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On the diameter of random planar graphs
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We show that the diameter D(Gn) of a random (unembedded) labelled connected planar graph with n vertices is
asymptotically almost surely of order n1/4, in the sense that there exists a constant c > 0 such that P (D(Gn) ∈
(n1/4−ε, n1/4+ε)) ≥ 1 − exp(−ncε) for ε small enough and n large enough (n ≥ n0(ε)). We prove similar
statements for rooted 2-connected and 3-connected embedded (maps) and unembedded planar graphs.
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1 Introduction
The diameter of random embedded connected planar graphs (called planar maps) has attracted a lot of
attention since the pioneering work by Chassaing and Schaeffer [6] on the radius r(Qn) of random quad-
rangulations with n vertices, where they show that r(Qn) rescaled by n1/4 converges as n → ∞ to an
explicit (continuous) distribution related to the Brownian snake. This suggests that random maps of size
n are to be rescaled by n1/4 in order to converge; precise definitions of the convergence can be found
in [14, 9], and the (spherical) topology of the limit is studied in [10, 16]; some general statements about
the limiting profile and radius are obtained in [13, 15]. At the combinatorial level, the two-point function
of random quadrangulations has surprisingly a simple exact expression, a beautiful result found in [4] that
allows one to derive easily the limit distribution (rescaled by n1/4) of the distance between two randomly
chosen vertices in a random quadrangulation. In contrast, little is known about the profile of random
unembedded connected planar graphs, even if it is strongly believed that the results should be similar as
in the embedded case.

We have not been able to show a limit distribution for the profile (or radius, diameter) of a random
connected planar graph rescaled by n1/4; instead we have obtained large deviation results on the diameter
that strongly support the belief that n1/4 is the right scaling order. We say that a property A, defined for
all values n of a parameter, holds asymptotically almost surely if

P (A)→ 1, as n→∞.
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In this case we write a.a.s. In this paper we need a certain rate of convergence of the probabilities. Suppose
property A depends on a real number ε > 0 (usually very small). Then we say that A holds a.a.s. with
exponential rate if there is a constant c > 0, such that for every ε small enough there exist an integer n0(ε)
so that

P (not A) ≤ e−n
cε

for all n ≥ n0(ε). (1)

The diameter of a graph (or map) G is denoted by D(G). The main results proved in this paper are the
following.

Theorem 1.1 The diameter of a random connected labelled planar graph with n vertices is, a.a.s. with
exponential rate, in the interval

(n1/4−ε, n1/4+ε).

Theorem 1.2 Let 1 < µ < 3. The diameter of a random connected labelled planar graph with n vertices
and bµnc edges is in the interval (n1/4−ε, n1/4+ε) a.a.s. with exponential rate.

This contrasts with so-called “subcritical” graph families, such as trees, outerplanar graphs, series-parallel
graphs, where the diameter is in the interval (n1/2−ε, n1/2+ε) a.a.s. with exponential rate. (see the remark
just before the bibliography).

The basis of our proof is the result for planar maps (i.e., embedded planar graphs) mentioned above.
Then we prove the result for 2-connected maps using the fact that a random map has a large 2-connected
component a.a.s. A similar argument allows us to extend the result to 3-connected maps, which proves
it also for 3-connected planar graphs, because they have a unique embedding in the sphere. We then
reverse the previous arguments and go first to 2-connected and then connected planar graphs, but this is
not straightforward. One difficulty is that the largest 3-connected component of a random 2-connected
graph does not have the typical ratio between number of edges and number of vertices, and this is why
we must study maps with a given ratio between edges and vertices. In addition, we must show that there
is a 3-connected component of size n1−ε a.a.s. with exponential rate, and similarly for blocks. Finally,
we must show that the height of the tree associated to the decomposition of a 2-connected graph into 3-
connected components is at most nε, and similarly for the tree of the decomposition of a connected graph
into blocks.

2 Preliminaries
Let f(z) =

∑
n fnz

n be a series with nonnegative coefficients and let x > 0 be a value such that
f(x) converges (in particular x is at most the radius of convergence ρ). Recall the following elementary
inequality: for n ≥ 0 we have

fn ≤ f(x)x−n. (2)

(When minimized over x, this inequality is called saddle-point bound).
A bivariate version yields a lemma that will be used several times; it provides a simple criterion to

ensure that the distribution of a parameter has exponentially fast decaying tail. First let us give some
terminology. A weighted combinatorial class is a class of combintorial objects (such as graphs, trees,
maps) A = ∪nAn endowed with a weight-function w : A 7→ R+. The weighted distribution in size n is
the unique distribution on An proportional to the weight: P (α) ∝ w(α) for every α ∈ An.
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Lemma 2.1 Let A = ∪nAn be a weighted combinatorial class, and let A(z) =
∑
α∈A w(α)z|α| be

the corresponding weighted generating function. Let χ be a parameter for objects in A with associated
bivariate generating function A(z, u) =

∑
α∈A w(α)z|α|uχ(α), where z marks size and u marks χ. Let

ρ > 0 be the dominant singularity of A(z) = A(z, 1). Assume there is a polynomial p(n) such that

An = [zn]A(z) ≥ 1

p(n)
ρ−n for n large enough.

