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Square root singularities of infinite systems of
functional equations
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Infinite systems of equations appear naturally in combiietoounting problems. Formally, we consider functional
equations of the forny (z) = F(z,y(z)), whereF(z,y) : C x ¢ — (P is a positive and nonlinear function, and
analyze the behavior of the solutigr(z) at the boundary of the domain of convergence. In contrastedinite
dimensional case different types of singularities are iptessWe show that if the Jacobian operator of the function
F' is compact, then the occurring singularities are of squanétiype, as it is in the finite dimensional setting. This
leads to asymptotic expansions of the Taylor coefficients(af).
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1 Introduction

Functional equations occur naturally in enumeration thedfor example, ifo(z) = >_ b,z" is the
generating function of binary trees,(is the number of binary trees with internal nodes), theh(z)

satisfiesb(x) = 1 + xb(x)%. Indeed, if a combinatorial object has a recursive desoriptthen the
corresponding generating functigt) usually satisfies an equation of the form

y(x) = F(z,y(z)).

Using this relation, it is often possible to extract theh coefficient (denoted bjz"]y(x)) or the asymp-
totic behavior oflz"]y(x) (see for example [Drm09, FS09]). Under certain assumptions (see The-
orem 1 for a finite dimensional system), one can show thatdhdisn of the functional equation has a
so-called square root singularity on the boundary of thealorof convergence.e., y(x) has a represen-
tation of the form

x

y(x) = g(z) — h(z)y /1 - —
T
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locally around some pointy, whereg(z) andh(x) are analytic functions. I§(x) has an analytic contin-
uation to aA-domainA(zg,n,d) = {z : |z| < o +n, | arg(z/xo — 1)| > J§}, then the Transfer Lemma
of Flajolet and Odlyzko (see [FO90]) implies that

[z"y () ~

wherec is a positive constant. Drmota, Lalley and Woods (see [Drm@R3, Lal01, Woo097]) general-
ized this result, based on the idea of using systems of fumatiequations. For example, Drmota proved
the following theoremdf. [BBY09, Drm09]):

Theorem 1 LetF(x,y) = (Fi(x,y),..., Fn(z,y)) be a nonlinear system of functions analytic around
x =0andy = (y1,...,yn) = 0, whose Taylor coefficients are all nonnegative, such figt y) =

0, F(x,0) # 0 and F,(x,y) # 0. Furthermore assume that the dependency gtaph F is strongly
connected and that the region of convergence' @ large enough such that the system

y=ray). o (Grey) -1

has a real and positive solutigixg, yo) in its interior, wherer (OF/dy(x,y)) denotes the spectral radius
of the Jacobian matrix. Leg(z) denote the solution of the systgm= F(x,y) with y(0) = 0. Then
there existg > 0 such that the functiong; (x) admit a representation of the form

c
n.,3/2"
xon/

X
yi(2) = gj(z) — hj(z)y /1 — —
Zo
for |z — z¢| < € andarg(z — x¢) # 0, whereg; andh; are analytic functions.

Here, it is important that the system of functional equatismnonlinear. Indeed, in the linear case, one
easily obtains that the singularity can only be a simple pdleus, for finite dimensional and strongly
connected systems there can only occur square root siitggganr poles.

The main goal of this work is to consider infinite systems afdiional equations. Actually, the study of
singularities in the infinite dimensional setting is muchremvolved. Even in the case of linear infinite
systems, there can arise different types of singulariisghe following examples show (see [Pro04] for
details): LetF' : C x £>° — ¢*° be defined by

Fl(zaY) =1 +$y27

Fi(z,y) = 2yi-1 + 2Yis1, (i >2),
wherey = (y1,y2, .. .). This function can also be written in the forfi(z,y) = A(z)y + b, whereA(zx)
is the linear operator

A(z) =

o o8R8 O
o8 OR
8 O8 O©
o8 OO

@) The dependency gragh = (V, E) is defined in the following way: The verticds = (y1, ..., yn) are the unknown functions
and an ordered paf{y;, y;) is contained in the edge setif and only if 9F; /0y; # O (i.e., F; really depends op;).
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andb = (1,0,0,...). The functiony(z) = (y1(z), y2(z), .. .) defined by

yi(w) = z 2z

1 <1 — VI 4z2>1

is the unique and analytic solution of the equatiq) = F(x,y(x)) with y(0) = b. The functions
y;(z) have a square root singularity at= 1/2 sincey;(z) = g;(x) — hi(z)v/1 — 2z, whereg;(z) and
h;(x) are given by

