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Given a simple directed graph D = (V,A), let the size of the largest induced directed acyclic graph (dag) be denoted
by mas(D). Let D ∈ D(n, p) be a random instance, obtained by choosing each of the

(
n
2

)
possible undirected

edges independently with probability 2p and then orienting each chosen edge independently in one of two possible
directions with probabibility 1/2. We obtain improved bounds on the range of concentration, upper and lower bounds
of mas(D). Our main result is that

mas(D) ≥
⌊
2 logq np−X

⌋
where q = (1 − p)−1, X = W if p ≥ n−1/3+ε (ε > 0 is any constant), X = W/(ln q) if p ≥ n−1/2(lnn)2,
and W is a suitably large constant. where we have an O(ln lnnp/ ln q) term instead of W . This improves the
previously known lower bound with an O(ln lnnp/ ln q) term instead of W . We also obtain a slight improvement
on the upper bound, using an upper bound on the number of acyclic orientations of an undirected graph. We also
analyze a polynomial-time heuristic to find a large induced dag and show that it produces a solution whose size is at
least logq np+ Θ(

√
logq np).
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1 Introduction
By a simple directed graph, we mean a directed graph having no 2-cycles. Throughout the paper, we
assume, w.l.o.g., that V = {1, 2, . . . , n}. Given a directed graph D = (V,A), we want to find the
maximum size (i.e. number of vertices) of an induced dag in D, denoted by mas(D). We study this
parameter both theoretically and algorithmically for random digraphs. We obtain improved lower and
upper bounds on mas(D) and the results are described in Sections 2 and 3. Some algorithmic aspects are
studied in Section 4.

We study the following model of a simple random digraph introduced in [16]. In what follows, p ≤ 0.5
is a real number. Throughout the paper, we use q to denote (1− p)−1 and w to denote np.
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Model D(n, p) : Let the vertex set be V = {1, 2, ..., n}. Choose each undirected edge joining distinct
elements of V independently with probability 2p. For each chosen {u, v}, independently orient it in one
of the two directions {u→ v, v → u} in D with equal probability = 1/2. The resulting directed graph is
an orientation of a simple graph, i.e., there are no 2-cycles.

Throughout this paper, we observe the following convention: for a sequence of events {E = En}
defined over {D ∈ D(n, p)‖p = p(n)}∞n=0, “E holds with high probability” or “asymptotically almost
surely E holds” both mean that Pr[En]→ 1 as n→∞.

The theoretical aspects of this problem were studied initially by Subramanian [16] and later Spencer
and Subramanian [15] obtained the following result:

Theorem 1.1 [15] Let D ∈ D(n, p) and w = np. There is a sufficiently large constant C such that : If p
satisfies w ≥ C, then a.a.s,

mas(D) ∈
[(

2

ln q

)
(lnw − ln lnw −O(1)),

(
2

ln q

)
(lnw + 3e)

]
where q = (1− p)−1.

Thus, mas(D) is concentrated in an integer band of width O
(

ln lnw
ln q

)
. For p ≤ n−0.5, this width can

become quite large, for example, for p = D/n, it is Θ(n). We initially establish an “essentially”
√
n

width for all ranges of p by using a version (see [1]) of Azuma’s Inequality.

Theorem 1.2 Let D ∈ D(n, p), 0 < p ≤ 1/2. Then, for any ω = ω(n) such that ω → ∞ as n → ∞,
with high probability,

|mas(D)− E[mas(D)]| ≤ ω
√
n

Theorem 1.2 provides a sharper concentration than 1.1 when p = o(n−1/2 ln lnn). For larger values
of p, however, Theorem 1.1 provides a better concentration gap. For such values of p, we improve this
further by obtaining the following lower bound on mas(D).