Assume also that there exists u0 > 1 such that A(z, u0) has dominant singularity ρ and A(ρ, u0) is finite.
Then, there exists constants C > 0 and c > 0 such that, for Rn taken at random under the weighted

distribution in size n
P (χ(Rn) ≥ k) ≤ C p(n) e−ck,

for every n and k positive.

Proof: We have P (χ(Rn) = k) = [znuk]A(z, u)/[zn]A(z). A bivariate version of (2) ensures that
[znuk]A(z, u) ≤ A(ρ, u0)ρ−nu−k0 = O(ρ−ne−ck) where c = log(u0). Hence P (χ(Rn) = k) =
O(p(n)e−ck), so P (χ(Rn) ≥ k) = O(p(n)e−ck). 2

3 Quadrangulations and maps
We recall here the definitions of maps. A planar map (shortly called a map here) is a connected unlabelled
graph embedded in the plane up to isotopic deformation. Loops and multiple edges are allowed. A rooted
map is a map where an edge incident to the outer face is marked and oriented so as to have the outer
face on its left; the root-vertex is the origin of the root; the outer face is also called the root face. A
quadrangulation is a map where all faces have degree 4.

3.1 Quadrangulations
We recall Schaeffer’s bijection (itself an adaptation of an earlier bijection by Cori and Vauquelin [7])
between labelled trees and quadrangulations. A rooted plane tree is a rooted map with a unique face. A
labelled tree is a rooted plane tree with a integer label `(v) ∈ Z on each vertex v so that the labels of the
extremities of each edge e = (v, v′) satisfy |`(v)− `(v′)| ≤ 1, and such that the root vertex has label 0. A
useful observation is that labelled trees are in bijection with rooted plane trees where a subset of the edges
is oriented arbitrarily (for the onto mapping, one orients an edge with labels (i, i + 1) toward the vertex
with label i+ 1 and one leaves an edge of type (i, i) unoriented). Thus the number of labelled trees with
n edges is 3nCn with Cn := (2n)!/n!/(n + 1)! the nth Catalan number. A signed labelled tree is a pair
(τ, σ) where τ is a labelled tree and σ is an element of {−1,+1}.

Theorem 3.1 (Schaeffer [17], Chassaing, Schaeffer [6]) Signed labelled trees with n vertices are in bi-
jection with rooted quadrangulations with n vertices and a secondary pointed vertex v0. Each vertex v
of a labelled tree corresponds to a non-pointed vertex ( 6= v0) in the associated quadrangulation Q, and
`(v)− `min + 1 gives the distance from v to v0 in Q, where `min is the minimum label in the tree.

From this bijection, it is easy to show large deviation results for the diameter of a quadrangulation (the
basic idea, originating in [6], is that the typical depth k of a vertex in the tree is n1/2, and the typical
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discrepancy of the labels along a branch is k1/2 = n1/4). The main result we use, from [8], is the
property that (under general conditions) the height of a random tree of size n from a given family is in
(n1/2−ε, n1/2+ε) a.a.s. with exponential rate.

Let T be a family of trees, with y = y(z) the associated generating function (according to the number
of nodes) and ρ the radius of convergence of y. The family T is called admissible if y = y(z) satisfies an
equation of the form

y = F (z, y), (3)

with F (z, y) a bivariate function with nonnegative coefficients, nonlinear in y, analytic around (0, 0),
satisfying F (0, y) = 0, and such that F is analytic at (ρ, τ) where τ := y(ρ) is the value of y at its
dominant singularity (observe that τ <∞ since F (z, y) is non-linear in y). We have:

Lemma 3.2 (Flajolet et al. Theorem 3.1 in [8]) Let T be an admissible family of rooted trees, let Tn
be a tree chosen uniformly at random in Tn, and let ξ(Tn) denote the height of Tn. Then ξ(Tn) ∈
(n1/2−ε, n1/2+ε) a.a.s. with exponential rate (i).

Proposition 3.3 The diameter of a random rooted quadrangulation with n vertices is, a.a.s. with expo-
nential rate, in the interval (n1/4−ε, n1/4+ε).

Proof: The range ∆ := `max − `min + 1 in a labelled tree T gives the radius of the associated rooted
pointed quadrangulation Q with respect to the pointed vertex. Hence D(Q)/2 ≤ ∆ ≤ D(Q). So we just
have to show that ∆ is in (n1/4−ε, n1/4+ε) a.a.s. with exponential rate. Since the label either increases by
1, stays equal, or decreases by 1 along each edge (going away from the root), the series T (z) of labelled
trees counted according to vertices satisfies

T (z) =
z

1− 3T (z)
.