), T
1 7 9 V14 2x 7 9
() = g 2 () 1 =2 and o) = G 2 ()20

This example is related to nonnegative lattice paths andaxepl as an exercise in Knuth’s book [Knu75].
As a second example we consider a linear system that is defatso-called Knddel walks. Lekt' :
C x £*° — (> be defined by

Fi(x,y) = zya,

Fy(z,y) =14 zy1 + xys3

F(x,y) = xy1 + xy2 + 24
Fi(z,y) = xyi—1 + 2yit1, (1 = 4).

Again, there exists a solutiop = y(«) of the functional equatioy(xz) = F(z,y(x)) (with y(0) =
(0,1,0,0,...)). However, this time there is a singularity of the fo(in— 22)~'/2 atz = 1/2.

Also in the case of nonlinear systems different types of dengfies are possible. The next example
is related to the vertical profile of treesf( Bousquet-Mélou [BM06] and Boulttier et al. [BDFGO03], see
also [DrmQ9, Section 5.1]). Lt : C x {>° — ¢°° be defined by

F1($7Y) :05
Fi(z,y) =14 2yi(yi—1 + ¥i + Yit+1), (1>2).

This system leads to a solutignz) that has a dominant singularity of the forfh — 12)%/2. An-
other nonlinear system was studied by Lalley. In his worka@mdom walks on infinite free products of
groups [Lal02] he considered the operator (acting'9rthat is related to the recursive system

Em(z) = Z 4 Piqx +p(Z)Fz i Z pzq,y iy~ ) + Z Z quij;yfl(Z)F‘i;I(z) )
yel\{z} Jj#i yel;

wherel';, ¢ > 1 are finite groups ang; andq, are certain probabilities. It turns out that in this casee¢he
is a square root singularity. Note, that the Jacobian opeddtthe corresponding functiof is the sum
of a compact operator and a scalar multiple of the identi (£al02, Lemma 4.1]).
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2 General Setting and Main Theorem

We have seen in the preceding section that infinite dimeabgystems do not behave in general like finite
dimensional ones. In this work we want to show that under ththtimnal assumption of compactness of
the Jacobian operator @f we indeed obtain quite the same behavior as for finite systériunctional
equations.

Before we state the main result, we recall some definitioomfthe field of functional analysis in
order to be able to specify the basic setting. Bebe a Banach space abdtthe open unit ball in3.
An operatorl’ : B — B is compact, if the closure & (U) is compact inB (or, equivalently, if every
bounded sequencge,,),,>o in B contains a subsequenge,, );>o such tha(T'z,,);>o converges in3).
A function F' : B — B is called Fréchet differentiable at, if there exists a bounded linear operator
(OF/0x)(x0) such that

F(xo+ h) = F(xo) + g—i(mo) h+w(xg,h) and w(xo, h)=o0(h]]), (h—0). (1)

The operatod F/dz is called the Fréchet derivative &f. If B is a complex vector space and (1) holds
for all h, thenF' is said to be analytic img. F' is analytic inQ2 C B, if it is analytic for allz, € Q.
Analyticity is equivalent to the fact that for ally € 2 there exist an- > 0 and continuous symmetric
n-linear formsA,, suchthad ®, -, [[A,| 7" < cc and

F(xzo + h) = F(zo) + Z %(h")

n>1

in a neighborhood of (see [Dei85, Section 7.7 and 15.1]). (The “coefficientls; are equal to the
(iteratively defined)-th Fréchet derivatives af).

In what follows, we mainly deal with the Banach sp#@te= ¢/P(N) (1 < p < o) of all complex valued
sequencest, )nen satistying||(t,)[7 :== 32,7 [ta[P < co. (The spacé> = (>*(N) is the space of all
bounded complex sequencgs,) with norm ||(z, )|, = sup,>; [2a| < o0.) In this case, the Fréchet
derivative is also called Jacobian operator (in analoghédfinite dimensional case). We call a function
F : C x P — (P positive (inU x V), if there exist nonnegative real numbess;, such that for alk > 1
and forall(z,y) e U x V,

Fk(maY) = Z ai.j7k$iyj7
i\

wherej € NV, only finitely many components are nonzero, ahe- y]'yJ2y - - .

