

k=2

(2 ‖y‖∞)k

k!

6 |x|
(

‖y‖∞ + |x|+ 2e2‖y‖∞
)

< ∞.

Actually, we have shown thatF mapsC× ℓ∞ to ℓ1. Clearly,F is analytic and we haveF (0,y) = 0 and
F (x, 0) 6≡ 0. A similar calculation as in (6) shows that∂F/∂y is an operator fromℓ1 to ℓ1. Furthermore,
∂F/∂y is irreducible. Since this matrix can be approximated with respect to theℓ1-operator norm by
finite rank operators (take the firstn columns of∂F/∂y), we obtain that∂F/∂y is compact.

In order to apply Theorem 2, we have to show that there exists(x0,y0) satisfyingy0 = F (x0,y0)
andr (∂F/∂y(x0,y0)) = 1. We know from the Implicit Function Theorem that there exists a positive
solutiony(x) of the functional equation aroundx = 0 (compare with the proof of Theorem 2). Letx0

be the smallest positive real number such thaty(x) cannot be analytically continued inx0 (combinatorial
considerations show that1/e 6 x0 6 1). Consider the functiony(x) for x → x0. The spectral radius
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of the Jacobian operator is0 for x = 0 and it is continuous (see Lemma 2) and monotone increasing ifx
increases (see Proposition 2 and note thaty(x) is positive). Moreover, we haver (∂F/∂y(x,y(x))) < 1
for x < x0. Indeed, ifr (∂F/∂y(x,y(x))) = 1, theny(x) cannot be analytic in an neighborhood ofx,
which is in contrast to the fact thatx < x0 (implicit differentiation yields a contradiction). This implies
thaty(x) cannot have a pole (in any of its components) atx0 andy(x) converges to some positive vector
y0 for x → x0. A priori, y0 is in ℓ∞. But sincey0 also satisfies the functional equation, it is also inℓ1
(see (6)). Furthermore, we haver (∂F/∂y(x0,y0)) = 1 since we could continuey(x) otherwise in an
neighborhood ofx0.

Thus, all conditions of Theorem 2 are satisfied and we obtain thaty(x) has a square root singularity.
Sincey(x) ∈ ℓ1, we have thatt(x) =

∑∞
k=0 yk(x) has a square root singularity, too. Sincet(x) can also

be written in the formt(x) =
∑∞

n=0
#Tn

n! xn, this finally implies (5).

4 Monotonicity of spectral radii
In this section we will show some spectral properties of compact and positive operators onℓp spaces.
Recall, that any bounded linear operatorA on ℓp (1 6 p < ∞) is uniquely determined by an infinite
dimensional matrix(aij)16i,j<∞.

The study of operators (or matrices) inℓ∞ is different. First note, that there is no one-to-one cor-
respondence between operators and matrices. (Actually, there exist nontrivial compact operators, such
that the corresponding “matrix representation” is the zeromatrix). Nevertheless, if we have a matrix
(aij)16i,j<∞, we define an operatorA on ℓ∞ via

(Ax)i =

∞
∑

k=1

aikxk,

if the summation is well-defined for alli > 1 and for allx ∈ ℓ∞. Recall that an operatorA is called
positive if all entries of the matrix representation ofA are nonnegative. Ifu andv are real vectors or
matrices,u > v means that all entries ofu are greater than or equal to the corresponding entries ofv.
Thus, an operatorA is positive if(aij) > 0. Similarly, a vectorx is called positive (or also nonnegative)
if x > 0. We callx strictly positive, if all entriesxi of x satisfyxi > 0. Moreover, ifu is a vector with
entriesui, then|u| denotes the vector with entries|ui| (a similar definition is used for matrices).

The adjoint operator of an operatorA (denoted byA∗) is acting onℓp′ ∼= ℓq, where1/p+1/q = 1 (for
1 6 p < ∞). The operatorA∗ can be associated with the matrix(aji)16i,j<∞ acting onℓq (which we do
in the sequel without explicitly saying so).