The equation is clearly admissible (the singularity is 1/12 and T (1/12) = 1/6), hence by Lemma 3.2
the height is in (n1/2−ε, n1/2+ε) a.a.s. with exponential rate. So in a random labelled tree there is a.a.s.
with exponential rate a branch B of length k = n1/2−ε. The labels along B form a random walk with
increments +1, 0, −1 each with probability 1/3. Classically the maximum of such a walk is at least
k1/2−ε (which is ≥ n1/4−2ε) a.a.s. with exponential rate. Hence the label of the vertex v on B at which
the maximum occurs is at least the label of the root-vertex plus n1/4−2ε, so `max ≥ n1/4−2ε a.a.s. with
exponential rate. Since lmin ≤ 0, this proves the lower bound (one can replace 2ε by ε up to dividing by
2 the constant c in (1)).

For the upper bound (already proved in [6]), since the height is at most n1/2+ε a.a.s. with exponential
rate, the same is true for the depth k of a random vertex v in a random labelled tree of size n. Along
the path from the root-vertex to v, the random walk of the labels has maximum at most k1/2+ε. Hence
|`(v)| ≤ n(1/2+ε)2 a.a.s. with exponential rate, so the same easily holds for the property |`(v)| ≤ n1/4+ε.
Hence (multiplying by n keeps the probability of failure exponentially small), the property {∀v, |`(v)| ≤
n1/4+ε} is true a.a.s. with exponential rate. This completes the proof. 2

We also need a weighted version of the previous theorem. Recall that a rooted quadrangulation Q has
a unique bicoloration of its vertices in black and white such that the origin of the root is black and each
(i) In [8] they prove the result on an example and say that all the arguments in the proof hold for any system of the form y = zφ(y).

We have checked that actually all arguments still hold in the general case of an admissible system of the form y = F (z, y).
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edge connects a black with a white vertex. Call it the canonical bicoloration of Q. Given x > 0, a rooted
quadrangulation with v black vertices is weighted with parameter x if we assign to it weight xv . The next
theorem generalizes Proposition 3.3 to the weighted case.

Theorem 3.4 Let 0 < a < b. The diameter of a random quadrangulation weighted by x is, a.a.s. with
exponential rate, in the interval (n1/4−ε, n1/4+ε), uniformly over x ∈ [a, b].

The proof, which is omited, consists of the following steps: write a two-line system to specify the gen-
erating function of weighted labelled trees, transform the system into a one-line equation (gathering the
nodes in monochromatic components), and use a weighted version of Lemma 3.2 to show that the height
(defined here as the maximum number of edges with label-increment along a path from the root) in the
weighted case is still in (n1/2−ε, n1/2+ε) a.a.s. with exponential rate. This easily yields the theorem (sim-
ilarly as in Proposition 3.3) using the fact that the typical discrepancy of labels along a path of length `
is
√
`.

3.2 Maps
We recall the classical bijection between rooted quadrangulations with n faces (and thus n + 2 vertices)
and rooted maps with n edges. Starting from Q endowed with its canonical bicoloration, add in each face
a new edge connecting the two (diagonally opposed) black vertices. Return the rooted map M formed
by the newly added edges and the black vertices, rooted at the edge corresponding to the root-face of
Q, and with same root-vertex as Q. Conversely, to obtain Q from M , add a new white vertex vf inside
each face f of M (even the outer face) and add new edges from vf to every corner around f ; then delete
all edges from M , and take as root-edge of Q the one corresponding to the incidence root-vertex/outer-
face in M . Clearly, under this bijection, vertices of a map correspond to black vertices of the associated
quadrangulation, and faces correspond to white vertices.

Map families are here weighted at their vertices, i.e., for a given parameter x > 0, a map with v vertices
has weight xv .

Theorem 3.5 Let 0 < a < b. The diameter of a random rooted map with n edges and weight x at the
vertices is in the interval (n1/4−ε, n1/4+ε), uniformly over x ∈ [a, b].

Proof: The first important observation is that the bijection transports the weighted (weight x > 0 for each
black vertex) distribution on rooted quadrangulations with n+2 vertices to the weighted (weight x for each
vertex) distribution on rooted maps with n edges. We start with the proof for x = 1 (uniform distribution).
Let M be a random rooted map with n edges and let Q be the associated rooted quadrangulation (with
n + 2 vertices). Every path b1b2 . . . bk in M yields a path b1w1b2 . . . wk−1bk in Q, calling wi the white
vertex corresponding to the face on the left of (bi, bi+1). Hence D(Q) ≤ 2D(M). This shows that
the diameter of M is at least n1/4−ε a.a.s. with exponential rate. To prove the upper bound, let x =
b1w1b2w2 . . . bk = y be a path in Q, where the bi are black vertices and the wi are white. Let fi be
the size of the face in M corresponding to bi. Then we can find a path in M between x and y of length
k + f1 + · · ·+ fk. Therefore, calling ∆(M) the maximal face-degree in M , we have

D(M) ≤ D(Q) ·∆(M). (4)

Let A(z, u) be the series counting rooted maps where z marks the number of edges and u marks the root-
face degree. Using the quadratic method, Tutte [18] has found an explicit expression for A(z, u) ensuring
that
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• [zn]A(z, 1) = Θ(n−5/212n),

• for u in an open interval around 1, z 7→ A(z, u) has radius of convergence 1/12 and A(1/12, u) is
finite.