As already indicated above, the compactness of the Jacoperatoro F'/dy will play a crucial role
in our considerations. Moreover, we have to assumedf#&idy is irreducible. In order to be able to
define this property, we recall some basic notion from fuomal analysis od? spaces. Any bounded
linear operator on af’ space { < p < o) is uniquely determined by an infinite dimensional matrix
(@ij)1<4,j<o0 Via the equation

(Az); = Z @ik T,
=1

where (zx)1<k<o0o IS Written with respect to the canonical standard base®.inWe call the matrix
(@ij)1<i,j<c0 the matrix representation of (and writte A = (ai;)1<i j<co OF JustA = (a;;)). An
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operatorA is called positive, if all entries of the matrix represeittatof A are nonnegative. A positive
operatotd = (a,;) is said to be irreducible, if for every péit, j) there exists an integer = n(i, j) > 0,

such thaug?) > 0, where

4 )1gi,j<oo'
Finally, if A is a bounded operator on a Banach space, #ign denotes the spectral radius 4f(i.e.,
7(A) = Supyeq(a) [Al, @ando(A) is the spectrum oft).
Theorem 2 Letl < p <ocoandF : Cx (P — P, (z,y) — F(x,y) be an analytic and positive function
defined in an open neighborhobdx V of (0, 0) satisfying:

(i) F(0,y)=0forally €V,

(i) F(z,0)#0inU,

(iii) ‘g—l;(z, y) is a compact operator off for all (z,y) € U x V and irreducible for strictly positive
(z,y) eU X V.

Furthermore, assume that the system

y = F(z,y), )
oF
T (a—y(l’7}’)) =1,

has a positive solutiofzg, yo) € U x V. Then there exists an analytic solution of

y = F(z,y) 3

with y(0) = 0 such that the following holds: There exists> 0 such thaty(z) admits a representation
of the form

x
y(z) = g(x) —h(z), /1 - — (4)
2o
for | — x0| < € andarg(z — o) # 0, whereg(x) andh(z) are analytic functions.

Moreover, if there exist two integers andn. that are relatively prime such thgt™ |y, («) > 0 and
["]y1(x) > 0, thenxy is the only singularity o (z) on the circle|z| = z, and we obtain for every
j = 1 an asymptotic expansion f@r"]y; («) of the form

My () ~ —I
[‘T ]y] (EC) $8n3/2 :

wherec; is a positive constant.

Remark 1 Lalley [Lal02] uses a different method in his work on randoralkg in order to study the
dominating singularity of the system stated in Section Xhénproof of Theorem 2 given below (see Sec-
tion 5), we use a reduction of the infinite system of functl@rmations which allows us to take advantage
of the positivity assumptions (see Section 4). This makesTtieorem more generally applicable, since
we directly obtain asymptotic expansions of the Taylor fioieints.
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Remark 2 Let F' be a linear function (or more precisely an affine mag), F'(x,y) = A(z)y + b(x),
whereA(x) is a linear operator and(x) a vector inf?. Then it follows (under the assumption théfx)
is positive and compacE (0,y) = 0 andF(z, 0) # 0) that

y(@) = (I — A(z))"'b(x)

is a solution of the functional equatign = F(z,y) as long as the spectral radius 4fz) is smaller
than1. Furthermore, the resolvent operatdr— A(z))~! has a pole ifr(A(x)) = 1. Hence, in the
case of compact Jacobian operators we obtain the same tipi@gjolarities as in the finite dimensional
case. (The linear operators in Section 1 are clearly not eatipNote, that the assumptions Brand the
existence of the solutiofx, yo) satisfying (2) imply that we are actually dealing with nowar functions
in Theorem 2.

Remark 3 The examples in Section 1 show that the assumption of com@sEbf the Jacobian operator
cannot be canceled without stating any other restrictiang’o In order to prove Theorem 2, we use
excessively the special structure of the spectrum and godvent of compact operators. It seems possible
to extend the result to operators which have similar spptogperties as compact operators (for example
Riesz operators). In the example of Lalley, the spectrurh@flacobian operator is a shifted spectrum of
a compact operator. Even though Theorem 2 does not includtecsises, a similar argumentation should
imply the desired result. The Jacobian operator in the el@ofiBousquet-Mélou and Boulttier et al. is
“far away” from being compact. And indeed, they even get aidamt singularity different from the one
stated in our theorem.