The following result goes back to Kreı̆n and Rutman [KR50] and is of particular importance for our
work (see [Zei86, Proposition 7.26]):

Lemma 1 LetT = (tij)16i,j<∞ be a compact positive operator onℓp (where1 6 p < ∞) and assume
that r(T ) > 0. Thenr(T ) is an eigenvalue ofT with nonnegative eigenvectorβ ∈ ℓp. Moreover,
r(T ) = r(T ∗) is an eigenvector ofT ∗ with nonnegative eigenvectorα ∈ ℓq.

Proposition 1 LetA = (aij)16i,j<∞ be a positive, irreducible and compact operator onℓp, 1 6 p < ∞.
LetB = (bij)16i,j<∞ be defined bybij = ai+1 j+1. Then we have

r(B) < r(A).
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Remark 5 The matrixB is obtained through eliminating the first row and first columnof A. The same
result holds, if one removes a finite number of rows and (the corresponding) columns ofA.

Before we prove this proposition, we recall some notation concerning infinite matrices (see [VJ67]).
A nonnegative vectorx 6= 0 (lying in the sequence space of real numbers) is called left (or right) r-
subinvariant vector of(aij), if for all j > 1

r

∞
∑

k=1

akjxk 6 xj or r

∞
∑

k=1

ajkxk 6 xj ,

respectively. On the other hand,x 6= 0 is called left (or right)r-superinvariant vector of(aij), if for all
j > 1

r

∞
∑

k=1

akjxk > xj or r

∞
∑

k=1

ajkxk > xj ,

respectively. The vectorx is called (left or right)r-invariant, if it is (left or right)r-sub- and superinvariant.

Proof of Proposition 1: It easily follows from the irreducibility condition thatr(A) > 0. Let m be an

integer such thatd = a
(m)
11 > 0. Then we have‖Amn‖ > dn for all n > 1, where‖·‖ denotes the operator

norm that is induced by thep-norm onℓp (considerAme1, wheree1 = (1, 0, 0, . . .)). Gelfand’s formula
implies r(A) = limn→∞ ‖An‖1/n > d1/m. If r(B) = 0 (note thatB need not to be irreducible), the
statement of the result follows from the fact thatr(A) > 0. Suppose now thatr(B) > 0.

Let Sℓ be the left shift operator andSr the right shift operator acting onℓp (i.e., Sℓ(x1, x2, x3, . . .) =
(x2, x3, . . .) andSr(x1, x2, . . .) = (0, x1, x2, . . .)). ThenB = SℓASr. Since the shift operators are
bounded andA is compact, it follows thatB is also compact. Moreover,B is clearly a positive operator.
Hence, the assumptions of Lemma 1 are satisfied and there exists a nonnegative eigenvectory of B to the
eigenvaluer(B). Setx := Sry. Then we have

Ax = (⋆, 0, . . .) + r(B)x > r(B)x,

where⋆ is some positive number. Thus,x is a right1/r(B)-superinvariant vector of(aij). If we assume
that r(B) > r(A), thenx is also a right1/r(A)-superinvariant vector. According to Lemma 1,A has
a nonnegative left eigenvectorα ∈ ℓq to the eigenvaluer(A). This vector is clearly a left1/r(A)-
subinvariant vector (in particular, it is also strictly positive, see [VJ67, Lemma 4.1]). Hölders inequality
and the fact thatx ∈ ℓp imply

∞
∑

n=1

xnαn < ∞.

It follows from [VJ67, Lemma 5.2] that this is only possible,if x = 0 or x is strictly positive and1/r(A)-
invariant. But sincex1 = 0 andx 6= 0, the assumptionr(B) > r(A) cannot hold true and Proposition 1
is shown. 2

Proposition 2 Let 1 6 p < ∞ andA = (aij)16i,j<∞ andC = (cij)16i,j<∞ be compact operators on
ℓp. Furthermore, letA be positive and irreducible such that|C| 6 A but |C| 6= A. Then we have

r(C) < r(A).
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Proof: The proof is similar to the proof of Proposition 1. First we have thatr(A) > 0. If r(C) = 0, we
are done. Assume now thatr(C) > 0. SinceC is compact, there exists an eigenvectory ∈ ℓp to some
eigenvalues with |s| = r(C). We get

|sy| = r(C)|y| 6 |C||y| 6 A|y|.