Hence, by Lemma 2.1, the root-face degree δ(M) in a random rooted planar map with n edges satisfies
P (δ(M) ≥ k) = O(e−ck) for some c > 0. The probability distribution is the same if the map is bi-
rooted (two root-edges possibly equal, the root-face being the face incident to the primary root). When
exchanging the secondary root with the primary root, the root-face can be seen as a face f taken at random
under distribution P (f) = deg(f)/(2n). Thus δ(M) is distributed as the degree of the (random) face f .
Hence P (∆(M) ≥ k) ≤ 2n

k P (δ(M) ≥ k), so P (∆(M) ≥ k) = O(e−ck/2). Since the diameter of
D(Q) is at most n1/4+ε/2 and since ∆(M) is at most nε/2 a.a.s. with exponential rate, we conclude
from (4) that the diameter of M is at most n1/4+ε a.a.s. with exponential rate.

The proof for arbitrary x ∈ [a, b] is similar. Let A(x, z, u) be the series counting rooted maps where
x marks non-root vertices, z marks edges, and u marks the root-face degree. Let ρx be the radius of
convergence of z 7→ A(x, z, 1). As an easy extension of Tutte’s result, see [3], one finds an expression of
A(x, z, u) ensuring that

• [zn]A(x, z, 1) ∼ cxρ−nx n−5/2 with cx a positive constant that evolves continuously in x,

• there exists u0 > 1 such that for each x ∈ [a, b], A(x, ρ(x), u0) is a finite constant that evolves
continuously in x.

Consequently all arguments used in the case x = 1 hold in the same way. 2

3.3 2-connected maps
Here it is convenient to include the empty map in the familiesM = ∪nMn of rooted maps and C = ∪nCn
of rooted 2-connected maps. As described by Tutte in [18], a rooted mapM is obtained by taking a rooted
2-connected map C, called the core of M , and then inserting in each corner i of C an arbitrary rooted
map Mi. The maps Mi are called the pieces of M . Denoting by M(x, z) (C(x, z), resp.) the series of
rooted connected (2-connected, resp.) maps according to non-root vertices and edges, this decomposition
yields

M(x, z) = C(x,H(x, z)), where H(x, z) = zM(x, z)2, (5)

since a core with k edges has 2k corners where to insert rooted maps.
An important property of the composition scheme is to preserve the uniform distribution, as well as the

(vertex-)weighted distribution. Precisely, letM be a rooted map with n edges and weight x at the vertices.
Let C be the core of M , call k its size, and let M1, . . . ,M2k be the pieces of M , call n1, . . . , n2k their
sizes. Then, conditioned to have size k, C is a random rooted 2-connected map with k edges and weight
x at vertices, and conditioned to have size ni the ith piece Mi is a random rooted map with ni edges and
weight x at vertices.

Lemma 3.6 Let 0 < a < b, and let x ∈ [a, b]. Let ρ(x) be the radius of convergence of z 7→ M(x, z).
Following [1], define

α(x) =
H(x, ρ(x))

ρ(x)Hz(x, ρ(x))
.
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Let n ≥ 0, and let M be a random rooted map with n edges and weight x at vertices. Let Xn = |C| be
the size of the core of M , and let M1, . . . ,M2|C| be the pieces of M . Then

P
(
Xn = bα(x)nc, max(|Mi|) ≤ n3/4

)
= Θ(n−2/3)

uniformly over x ∈ [a, b].

The proof is omitted. In [1] the authors derive the limit distribution of Xn and they show that P (Xn =
bα(x)nc) = Θ(n−2/3). So Lemma 3.6 says that the asymptotic order of P (Xn = bα(x)nc) is the same
under the additional condition that all pieces are of size at most n3/4 (one could actually ask n2/3+δ for
any δ > 0). A closely related result proved in [11] is that, for any fixed δ > 0, there is a.a.s. no piece of
size larger than n2/3+δ provided the core has size larger than n2/3+δ .

Theorem 3.7 For 0 < a < b, the diameter of a random rooted 2-connected map with n edges and weight
x at vertices is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε), uniformly over x ∈ [a, b].