Remark 4 In order to use this theorem for showing central limit resuine has to include an additional
continuous parameter similar to the parametén [Drm09, Theorem 2.33]ife., F' is of the formF :
Cx P x P — (P, (x,y,u) = F(z,y,u) and the functional equation has solutigns- y(z, u)).

3 Tree counting problems with degree restrictions

In this section we apply Theorem 2 to a counting problem. @unlzinatorial objects are rooted labeled
trees. More precisely, i is a tree of sizen (i.e., a tree withn nodes), then all nodes are labeled by
1,2,...,n and there exists a specific node that is marked (the root).

Let 7, be the set of all rooted labeled trees of siz@ith the property that each node with out-degree
k has successors with out-degiee 1 or k + 1 (see Figure 1). The first few members of the sequence
(#Tn)n>1 are given by(1, 2, 0, 0, 60, 360, 0,...).

In what follows, we show that there exist positive constardadz, with 1/e < 2o < 1 such thalt)

c
x8n3/2n

#Tp ~ L ()
Note, that such a result is quite natural in this contekt{BBYO06], where it is shown that a law of the
form cz; "n~3/2 occurs frequently when counting rooted trees.) uét:) be the exponential generating
function

o0

bkn n
y(z) = Z Fw )
n=0 ’

() This example can be easily generalized to families of treésather degree restrictions.
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Fig. 1. Two considered trees of sizeand6 (the roots are marked gray)

whereby,, counts the number of treés in 7, such that the root has degrge Note, that we have
yo(z) = x. The recursive structure @f, easily implies that the functiong, (z) satisfy

(yr—1(2) + yrp1 (2))"
k!

ye(z) =

forall k£ > 1. Hence,y(z) = (y1(x),y2(x),...) satisfies the functional equatigr{z) = F(z,y(z)),
whereF : C x ¢! — ¢! is defined by

k
Filey)=a(p+2) and Rley) = o P00l s g

First, we have to show thdf is indeed a function frorfC x ¢; to /. Lety = (y1,¥2,...) € £1. Then we
have

ad o |yk—1 + et ®
3 1B )] = lallye + ol + faf 3 et el
=1 p

+
|w||yz|+|x|2+|x|z s P ) ©

||YH )~
<ol 1yl + lal? + 2|2 IZ

< o (Jylo + I + zezuyux) ‘.

Actually, we have shown thdf mapsC x /., to ¢;. Clearly, F' is analytic and we have'(0,y) = 0 and
F(x,0) # 0. A similar calculation as in (6) shows thaf"/dy is an operator frond* to ¢*. Furthermore,
OF/0y is irreducible. Since this matrix can be approximated wéhpect to the/;-operator norm by
finite rank operators (take the firstcolumns ofo F'/dy), we obtain thad F'/dy is compact.

In order to apply Theorem 2, we have to show that there ekistsyo) satisfyingyy = F(zo, yo)
andr (OF/0y(zo,y0)) = 1. We know from the Implicit Function Theorem that there exiatpositive
solutiony(x) of the functional equation around= 0 (compare with the proof of Theorem 2). Lej
be the smallest positive real number such gh@t) cannot be analytically continued iy (combinatorial
considerations show thaye < zo < 1). Consider the functioy(z) for x — z¢. The spectral radius
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of the Jacobian operatorisfor z = 0 and it is continuous (see Lemma 2) and monotone increasing if
increases (see Proposition 2 and note $hal) is positive). Moreover, we have(OF /0y (x,y(x))) < 1
for z < x. Indeed, ifr (OF/dy(z,y(z))) = 1, theny(z) cannot be analytic in an neighborhoodiof
which is in contrast to the fact that < x, (implicit differentiation yields a contradiction). Thismplies
thaty (z) cannot have a pole (in any of its components)@andy(x) converges to some positive vector
yo for x — xq. A priori, yo is in £°°. But sincey also satisfies the functional equation, it is alsdin
(see (6)). Furthermore, we havédF/0y(xo,yo)) = 1 since we could continug(z) otherwise in an
neighborhood of,.