Theorem 1.3 Let D ∈ D(n, p). There is a large positive constant W such that : If n−1/2(lnn)2 ≤ p ≤
1/2, then almost surely,

mas(D) ≥
(

1

ln q

)
(2 lnnp−W )

Thus the width of concentration is reduced to O(1/ ln q), which is O(1/p). The concentration gap of
Theorem 1.1 is therefore improved for all ranges of p except for the small range cn−1/2 ln lnn ≤ p ≤
c′n−1/2(lnn)2 (c, c′ are constants).
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The gap between 2 logq np and the lower bound in Theorem 1.3 is O(1/ ln q) = O(p−1), which can
become large when p is small. This gap can be reduced to an absolute constant when p is slightly larger:

Theorem 1.4 There exists a large positive constant W such that for every small constant ε > 0, the
following is true : Given D ∈ D(n, p), if p is such that n−1/3+ε ≤ p ≤ 1/2, then a.a.s

mas(D) ≥ 2 lnnp

ln q
−W

The proofs of Theorems 1.2, 1.3 and 1.4 are presented in Section 2. The proof of Theorem 1.2 uses a
martingale-based inequality, whereas those of Theorems 1.3 and 1.4 are based on the Second Moment
Method.

In Section 3, using upper bounds on the number of acyclic orientations of an undirected graph, we
obtain the following slight improvement (not asymptotic) on the upper bound of Theorem 1.1.

Theorem 1.5 Let D ∈ D(n, p). If p satisfies n−1/2+ε ≤ p ≤ 0.5 where ε > 0 is any constant, then a.a.s

mas(D) ≤
⌈

2

ln q
(lnnp+ ln(7e)

⌉
+ 1

This method also indicates why we are unlikely to get any asymptotic improvement in the upper bound,
at least using the first moment method. Alongwith the argument used in the previous upper bound, it
indicates the possibility of a new proof to concentrate the number of acyclic orientations of a random
graph Gn,p, denoted by ao(G).

1.1 The algorithmic aspects
By MAS(D, k), we denote the following computational problem : Given a simple directed graph D =
(V,A) and k, determine if mas(D) ≥ k. A related problem is the Feedback Vertex Set FV S(D, k) prob-
lem, in which a set of k vertices have to be removed to make the remaining (di)graph acyclic. MAS(D, k)
is the complement of the FVS(D, k) (fvs) problem, since on removing a feedback vertex set, the remaining
vertices induce an acyclic subgraph in D. Both the fvs and mas problems come up in various applications
in computer science, such as in proving partial correctness of programs [4], in deadlock recovery in op-
erating systems [12], and in VLSI design [14]. They have been widely studied (see [3], [11] for a survey
of related problems). Solving MAS(D, k) for arbitrary digraphs would allow us to solve both of these
problems.

However, MAS(D, k) is known to be NP-complete [5]. In fact, even the approximation version is
known to be hard [8] when the input is an arbitrary digraph: for some ε > 0, a polynomial-time approxi-
mation algorithm with an approximation ratio of O(nε) is not possible unless P = NP .

If we focus on random digraphs drawn from D(n, p), it was shown in [16] that a greedily built solution
is of size at least ε(logq np) (for p = Ω(n−1)), for every fixed ε < 1. It was also predicted in [16] that
ε can be made to approach 1 asymptotically. In Section 4, we improve this algorithmic result further by
studying a heuristic which combines greedy and brute-force approaches as follows. We first apply the
greedy heuristic to get a partial solution whose size is nearly logq np − c

√
logq np for some arbitrary

constant c. Then, in the subgraph induced by those vertices each of which can be safely added to the
partial solution, we find an optimal solution by brute-force and combine it with the partial solution. In
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Section 4, it is shown that (for every fixed p) this modified approach produces a solution whose size is
at least logq np + c

√
logq np. This results in an additive improvement of Θ(

√
logq np) over the simple

greedy approach. The improvement is mainly due to the fact we stop using the greedy heuristic at a point
where it is possible to apply brute-force efficiently. This approach is similar to (and was motivated by)
the “expose-and-merge” approach used in [7] for finding large independent sets in G(n, 1/2).

2 Improved lower bounds for mas(D(n, p))

First, we prove Theorem 1.2. We use the following theorem on the concentration of functions satisfying
Lipschitz condition.