Proof: Again we treat only the case x = 1 in details. LetM be a rooted map with n edges taken uniformly
at random, C the core of M and (Mi)i∈[1..2|C|] the pieces of M . Note that

D(C) ≤ D(M) ≤ D(C) + 2max(D(Mi)),

the first inequality is trivial, the second one follows from the property that a diametral path in M either
stays in a same piece, or it starts in a certain piece, travels along edges of C, and then finishes in another
piece.

Since |C| = bn/3c has polynomially small probability (order Θ(n−2/3) as shown in [1]) and D(M) >
n1/4+ε has exponentially small probability (meaning smaller than exp(−ncε) for some c > 0), the event
D(M) > n1/4+ε knowing |C| = bn/3c has exponentially small probability. Since D(M) ≥ D(C), this
yields the a.a.s. upper bound on D(C).

For the lower bound, Lemma 3.6 ensures that the event E := {|C| = bn/3c, max(|Mi|) ≤ n3/4}
occurs with polynomially small probabilty (of order Θ(n−2/3)). We claim that the event max(|Mi|) ≤
n3/4 implies a.a.s. in n that max(D(Mi)) ≤ n1/5. (Proof: when ni := |Mi| ≤ n1/5, D(Mi) ≤ n1/5 trivially.
Moreover for δ > 0 small enough, P (D(Mi) > n

1/4+δ
i ) ≤ exp(−ncδi ) for some c > 0, so when n1/5 ≤ ni ≤ n3/4,

P (D(Mi) > n3/4(1/4+δ)) ≤ exp(−ncδ/5), and we can take δ small enough so that 3/4(1/4 + δ) ≤ 1/5. So
D(Mi) > n1/5 has exponentially small probability in n, and the same holds for max(D(Mi)).) Hence the event
E ′ := {|C| = bn/3c, max(D(Mi) ≤ n1/5} occurs with polynomially small probability. In that case,
since D(C) ≥ D(M)− 2max(D(Mi)) and since the event D(M) < n1/4− ε occurs with exponentially
small probability, we conclude that the event D(C) < n1/4−ε − 2n1/5 occurs with exponentially small
probability. As n1/5 << n1/4−ε for ε small enough, this finally gives the a.a.s. lower bound on D(C).

The case of arbitrary x > 0 is done by the same arguments, the uniformity in x ∈ [a, b] of the bounds
following from the uniformity in x in Theorem 3.5 and Lemma 3.6. 2

3.4 3-connected maps
In a similar way as in Section 3.3 (where one goes from connected to 2-connected maps) there is a de-
composition of 2-connected maps in terms of 3-connected components that allows to transfer the diameter
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concentration property from 2-connected to 3-connected maps. In this section it is convenient to exclude
the loop-map from the family of 2-connected maps, so all 2-connected maps are loopless.

As shown by Tutte [18], a rooted 2-connected map C is either a series or parallel composition of 2-
connected maps, or it is obtained from a rooted 3-connected map T where each non-root edge e is possibly
substituted by a rooted 2-connected map Ce (identifying the extremities of e with the extremities of the
root ofCe). In that case T is called the 3-connected core ofC and the componentsCe are called the pieces
of C. Call C(x, z) (Ĉ(x, z)) the series counting rooted 2-connected maps (rooted 2-connected maps with
a 3-connected core, resp.) according to vertices not incident to the root (variable x) and edges (variable
z). Call T (x, z) the series counting rooted 3-connected maps according to vertices not incident to the root
(variable x) and edges (variable z). Then

Ĉ(x, z) = T (x,C(x, z)). (6)

Accordingly (similarly as in Section 3.3), for a random rooted 2-connected map with n edges, weight x at
vertices, and conditioned to have a 3-connected core T of size k, T is a random rooted 3-connected map
with k edges and weight x at vertices; and each piece Ce conditioned to have a given size ne is a random
rooted 2-connected map with ne edges and weight x at vertices.

Calling fe the degree of the root face of Ce, we have

D(T ) ≤ D(C) ≤ D(T ) ·maxe(fe) + 2maxe(D(Ce)). (7)

The first inequality is trivial. The second one follows from the fact that a diametral path P in C starts
in a piece, ends in a piece, and in between it passes by adjacent vertices v1, . . . , vk of T such that for
1 ≤ i < k, vi and vi+1 are connected in T by an edge e and P travels in the piece Ce to reach vi+1

from vi (since P is geodesic, its length in Ce is bounded by the distance from vi to vi+1, which is clearly
bounded by fe).

Theorem 3.8 Let 0 < a < b. The diameter of a random 3-connected map with n edges with weight x at
the vertices is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε), uniformly over x ∈ [a, b].