Thus, all conditions of Theorem 2 are satisfied and we obleihyt(x) has a square root singularity.
Sincey(z) € ¢*, we have that(z) = >";~ , yx(x) has a square root singularity, too. Siri¢e) can also
be written in the formt(z) = >_°° #72 gn | this finally implies (5).

n=0 n! x

4 Monotonicity of spectral radii

In this section we will show some spectral properties of cachf@and positive operators df spaces.
Recall, that any bounded linear operatbon /¥ (1 < p < oo) is uniquely determined by an infinite
dimensional matriXa;;)1<i, j<oo-

The study of operators (or matrices) 47 is different. First note, that there is no one-to-one cor-
respondence between operators and matrices. (Actuadlse #&xist nontrivial compact operators, such
that the corresponding “matrix representation” is the zmadrix). Nevertheless, if we have a matrix
(@ij)1<4,j<o0, We define an operatot on £ via

(Az); = aipa,
k=1

if the summation is well-defined for all > 1 and for allxz € ¢°°. Recall that an operatot is called
positive if all entries of the matrix representation #fare nonnegative. If. andv are real vectors or
matrices,u > v means that all entries af are greater than or equal to the corresponding entries of
Thus, an operatad is positive if (a;;) > 0. Similarly, a vector is called positive (or also nonnegative)
if x > 0. We callz strictly positive, if all entriese; of x satisfyx; > 0. Moreover, ifu is a vector with
entriesu;, then|u| denotes the vector with entrigs;| (a similar definition is used for matrices).

The adjoint operator of an operatdr(denoted by4*) is acting or¢?’ = ¢4, wherel /p +1/q = 1 (for
1 < p < o0). The operatort* can be associated with the mat(ix;; )1<; j<oo acting oné? (which we do
in the sequel without explicitly saying so).

The following result goes back to Krein and Rutman [KR503 & of particular importance for our
work (see [Zei86, Proposition 7.26]):

Lemmal LetT = (t;;)1<i,j<o0 D€ @ compact positive operator éh (wherel < p < o0) and assume
that~(T)) > 0. Thenr(T) is an eigenvalue of' with nonnegative eigenvectgr € ¢?. Moreover,
r(T) = r(T*) is an eigenvector df * with nonnegative eigenvectare ¢9.

Proposition 1 LetA = (a;5)1<i,j<o0 D€ @ positive, irreducible and compact operator@nl < p < oo.
Let B = (bi;)1<i,j<o0 D€ defined by;; = a;41 j+1. Then we have

r(B) < r(A).
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Remark 5 The matrixB is obtained through eliminating the first row and first coluaimd. The same
result holds, if one removes a finite number of rows and (thieesponding) columns of.

Before we prove this proposition, we recall some notationceoning infinite matrices (see [VJ67]).
A nonnegative vectox # 0 (lying in the sequence space of real numbers) is called ¢eftight) r-
subinvariant vector ofa;;), if forall j > 1

oo o0
r g agjrr <x; Oor r g ajpTr < 25,
k=1 k=1

respectively. On the other hand,# 0 is called left (or right)--superinvariant vector ofa;;), if for all
j=1

(o] (o]
T g agjTi =z x; Or r g ajpT = Ty,
k=1 k=1

respectively. The vectaris called (left or right)-invariant, if itis (left or right)r-sub- and superinvariant.

Proof of Proposition 1: It easily follows from the irreducibility condition that(A) > 0. Letm be an
integer such that = aﬁ”) > 0. Then we havd A™"|| > d" foralln > 1, where||-|| denotes the operator
norm that is induced by the-norm on¢? (considerA™e;, wheree; = (1,0,0,...)). Gelfand’s formula
impliesr(A) = lim,_,o |A"|"/" > d/™. If #(B) = 0 (note thatB need not to be irreducible), the
statement of the result follows from the fact thé#l) > 0. Suppose now that(B) > 0.