Theorem 2.1 Let f(D) be any real-valued function defined over all directed graphs on V = [n] satisfying
|f(D) − f(D′)| ≤ 1 whenever D and D′ differ only on the edges incident at a single vertex. Then, for
D ∈ D(n, p), and any t > 0,

Pr[|f(D)− E[f(D)]| ≥ t] ≤ 2e−t
2/2n

Proof: : The proof arguments are based on constructing a vertex-exposure martingale and applying
Azuma’s inequality to it. They are essentially the same as those employed in [13] and also follows as
a consequence of Theorem 7.4.2 of [1]. 2

Lemma 2.2 For any two digraphs D, D′ which differ only in edges incident at a single vertex,

|mas(D)−mas(D′)| ≤ 1

Proof: : Let v be the vertex at whose incident edges D and D′ differ. Remove the vertex v from D
and D′. The resulting digraphs are now identical, and so mas(D\v) = mas(D′\v). Now, restoring the
vertex v to D and D′ can only retain or increase the size of the optimal DAGs in D and D′. So either both
mas(D) and mas(D′) remain the same or both rise by 1, or only one of them rises. In all cases, we have
|mas(D)−mas(D′)| ≤ 1. 2

Proof: (of Theorem 1.2): The proof follows from Theorem 2.1 and Lemma 2.2. Let Y = mas(D)
be the random variable denoting the size of the largest induced acyclic subgraph. Then, Y satisfies the
requirements of Theorem 2.1 and hence applying Theorem 2.1, we have

Pr[|Y − E[Y ]| ≥ t] ≤ 2e−t
2/2n. (1)

Taking t = ω
√
n, where ω is any asymptotically increasing function of n, the result follows. 2

Proofs of new lower bounds : We now present the proofs of Theorems 1.3 and 1.4. Before that, we
introduce some facts, notations and definitions: (F1) For p, 0 ≤ p ≤ 0.5, it is easy to verify that p ≤ ln q
and ln q ≤ (1.5)p. (N1) We use the standard notation (n)b to denote the expression n(n−1) . . . (n−b+1)
defined for all positive integers n and b. (D1) Given a directed graph D = (V,E), a topological ordering
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of a set A ⊆ V is a permutation σ : [|A|] → A such that every arc in D[A] is of the form σ(i) → σ(j),
where i < j. (D2) A pair of vertices σ(i), σ(j) ∈ A is said to be consistent with the topological ordering
σ if they do not induce a backward arc in D[A], i.e. an arc of the form σ(i) → σ(j), where i > j. (D3)
Let Sn denote the set of all permutations of [n]. Given a permutation σ ∈ Sn, an inversion is defined to
an (unordered) pair of elements i, j ∈ [n], such that i < j but σ(i) > σ(j). We use the following identity
from [17].

Lemma 2.3 [17] For σ ∈ Sn, let i(σ) denote the number of inversions in σ. Then∑
σ∈Sn

qi(σ) = (1 + q)(1 + q + q2)...(1 + q + q2 + ...+ qn−1)

Proofs (of Theorems 1.3 and 1.4) The proofs of both theorems are essentially the same and we give a
common proof highlighting at appropriate places where they differ. Given D ∈ D(n, p), consider the
random variable

Y = Y (b) = |{(A, σ) : A ⊆ V, |A| = b, σ is a permutation of A}|.

Let Ti = (Ai, σi), Ai ⊆ V, |Ai| = b be the i-th ordered b-set. Define an indicator random variable Yi
which is set to 1 if σi is a topological ordering for D[Ai], and zero otherwise. Then,

Y = Y (b) =

(n)b∑
i=1

Yi ; Also, for each i, E[Yi] = Pr[Yi = 1] = (1− p)(
b
2).

Hence, by linearity of expectation, E[Y ] =
∑(n)b
i=1 E[Yi] = (n)b(1− p)(

b
2). Define

b∗ =

⌊
2 lnnp

ln q
−X

⌋
=

2 lnnp

ln q
−X − δ

where (i) X = W if p ≥ n−1/3+ε and X = W/(ln q) if p ≥ n−1/2(lnn)2 and (ii) δ, 0 ≤ δ < 1, is
defined to be the fractional part of the expression 2 logq np − X . We first prove the first moment at b∗

goes to infinity as n→∞.

Lemma 2.4 At b = b∗, E[Y ]→∞ as n→∞.