If we assume thatr(C) > r(A), then|y| is a right1/r(A)-superinvariant vector. The same reasoning as
above shows that this is only possible, if|y| = 0 (which is clearly not true) or if|y| is strictly positive and
1/r(A)-invariant. In the case of1/r(A)-invariance, we obtain

A|y| = r(A)|y| 6 r(C)|y| 6 |C||y| 6 A|y|.

Thus, we have(A− |C|)|y| = 0. But since|y| is strictly positive andA 6= |C|, this is impossible. 2

5 Proof of Theorem 2
Before we prove our main theorem, we show that the spectral radius of the Jacobian operator ofF is
continuous.

Lemma 2 Let the functionF satisfy the assumptions of Theorem 2. Then we have that the map

(x,y) 7→ r

(

∂F

∂y
(x,y)

)

is continuous for all(x,y) ∈ U × V .

Proof: First note, that(x,y) 7→ ∂F
∂y (x,y) is continuous. Let(x,y) ∈ U×V such thatr

(

∂F
∂y (x,y)

)

> 0.

Since isolated eigenvalues with finite multiplicity must vary continuously (see [Kat66, Chapter IV.3.5])

and since we are dealing with compact operators, we obtain the desired result. Ifr
(

∂F
∂y (x,y)

)

= 0 (as

it is for example in(0,0)), then the continuity follows from the upper semicontinuity of the spectrum of
closed operators (see [Kat66, Chapter IV.3.1]). 2

Proof of Theorem 2: The Implicit Function Theorem (see [Dei85, Theorem 15.3]) implies that there
exists a unique analytic solutiony = y(x) of the functional equation (3) in a neighborhood of(0,0). It
also follows from the Banach Fixed-Point Theorem that the sequencey0 ≡ 0 and

yn+1(x) = F (x, yn(x)), n > 1,

converges uniformly to the unique solutiony(x) of (3). Thusy(x) is positive. Since the Jacobian operator
is continuous andF is positive, we have that the spectral radius of the Jacobianoperator is less than1
for all (x,y) ∈ U × V with |x| < x0 and|y| < y0 (cf. Proposition 2). The Implicit Function Theorem
implies that the positive functiony(x) is actually defined for all|x| < x0. Next, we divide equation (2)
up into two equations

y1 = F1(x, y1,y), (7)

y = F (x, y1,y), (8)
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wherey = Sℓ y andF = Sℓ F . Observe, that the Jacobian operator ofF (with respect toy) can be
obtained by deleting the first row and column of the matrix of the Jacobian operator ofF . The tuple
(x0, (y0)1,y0) is a solution of (7) and (8). Set

A =
∂F

∂y
(x0,y0) and B =

∂F

∂y
(x0, (y0)1,y0).

Proposition 1 implies thatr(B) < r(A) = 1. Thus, we can again employ the Implicit Function Theorem
and obtain that there exists a unique positive analytic solution y = y(x, y1) of (8) with y(0, 0) = 0 such
thaty(x, y1) is also defined in a neighborhood of(x0, (y0)1,y0). Furthermore, we havey(x0, (y0)1) =
y0. If we insert this function into equation (7), we obtain a single equation

y1 = F1(x, y1,y(x, y1))

for y1 = y1(x). The functionG(x, y1) = F1(x, y1,y(x, y1)) is an analytic function around(0, 0) with
G(0, y1) = 0 and such that all Taylor coefficients ofG are real and non-negative (this follows from the
positivity of F andy(x, y1)). Furthermore, the tuple(x0, (y0)1) belongs to the region of convergence of
G(x, y). In what follows, we show that(x0, (y0)1) is a positive solution of the system of equations

y1 = G(x, y1),

1 = Gy1
(x, y1),

with Gx(x0, (y0)1) 6= 0 andGy1y1
(x0, (y0)1) 6= 0.