Let Sy be the left shift operator anfl. the right shift operator acting off (i.e., S¢(z1, 22, x3,...) =
(x2,23,...) and S.(z1,z2,...) = (0,21,22,...)). ThenB = S,AS,. Since the shift operators are
bounded andi is compact, it follows thaB is also compact. MoreoveR is clearly a positive operator.
Hence, the assumptions of Lemma 1 are satisfied and thete axisnnegative eigenvectpof B to the
eigenvalue:(B). Setz := S,y. Then we have

Az = (%,0,...) +r(B)x > r(B)z,

wherex is some positive number. Thusjs a right1/r(B)-superinvariant vector ofu,;). If we assume
thatr(B) > r(A), thenz is also a rightl /r(A)-superinvariant vector. According to LemmaA has
a nonnegative left eigenvectar € (9 to the eigenvalue:(A). This vector is clearly a left/r(A)-
subinvariant vector (in particular, it is also strictly jto&, see [VJ67, Lemma 4.1]). Holders inequality
and the fact that € ¢ imply

Z Ly Oy, < OQ.

n=1

It follows from [VJ67, Lemma 5.2] that this is only possibiiez: = 0 or z is strictly positive and /r(A)-
invariant. But sincer; = 0 andz # 0, the assumption(B) > r(A) cannot hold true and Proposition 1
is shown. O

Proposition 2 Let1l < p < co and A = (a4j)1<i,j<cc aNAC = (ci5)1<i,j<o0 D€ COMpact operators on
P, Furthermore, letd be positive and irreducible such thigt| < A but|C| # A. Then we have

r(C) < r(A).
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Proof: The proof is similar to the proof of Proposition 1. First wevddhatr(A) > 0. If »(C) = 0, we
are done. Assume now thafC') > 0. SinceC is compact, there exists an eigenvegjoe ¢? to some
eigenvalues with |s| = r(C). We get

lsy| = r(C)|y| < [Clly| < Alyl.

If we assume that(C) > r(A), thenly| is a rightl/r(A)-superinvariant vector. The same reasoning as
above shows that this is only possiblejgf = 0 (which is clearly not true) or ify| is strictly positive and
1/r(A)-invariant. In the case df/r(A)-invariance, we obtain

Aly| =r(A)ly| < r(O)]y| < |Clly| < Alyl.

Thus, we havéA — |C|)|y| = 0. But sincely| is strictly positive andd # |C|, this is impossible. O

5 Proof of Theorem 2

Before we prove our main theorem, we show that the spectdalisaof the Jacobian operator &f is
continuous.

Lemma 2 Let the functionF’ satisfy the assumptions of Theorem 2. Then we have that the ma

@) (Gt

is continuous for allz,y) € U x V.

Proof: First note, thatz, y) — 9% (x, y) is continuous. Letz,y) € U x V such that (g—l;(:c,y)) > 0.
Since isolated eigenvalues with finite multiplicity mustyaontinuously (see [Kat66, Chapter 1V.3.5])
and since we are dealing with compact operators, we obtaidekired result. If (g—s(az, y)) =0 (as

it is for example in(0, 0)), then the continuity follows from the upper semicontiguwf the spectrum of
closed operators (see [Kat66, Chapter 1V.3.1]). O

Proof of Theorem 2: The Implicit Function Theorem (see [Dei85, Theorem 15.8]plies that there
exists a unique analytic solutign= y(z) of the functional equation (3) in a neighborhood(6f0). It
also follows from the Banach Fixed-Point Theorem that thigpisecey, = 0 and

Ynt1(z) = F(2,yn (), n=>1,

converges uniformly to the unique solutigi:) of (3). Thusy(z) is positive. Since the Jacobian operator
is continuous and’ is positive, we have that the spectral radius of the Jacodyeenator is less thah
forall (z,y) € U x V with |z| < zo and|y| < yo (cf. Proposition 2). The Implicit Function Theorem
implies that the positive functiop(z) is actually defined for allz| < xo. Next, we divide equation (2)
up into two equations

ylel(zaylvy)a (7)

y = F(z,91,5), (8)
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wherey = S,y andF = S, F. Observe, that the Jacobian operatob{with respect tdy) can be
obtained by deleting the first row and column of the matrixted acobian operator df. The tuple
(20, (yo)1,¥0) is @ solution of (7) and (8). Set

oF oF

A=— d B=— ¥0)-

Dy (z0,y0) an oy (70, (¥0)1,¥0)
Proposition 1 implies that(B) < r(A4) = 1. Thus, we can again employ the Implicit Function Theorem
and obtain that there exists a unique positive analyticteslyy = y(x, y1) of (8) with ¥(0,0) = 0 such
thaty(z, y1) is also defined in a neighborhood @, (yo)1,¥0). Furthermore, we havg(xo, (yo)1) =
¥o. If we insert this function into equation (7), we obtain agdéequation