Proof : The proof is by substituting the value of b∗ in E[Y (b∗)]:

E[Y ] = (n)b(1− p)(
b
2) ≥ (n− b)b(1− p)(

b
2) = nb(1− b/n)b(1− p)(

b
2)

But for p ≥ n−1/2(lnn)2, b/n ≤ 2(lnnp)
n(ln q) ≤

2(lnnp)
np and hence b2/n ≤ 4(lnnp)2

np2 = o(1). Hence,
b2/n→ 0 as n→∞, so that (1− b/n)b → 1 as n→∞. Hence, as n→∞,

E[Y ] ≈ nb(1− p)(
b
2) = (n(1− p)(b−1)/2)b ≥ (n(1− p)lnnp/ ln q)b = (n/np)b = p−b ≥ p− lnnp/ ln q

Since p ≥ n−1/2(lnn)2, np = ω(1), whereas ln q ≤ ln 2. Therefore, lnnp/ ln q = ω(1) and so,
E[Y ]→∞ as n→∞. 2
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Now we continue with the proof of the main theorems. It is based on the Second Moment method. By
applying Chebyshev’s Inequality to the random variable Y , we have

Pr[Y = 0] ≤ V ar(X)/E[Y ]2 = (E[Y 2]− E[Y ]2)/E[Y ]2 (2)

But Y =
∑
i Yi is the sum of indicator variables and hence by standard arguments [[1]],

V ar(Y ) =
∑
i

V ar(Yi) +
∑
i 6=j

Cov(Yi, Yj) ≤ E[Y ] +
∑
i 6=j

Cov(Yi, Yj) (3)

where the sum is over ordered pairs (i, j) andCov(Yi, Yj) = E[YiYj ]−E[Yi]E[Yj ] denotes the covariance
of the random variables Yi and Yj . Clearly, if |Ai ∩ Aj | < 2, then Yi and Yj are independent and hence
Cov(Yi, Yj) = 0. On the other hand, even if |Ai ∩ Aj | = b, Yi and Yj could still be different random
variables having non-zero covariance, since the permutations σi and σj could differ. Hence, only the pairs
(i, j) for which 2 ≤ |Ai ∩Aj | ≤ b are of interest. Now,∑

i6=j

Cov(Yi, Yj) ≤
∑
i 6=j

E[YiYj ] =
∑
i 6=j

E[Yi] · E[Yj |Yi = 1]

=
∑
i

E[Yi]
∑

j:2≤|Ai∩Aj |≤b

E[Yj |Yi = 1]

≤
∑
i

E[Yi]E[Y ].M = E[Y ]2.M (4)

where M denotes maxi
∑
j:2≤|Ai∩Aj |≤bE[Yj |Yi = 1]/E[Y ].

If it can be shown that M = o(1), this implies that V ar(Y ) ≤ E[Y ] + o
(
E[Y ]2

)
and hence that

Pr(Y = 0) ≤ (E[Y ])
−1

+ o(1) = o(1) since E[Y ] → ∞. This establishes that with high probability,
Y = Y (b∗) > 0 and hence mas(D) ≥ b∗. Hence, it suffices to only show that M = o(1).

For Ti, Tj , 1 ≤ i, j ≤ (n)b, define Ai,j := Ai ∩ Aj , and let |Ai,j | = l, 2 ≤ l ≤ b. Without loss of
generality, assume that Aj = {1, 2, . . . b}, Ai,j = {1, 2, . . . l}. We shall be concerned with the ordering
of the vertices in the sets Ai and Aj restricted to Ai,j , so let the permutation σi restricted to Ai,j be the
identity, and the σj be σ (actually σj relative to σi, that is σ = σjσ

−1
i ).

E[Yj |Yi = 1] = Pr[Yj = 1|Yi = 1]

=
∏

1≤r<s≤b

Pr[ (σ(s), σ(r)) 6∈ D[Aj ] | Yi = 1 ]

=

 ∏
1≤r<s≤b;s>l

(1− p)

 ·
 ∏

1≤r<s≤l

Pr[ (σ(s), σ(r)) 6∈ D[Aj ] | Yi = 1 ]

 (5)

Clearly,
∏
s>l(1 − p) = (1 − p)(

b
2)−(l

2). To get an expression for the second product in the previous
equation, fix a pair 1 ≤ r < s ≤ l and let pr,s denote the expression Pr[ (σ(s), σ(r)) 6∈ D[Aj ] | Yi = 1 ].
Since σi|Ai,j

is the identity permutation over Ai,j and since Yi = 1, it follows that (s, r) 6∈ D[Ai,j ]. This
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means that if σ(r) > σ(s), then σ(r), σ(s) form an inversion in σ and we want (r, s) 6∈ D[Ai,j ]. Hence,
pr,s = Pr[(σ(r), σ(s)) 6∈ D[Ai,j ]|(r, s) 6∈ D[Ai,j ]] = (1 − 2p)/(1 − p). Otherwise, (r, s) do not form

an inversion pair and pr,s = 1. Hence the second product evaluates to exactly
(

1−2p
1−p

)i(σ)
.