Proof: Let us give the sketch of proof when x = 1. The upper bound again follows from D(T ) ≤
D(C) and the fact [1] that the probability of having a 3-connected core of size bn/3c is polynomially
small whereas the probability that D(C) > n1/4+ε is exponentially small. For the lower bound we
look at the second inequality in (7). Similarly as in the proof of Theorem 3.5 one can prove (using
Lemma 2.1) that P (fe ≥ k) ≤ exp(−ck) for some c > 0, so maxe(fe) ≤ nε a.a.s. with exponential
rate. Moreover, similarly as in Lemma 3.6, one can show that the probability of the event E := {|T | =
bn/3c, max(|Ce|) ≤ n3/4} is Θ(n−2/3). Since the fe are small and D(C) ≥ n1/4−ε a.a.s. with
exponential rate, Equation (7) easily implies that, conditioned to have E , D(T ) ≥ n1/4−ε a.a.s. with
exponential rate. The same arguments hold in the weighted case. 2

4 Planar graphs
4.1 3-connected planar graphs
For the moment we need 3-connected graphs labelled at the edges (this is enough to avoid symmetries).
The number of edges is now m, and n is reserved for the number of vertices. By Whitney’s theorem 3-
connected graphs have a unique embedding on the sphere (up to reflexion). Hence from the last theorem
on 3-connected maps we obtain directly the following:
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Theorem 4.1 Let 0 < a < b. The diameter of a random 3-connected planar graph with m edges with
weight x at the vertices is, a.a.s. with exponential rate, in the interval (m1/4−ε,m1/4+ε), uniformly over
x ∈ [a, b].

4.2 Networks
Before handling 2-connected planar graphs we treat the closely related family of (planar) networks. A
network is a connected simple planar graph with two marked vertices called the poles, such that adding
an edge between the poles, called the root-edge, makes the graph 2-connected. At first it is convenient to
consider the networks as labelled at the edges.

Theorem 4.2 Let 0 < a < b. The diameter of a random network with m edges with weight x at the
vertices is, a.a.s. with exponential rate, in the interval (m1/4−ε,m1/4+ε), uniformly over x ∈ [a, b].

Proof: We provide only a sketch of proof in the case x = 1, and will provide a more detailed proof for
the transition from 2-connected to connected planar graphs, which uses similar arguments but allows for
a simpler presentation. The arguments are the following. First there is a classical decomposition of a
network N into (edge-rooted) 3-connected planar components that are assembled together using series-
parallel operations. Each 3-connected component is uniformly distributed when conditioned on a fixed
number of edges. Using the bound (2) (see Lemma 4.5 later) one shows that there is a 3-connected
component T of size k ≥ n1−ε a.a.s. with exponential rate. This provides the lower bound since D(T ) ≤
D(N) and since D(T ) ≥ k1/4−ε a.a.s. with exponential rate.

For the upper bound one considers first the tree τ whose nodes are the 3-connected components (there
are also nodes for the series and the parallel compositions), and shows using Lemma 2.1 (and using the
fact that the composition scheme from 3-connected planar graphs to networks is critical) that the diameter
of τ is at most nε a.a.s. with exponential rate. Then one has to show that two vertices (actually it is more
convenient to work with edges) on a same component H of τ are at distance at most n1/4+ε a.a.s. with
exponential rate. Say that H is 3-connected (the case of a series or parallel composition node of τ is
of smaller contribution to the diameter). One knows from Tutte’s monograph [19] that the edges of N
(including the additional root-edge) can be partitioned into networks Ne attached by their poles at each
edge e ∈ H . Call de the geodesic distance in Ne between the poles (i.e., the extremities of e). Using
again Lemma 2.1, one shows that under the uniform distribution on networks with a marked 3-connected
component, the maximum of de over e ∈ H is at most nε a.a.s. with exponential rate. Moreover by
Theorem 4.1 D(H) ≤ n1/4+ε a.a.s. with exponential rate; since the de are small, this remains true even
when each edge e ∈ H has contribution de (instead of 1) to the distance between two vertices on H ,
which corresponds to the geodesic distance in N . 2

Lemma 4.3 Let 1 < a < b < 3. For Nn,m a network with n vertices and m labelled edges taken
uniformly at random, D(Nn,m) ∈ (n1/4−ε, n1/4+ε) a.a.s. with exponential rate, uniformly in m

n ∈ [a, b].

Proof: Let µ ∈ [a, b], let m ≥ 0, and define n := bµmc. For x > 0, let Xm be the number of
vertices of a random network N (x)

m with m edges and vertices weighted by x. As shown in [2] there
exists xµ > 0 such that, for x = xµ, P (Xm = n) = Θ(m−1/2), uniformly over µ ∈ [a, b]. In
addition xµ evolves continuously increasingly with µ so it maps [a, b] to a compact interval. Therefore,
Theorem 4.2 implies that D(N

(x)
m ) ∈ [m1/4−ε,m1/4+ε] a.a.s. with exponential rate uniformly over
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Fig. 1: The block-decomposition of a connected planar graph. In the associated tree (incidences between 2-connected
blocks and vertices) there is a white vertex for each block.