In order to see thatGy1
(x0, (y0)1) is indeed equal to1, note that the classical Implicit Function Theo-

rem otherwise implies that there exists an analytic solution of y1 = G(x, y1) locally aroundx0. Inserting
this function into equation (8), we obtain that there also exists an analytic solutiony(x) of (3) in a neigh-
borhood ofx0. Implicit differentiation yields to

(

I − ∂F

∂y
(x0,y0)

)

∂y

∂x
(x0) =

∂F

∂x
(x0,y0). (9)

Since the spectral radius of the (positive and irreducible)Jacobian operator at(x0,y0) is equal to1, there
exists a strictly positive left eigenvector to the eigenvalue1 (cf. Section 4). Multiplying this vector to
equation (9) from the left yields to a contradiction since∂F

∂x (x0,y0) 6= 0 (note thatF (x,0) 6≡ 0 and that
F is positive).

Next suppose thatGx(x0, (y0)1) = 0. The positivity implies that the unique solution ofy1 = G(x, y1)
is given byy1(x) ≡ 0. Consider the solutiony(x) of (3) for some realx > 0 in the near of0. Since the
spectral radius of the Jacobian operator is smaller than1 (for x small), we can express the resolvent with
the aid of the Neumann series,i.e., we have (cf. (9))

∂y

∂x
(x) =

(

I − ∂F

∂y
(x,y(x))

)−1
∂F

∂x
(x,y(x)) =

∑

n>0

(

∂F

∂y
(x,y(x))

)n
∂F

∂x
(x,y(x)).

Since∂F/∂y is irreducible and∂F/∂x 6= 0 we obtain thaty1(x) cannot be a constant function. Finally,
the positive functionG cannot be an affine map iny since otherwise the conditionsG(0, y1) = 0 and
G(x0, (y0)1) = (y0)1 imply thaty1(x) is constant.
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If follows from [Drm09, Theorem 2.19] that there exists a unique solutioñy(x1) of the equationy1 =
G(x, y1) with ỹ1(0) = 0. It is analytic for|x| < x0 and there exist functionsg1(x) andh1(x) that are
analytic aroundx0 such that̃y1(x) has a representation of the form

ỹ1(x) = g(x)− h(x)

√

1− x

x0
(10)

locally aroundx0. Due to the uniqueness of the solutiony(x) of the functional equation (3), we have
that the first component ofy(x) coincide with ỹ1(x), i.e., y1(x) = ỹ1(x). Inserting this solution into
equation (8) (note, thatF is analytic at(x0, (y0)1,y0)), we obtainy(x, y1(x)) = (y2(x), y3(x), . . .).
Thus,yj(x) has a representation of the form (10) for allj > 1. This finally shows (4).

If there exist two integersn1 andn2 that are relatively prime such that[xn1 ]y1(x) > 0 and[xn2 ]y1(x) >
0, then it follows thatx0 is the only singularity ofy1(x) on the circle|x| = x0 and there exists an analytic
continuation to a∆-domain. Indeed, it suffices to show that

Gy1
(x, y1) < 1

for |x| = x0 butx 6= x0 (compare with the proof of [Drm09, Theorem 2.19]). Sincey1(x) is positive, we
clearly have|y1(x)| 6 y1(|x|). If equality occurs, then

xn1 = |x|n1 = xn1

0 and xn2 = |x|n2 = xn2

0 .

By assumption,n1 andn2 are relatively prime and we obtainx = x0, which is impossible. Thus, we
actually have|y1(x)| < y1(|x|). The positivity ofG implies

|Gy1
(x, y1(x))| 6 Gy1

(|x|, |y1(x)|) < Gy1
(|x|, y1(|x|)) = Gy1

(x0, (y0)1) = 1.

Inserting the analytic continuation ofy1(x) into equation (8), we obtain that there exists an analytic
continuation for allyj . The Transfer Lemma of Flajolet and Odlyzko implies that[xn]yj(x) satisfy

[xn]yj(x) ∼
cj

xn
0n

3/2

for all j > 1 and for some constantscj > 0. This finally shows Theorem 2. 2
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