As a result, we have

E[Yj |Yi = 1] = Pr[Yj = 1|Yi = 1] = (1− p)(
b
2)−(l

2)
(

1− 2p

1− p

)i(σ)
(6)

M is therefore:

M = maxi
∑

2≤l≤b

∑
j:|Ai∩Aj |=l

Pr[Yj = 1|Yi = 1]/E[Y ]

= maxi

 ∑
2≤l≤b

∑
j:|Ai∩Aj |=l

(1− p)−(l
2)

∑
π∈Sb/Sl

∑
σ∈Sl

(
1− 2p

1− p

)i(σ) · (n)−1b (7)

where Sk is the group of all permutations of a k-element set. OnceAi is fixed,Aj such that |Ai∩Aj | =
l, can be chosen in

(
n−b
b−l
)(
b
l

)
ways. Given Ai, Aj and a permutation σ over Ai,j , a permutation π over Aj

(whose restriction to Ai ∩Aj is σ) can be chosen in b!/l! ways. Thus,

M =

b∑
l=2

(n)−1b

(
b

l

)(
n− b
b− l

)
(b!/l!)

∑
σ∈Sl

(
1− 2p

1− p

)i(σ)
(1− p)−(l

2)

=

b∑
l=2

(
n

b

)−1(
b

l

)(
n− b
b− l

)
((1− p)−(l

2)/l!)
∑
σ∈Sl

(
1− 2p

1− p

)i(σ)

=

b∑
l=2

(
b

l

)2
(n− b)b−l

(n)b
(1− p)−(l

2)
∑
σ∈Sl

(
1− 2p

1− p

)i(σ)

≤
b∑
l=2

(
b

l

)2
(1− l/n)−l

nl
(1− p)−(l

2)
∑
σ∈Sl

(
1− 2p

1− p

)i(σ)
Since l ≤ b, we have (1− l/n)−l ≤ (1− b/n)−b → 1 as n→∞. Again, with r = (1− 2p)/(1− p) =
1− p/(1− p) < 1 and applying Lemma 2.3,

M ≤
b∑
l=2

(
b

l

)2

n−l(1− p)−(l
2)

l∏
i=1

(
1− ri

1− r

)

=

b∑
l=2

(1− r)−l
(
b

l

)2

n−l(1− p)−(l
2)

l∏
i=1

(1− ri) =

b∑
l=2

All

We bound the value of All in the following two ways:

All ≤ p2
(
b

l

)2(
1

np(1− p)l/2

)l
,
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by substituting the value of r in terms of p and simplifying, and,

All ≤
(
b

l

)2

l!

(
1

n(1− p)l/2

)l
, since r < 1.

Case I : 2 ≤ l ≤ t, where t = 2/ ln q:

All ≤
(
b

l

)2

l!

(
1

n(1− p)l/2

)l
≤
(

b2

n(1− p)l/2

)l
≤
(

b2

n(1− p)t/2

)l
≤
(
b2e

n

)l
= o(1)

since b2e/n ≤ 1/(log n)2 = o(1).

Therefore,
∑t
l=2A

l
l ≤

∑∞
l=2(b2e/n)l = s2/(1− s) ≤ s2(1 + 2s) = o(1) where s = b2e/n = o(1).

Case II: t < l ≤ b/2:

All ≤
(
b

l

)2

l!

(
1

n(1− p)l/2

)l
≤
(

eb2

nl(1− p)l/2

)l
≤
(

eb2

nt(1− p)l/2

)l
≤

(
eb(lnnp)

n(1− p)b/4

)l
≤
(
eb(lnnp)

√
np

n

)l
≤
(
eb
√
p(lnnp)
√
n

)l
.

Now b
√
p(lnnp) = O(p−1/2(lnn)2) = O

(
n1/4(lnn)

)
because of our assumption about p. Hence,

the summation can be upper-bounded by (b/2)
(
eb
√
p(lnnp)√
n

)t
, which is less than (b/2)(n−1/8)t, and is

clearly o(1).