µ ∈ [a, b]. Since P (Xm = n) = Θ(m−1/2), uniformly over µ ∈ [a, b], we conclude that the event
D(N

(x)
m ) ∈ [m1/4−ε,m1/4+ε] knowing that Xm = n holds a.a.s. with exponential rate uniformly over

µ ∈ [a, b], which concludes the proof (note that the distribution of N (x)
m knowing that Xm = n is the

uniform distribution on networks with m edges and n vertices). 2

An important remark is that networks with n vertices and m edges can be labelled either at vertices or
at edges, and the uniform distribution in one case corresponds to the uniform distribution in the second
case. Hence the result of Lemma 4.3 holds for random networks with n vertices and m edges and labelled
at vertices.

4.3 2-connected planar graphs
It is proved in [2] that for a random network Nn with n vertices the ratio r = #edges/#vertices is
concentrated around a certain µ ≈ 2.2, implying that for δ > 0 P (r /∈ [µ − δ, µ + δ]) is exponentially
small. Hence D(Nn) ∈ (n1/4−ε, n1/4+ε) a.a.s. with exponential rate. The same holds for the diameter of
a random 2-connected planar graph Bn with n vertices (indeed 2-connected planar graphs are a subset of
networks, the ratios of the cardinalities being of order n). We obtain:

Theorem 4.4 The diameter of a random 2-connected planar graph with n vertices is, a.a.s. with expo-
nential rate, in the interval (n1/4−ε, n1/4+ε).

4.4 Connected planar graphs
We prove here from Theorem 4.4 that a random connected planar graph with n vertices has diameter in
(n1/4−ε, n1/4+ε) a.a.s. with exponential rate. We use the well known decomposition of a connected planar
graph C into 2-connected blocks such that the incidences of the blocks with the vertices form a tree, see
Figure 1. An important point is that if C is chosen uniformly at random among connected planar graphs
with n vertices, then each block B of C is uniformly distributed when conditioned to have a given size.
Formulated on pointed graphs, the block-decomposition ensures that a pointed planar graph is obtained
as follows: take a collection of 2-connected pointed planar graphs, and merge their pointed vertices into
a single vertex; then attach at each non-marked vertex v in these blocks a pointed connected planar graph
Cv . Calling C(z) (B(z)) the series counting pointed connected (2-connected, resp.) planar graphs, this
yields the equation

F (z) = z exp(B′(F (z))), where F (z) = zC ′(z). (8)
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Note that the inverse of F (z) is the function φ(u) = u exp(−g(u)), where g(u) := B′(u). Call ρ the
radius of convergence of C(z) and R the radius of convergence of B(u).

Lemma 4.5 A random connected planar graph with n vertices has a block of size at least n1−ε a.a.s.
with exponential rate.

Proof: Call bi := [ui]g(u), gk(u) :=
∑
i≤k biu

i, and call Fk(z) the series of pointed connected planar
graphs where all blocks have size at most k. Note that the probability of a random connected planar graphs
with n vertices to have all its blocks of size at most k is [zn]Fk(z)/[zn]F (z). Clearly

Fk(z) = z exp(gk(Fk(z)),

hence the inverse of Fk(z) is φk(u) := u exp(−gk(u)). Call ρk the singularity of Fk(z). Since φk(u) is
analytic everywhere, the singularity at ρk is caused by a branch point, i.e., ρk = φk(Rk), where Rk is the
unique u > 0 such that φ′k(u) = 0: φ′k(u) > 0 for 0 < u < Rk and φ′(u) < 0 for u > Rk. According
to (2), [zn]Fk(z) ≤ Fk(x)x−n for x < ρk, or equivalently, writting u = Fk(x),

[zn]Fk(z) ≤ uφk(u)−n for all u s.t. φ′k(u) > 0. (9)

Define uk := R · (1 + 1/(k log k)). Observing that (uk/R)k ∼ 1 one easily shows that gk(uk)→ g(R),
g′k(uk) → g′(R), hence φ′k(uk) → φ′(R). It is shown in [12] that a := φ′(R) is strictly positive (i.e.,
the singularity of F (z) is not due to a branch point), so for k large enough, φ′k(uk) ≥ a/2 > 0, i.e., the
bound (9) can be used, giving

[zn]Fk(z) ≤ 2φk(uk)−n for k large enough and any n ≥ 0.

Moreover

φk(uk)− ρ =
(
φk(uk)− φk(R)

)
+
(
φk(R)− φ(R)

)
∼ a · (uk −R) +O(k−3/2) ∼ a

k log k
,

where φk(R)−φ(R) = O(k−3/2) is due to bi = Θ(R−ii−5/2) which is shown in [12] (so g(R)−gk(R) =
O(k−3/2)). Hence for k large enough and any n ≥ 0:

[zn]Fk(z) ≤ 2
(
ρ+

a

2k log k

)−n
.