Y1 = Fl(maylay(x7y1))

for y1 = y1(z). The functionG(z, y1) = Fi(z,y1,¥(z,y1)) is an analytic function aroun@, 0) with
G(0,y1) = 0 and such that all Taylor coefficients 6f are real and non-negative (this follows from the
positivity of F andy(z, y1)). Furthermore, the tuplex, (yo)1) belongs to the region of convergence of
G(z,y). In what follows, we show thdtg, (yo)1) is a positive solution of the system of equations

Y1 = G(‘Tayl)a
1= Gy1 (:rvyl)a

with G (20, (yo)1) # 0 andGy, y, (o, (yo)1) # 0.

In order to see thak,, (xo, (y0)1) is indeed equal ta, note that the classical Implicit Function Theo-
rem otherwise implies that there exists an analytic sotutiy; = G(x, y1) locally aroundz. Inserting
this function into equation (8), we obtain that there alsistsxan analytic solutiogr(x) of (3) in a neigh-
borhood ofzy. Implicit differentiation yields to

(1= G0 y0)) B o) = G v, ©
Since the spectral radius of the (positive and irreducigepbian operator &k, yo) is equal tol, there
exists a strictly positive left eigenvector to the eigemedl (cf. Section 4). Multiplying this vector to
equation (9) from the left yields to a contradiction sir%;é(xo, vo) # 0 (note thatF'(x, 0) # 0 and that
Fis positive).

Next suppose tha¥,, (zo, (yo)1) = 0. The positivity implies that the unique solution®f = G(z, y1)
is given byy; () = 0. Consider the solutiogr(x) of (3) for some reak > 0 in the near of). Since the
spectral radius of the Jacobian operator is smaller thdior  small), we can express the resolvent with
the aid of the Neumann seriés., we have €f. (9))

)= (1-Goey@) Greve) =X (Goy)) ey

n=0

SincedF/dy is irreducible and F'/0x # 0 we obtain thay, (x) cannot be a constant function. Finally,
the positive function7 cannot be an affine map in since otherwise the conditior$(0,y,) = 0 and
G(zo, (yo)1) = (yo)1 imply thaty, (z) is constant.
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If follows from [Drm09, Theorem 2.19] that there exists aque solutionj(z; ) of the equationy; =
G(z,y1) with g1(0) = 0. Itis analytic for|z| < x¢ and there exist functiong («) andh;(x) that are
analytic around:, such thatj; (z) has a representation of the form

7i(2) = gx) = h(2)[1 - — (10)
Zo

locally aroundz,. Due to the uniqueness of the solutigfx) of the functional equation (3), we have
that the first component af(x) coincide withg, (z), i.e, y1(z) = g1(x). Inserting this solution into
equation (8) (note, thaF is analytic at(zo, (yo)1,¥o)), We obtainy(z, yi(z)) = (y2(z),y3(z),...).
Thus,y;(z) has a representation of the form (10) foral: 1. This finally shows (4).

If there exist two integers; andn, that are relatively prime such thiat' ]y, (z) > 0 and[z"2]y, (z) >
0, then it follows thatz, is the only singularity of; () on the circlelz| = xy and there exists an analytic
continuation to aA-domain. Indeed, it suffices to show that

Gy1 (‘Tayl) <1

for |x| = xo butz # 9 (compare with the proof of [Drm09, Theorem 2.19]). Siggér) is positive, we
clearly havdy, (z)| < y1(|=|). If equality occurs, then

ny __

x |z|" =z(*  and 2" = |z|"? = z(>.

By assumptionn; andns are relatively prime and we obtain = x(, which is impossible. Thus, we
actually havey; (z)| < y1(]z|). The positivity of G implies

|Gy, (2, y1(2))] < Gy, (2], [91(2)]) < Gy, (J2] 91 (|2])) = Gy, (20, (yo)1) = 1.

Inserting the analytic continuation @f (z) into equation (8), we obtain that there exists an analytic
continuation for ally;. The Transfer Lemma of Flajolet and Odlyzko implies thét|y;(z) satisfy
Cj

[z"y; () ~ W

forall j > 1 and for some constants > 0. This finally shows Theorem 2. O
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