Until now the proof arguments for both Theorem 1.3 and 1.4 are the same. The proofs vary for the
remaining cases. First, we complete the

Proof of Theorem 1.3 : Our assumption is p ≥ n−1/2(lnn)2.
Case III : b/2 < l ≤ b :

All/p
2 ≤

(
b

l

)2(
1

np(1− p)l/2

)l
≤
(

e2b2

npl2(1− p)l/2

)l
≤
(

4e2

np(1− p)b/2

)l
≤

(
4e2(1− p)δ/2

np(1/np)(1− p)−X/2)

)l
≤
(

4e2

eW/2

)l
for W ≥ 8. The summation can therefore be upper-bounded by (b/2)

(
4/e2

)−b/2
, which is again o(1),

as limn→∞ b =∞. This establishes that M = o(1). So, we conclude that the probability that there is no
topologically ordered set of size b =

⌊
2 logq np−W/(ln q)

⌋
, goes to zero for a suitably chosen constant

W (in fact W = 8 suffices). This proves the lower bound and hence completes the proof of Theorem 1.3.
2

Proof of Theorem 1.4 : The proof is along the same lines and the only difference occurs when l > b/2.
Case III (in the previous proof) gets split into two subcases :
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Case IIIa : b/2 < l ≤ b− c′, where c′ = 8/ ln q:

All/p
2 ≤

(
b

l

)2(
1

np(1− p)l/2

)l
≤
(

e2b2

npl2(1− p)l/2

)l
≤
(

4e2

np(1− p)(b−c′)/2

)l
≤

(
4e2(1− p)(X+δ)/2

np(1/np)(1− p)−c′/2

)l
≤
(

4e2

e4

)l
Again the summation is upper bounded by (b/2)

(
4/e2

)−b/2
, which is o(1).

Case IIIb: b− c′ < l ≤ b: Here we look at the ratio of successive terms:

Al+1
l+1/A

l
l =

(
b− l
l + 1

)2(
1

n(1− p)l

)(
1− rl+1

1− r

)
≥ 1

2b2

(
(1− p)1+X+δ

np(1/np)2(1− p)−c′
)
≥

(
np(1− p)c′+1+X+δ

2b2

)
= Ω

(
np3(lnnp)−2

)
For p ≥ n−1/3+ε, np3(lnnp)−2 = ω(1). Hence, the ratio Al+1

l+1/A
l
l ≥ 1 in the stated range of l. So the

function All is increasing in the range b − c′ ≤ l ≤ b, and the maximum value is therefore attained at
l = b. For this value of l (using the assumption that W is a constant) :

Abb ≤
(
b

b

)2(
1

np(1− p)b/2

)b
=
(

(1− p)(W+δ)/2
)b

= O
(

(1− p)W (lnnp)/(ln q)
)

= O
(
e−W (lnnp)

)
= O

(
(np)−W

)
= o(n−2)

Therefore, the summation is upper-bounded as follows:

b∑
b−c′

All ≤ c′Abb = o
(
p−1n−2

)
= o(1).

This establishes that M = o(1) and we conclude that the probability that there is no topologically ordered
set of size b =

⌊
2 logq np−W

⌋
, goes to zero for a suitably chosen constant W . This proves the lower

bound and hence completes the proof of Theorem 1.4. 2

3 Upper Bound

In this section, we prove Theorem 1.5. Throughout this section, we define b to be b =
⌈
2(lnw+ln(7e))

(ln q)+1

⌉
.

Consider an undirected graphG = (V,E). Let ao(G) denote the number of acyclic orientations ofG. An
orientation O of G is obtained by directing each edge {i, j} ∈ E(G) from i to j (indicated by (i, j)) or
vice-versa to get the digraph D = (V,A), A = O(G). An orientation O is acyclic if the resulting digraph
D has no directed cycles.
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Let a(m) be the maximum number of acyclic orientations of any simple undirected graph Y , where Y
has b vertices and m edges. Then the probability that the induced digraph on a fixed b-set Y of V [D],
D ∈ D(n, p) is a dag is upper-bounded by:

Pr[D[Y ] is acyclic] = EX∈G(b,2p)
ao(X)

2|E(X)|

≤
(b
2)∑

m=0

a(m)

2m

((b
2

)
m

)
(2p)m(1− 2p)(

b
2)−m (8)

We use the simple upper bound a(m) ≤ (d+1)b, where d = 2m/b is the average degree of any such graph
Y , obtained in [9]. Let Z denote the number of edges in the random subgraph of G(n, 2p) induced by Y .
Since G[Y ] is drawn according to the distribution G(b, 2p), Z has expectation given by E[Z] =

(
b
2

)
2p.