Hence, for k = n1−ε, [zn]Fk(z) = Θ(ρ−n exp(−nε/2)). Finally, according to [12], [zn]F (z) =
Θ(ρ−nn−5/2), so [zn]Fk(z)/[zn]F (z) = O(exp(−nε/3)). 2

Lemma 4.5 directly implies that a random connected planar graph with n vertices has diameter at least
n1/4−ε. Indeed it has a block of size k ≥ n1−ε a.a.s. with exponential rate and since the block is uniformly
distributed in size k, it has diameter at least k1/4−ε a.a.s. with exponential rate.

Let us now prove the upper bound, which relies on the following lemma:

Lemma 4.6 The block-decomposition tree τ of a random connected planar graph with n vertices has
diameter at most nε a.a.s. with exponential rate.
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Proof: Define a bi-pointed graph as a graph with two marked vertices (a primary and a secondary) that
are distinct and unlabelled (and do not contribute to the size). The series counting bi-pointed connected
(2-connected, resp.) planar graphs is z 7→ C ′′(z) (w 7→ B′′(w), resp.). Deriving (8) w.r.t. z one obtains:

z2C ′′(z) =
w2B′′(w)

1− wB′′(w)
, where w = zC ′(z).

This equation has an easy combinatorial interpretation: there is a chain of (bi-pointed) blocks to go from
the first pointed to the second pointed vertex, and at each vertex of the chain of blocks one might attach
a pointed connected planar graph. Call C ′′(z, u) the bivariate refinement of C ′′(z) where u marks the
number χ of blocks in the chain of blocks. Then

z2C ′′(z, u) =
uw2B′′(w)

1− uwB′′(w)
, where w = zC ′(z).

It is shown in [12] that w = R when z = ρ and that C ′′(ρ) is finite. Hence B′′(R) has to be strictly
smaller than 1, which also implies that C ′′(ρ, u) remains finite for u slightly larger than 1. Hence, by
Lemma 2.1, P (χ ≥ k) ≤ exp(−ck) for some c > 0, hence χ ≤ nε a.a.s. with exponential rate. Since a
connected planar graph C with n vertices has n(n− 1)/2 pairs of distinct vertices, max(χ) over all pairs
of distinct vertices of C is also smaller than nε a.a.s. with exponential rate. This concludes the proof,
since one easily shows that max(χ) is equal to one plus the diameter of τ . 2

Lemma 4.6 easily implies that the diameter of a random connected planar graph C with n vertices is
at most n1/4+ε a.a.s. with exponential rate. Indeed, calling τ the block-decomposition tree of C and
Bi the blocks of C, one has D(C) ≤ D(τ) · maxiD(Bi). Lemma 4.6 ensures that D(τ) ≤ nε a.a.s.
with exponential rate. Moreover Theorem 4.4 easily implies that a random 2-connected planar graph
of size k ≤ n has diameter at most n1/4+ε a.a.s. with exponential rate, whatever k ≤ n is (proof by
splitting in two cases: k ≤ n1/4 and n1/4 ≤ k ≤ n). Hence, since each of the blocks has size at
most n, maxiD(Bi) ≤ n1/4+ε a.a.s. with exponential rate. Therefore we have completed the proof of
Theorem 1.1.

To show Theorem 1.2, one needs to extend the statements of Theorem 4.4 and Lemmas 4.5, 4.6 to the
case of a random graph of size n with weight y > 0 on each edge. Then, one uses the fact (proved in [12])
that for each µ ∈ (1, 3) there exists y > 0 such that a random planar graph with n edges and weight y on
edges has probability Θ(n−1/2) to have bµnc edges.

We conclude with a remark on so-called “subcritical” graph families, these are the families where the
system

y = z exp(B′(y)) =: F (z, y) (10)

to specify pointed connected from pointed 2-connected graphs in the family is admissible, i.e., F (z, y) is
analytic at (ρ, τ) where ρ is the radius of convergence of y = y(z) and τ = y(ρ).

Define the block-distance of a vertex v in a vertex-pointed connected graphG as the minimal number of
blocks one can use to travel from the pointed vertex to v; and define the block-height ofG as the maximum
of the block-distance over all vertices of G. Now observe that the block-height plays the same role in the
system (10) as the usual height of a tree in Equation (3). Hence by Lemma 3.2 (or a weighted version of
it), the block-height h of a random pointed connected graph G with n vertices from a subcritical family
is in [n1/2−ε, n1/2+ε] a.a.s. with exponential rate. Clearly D(G) ≥ h− 1 since the distance between two
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vertices is at least the block-distance minus 1. HenceD(G) ≥ n1/2−ε a.a.s. with exponential rate. For the
upper bound, note that D(G) ≤ h ·maxi(|Bi|)], where the Bi’s are the blocks of G. Using Lemma 2.1
and subcriticallity one easily shows that maxi(|Bi|) ≤ nε a.a.s. with exponential rate. This implies that
D(G) ≤ n1/2+ε a.a.s. with exponential rate.
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