The variable Z is in fact binomial and using Chernoff-Hoeffding large-deviation bounds [[10], [1]], the
probability of its being much larger than the expected value can be tightly bounded:

Pr[Z > 3E[Z]] ≤ (e23−3)E[Z] < e−2b(p/ ln q) lnnp < (np)−2(p/ ln q)b

≤ n−2b(p/ ln q)(1/2+ε) = n−b(p/ ln q)(1+2ε)

For 0 ≤ p ≤ 1/2, 0.7 ≤ p/ ln q ≤ 1 [[16]]. Now, the sum in (8) can be broken into two parts, as
m ≤ 3E[Z] and m > 3E[Z]:

Pr[D[Y ] is acyclic ] ≤
∑

m≤b3E[Z]c

a(m)

((b
2

)
m

)
(p)m(1− 2p)(

b
2)−m

+
∑

m>b3E[Z]c+1

a(m)

2m

((b
2

)
m

)
(2p)m(1− 2p)(

b
2)−m

≤ a(b3E[Z]c)(1− p)(
b
2) +

(
b!

23E[Z]

)
Pr[Z > 3E[Z]]

≤ (6bp+ 1)b(1− p)(
b
2) +

b!

23E[Z]
n−b(0.7)(1+2ε)

≤ (6bp+ 1)b(1− p)(
b
2) + (b!)n−b[(0.7)(1+2ε)+(6 ln 2)(lnnp/ lnn)(p/ ln q)]

Since (lnnp/ lnn) ≥ (1/2 + ε) and (p/ ln q) ≥ 0.7, on applying the union bound over all b-sized
subsets of V , we see that the probability that there exists an acyclic b-set A ⊂ V is at most

(
n
b

)
[(6bp +

1)b(1− p)(
b
2) + (b!)n−b((0.7)(1+2ε)+0.7], Let Pb denote Pr[∃Y, |Y | = b, D[Y ] is acyclic].

Pb ≤
(
n

b

)
[(6bp+ 1)b(1− p)(

b
2) + (b!)n−b(1+2ε)] ≤

(
n

b

)
(6bp+ 1)b(1− p)(

b
2) + n−2bε

=

(
n

b

)
(6bp+ 1)b(1− p)(

b
2) + o(1) ≤

(
(6enp+ en/b)(1− p)(b−1)/2

)b
+ o(1)
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≤
(

(6enp+ en(ln q)/(2 lnw))(1− p)(b−1)/2
)b

+ o(1)

≤
(

((6 + o(1))enp)(1− p)(b−1)/2
)b

+ o(1)

The last expression in the previous inequality goes to zero since the base (which is raised to its b-th
power) is less than 1 for our definition of b. As a result, we get that mas(D) ≤ 2dlogq w+ logq(7e)e+ 1.
We observe that this expression is marginally better than the expression obtained in [15], although the
asymptotics are the same, i.e. mas(D) = O(p−1 lnnp+ p−1).

4 An efficient heuristic with improved guarantee
It was shown in [16] that, for every fixed ε < 1, with probability 1−o(1), every maximal induced dag is of
size is at least ε(logq np). A maximal solution can be obtained in polynomial time. It was also mentioned
in [16] that one can possibly set ε = 1. We further refine this analysis and show that the above statement
holds for some ε = ε(n)→ 1. Precisely, we have the following strengthening of Theorem 3.1 of [16].

Theorem 4.1 Let p = p(n) ≤ 0.5 be such that w = np ≥ X for some sufficiently large constant X > 0.
Then, for D ∈ D(n, p), with probability 1− o(1), every maximal induced dag is of size at least δ(logq w)

where δ = 1− 2(ln lnw)+10
lnw .

The proof of this theorem is skipped in this abstract and follows by refining the analysis given in [16].

We present below another efficient heuristic which will be analyzed and shown to have an additive
improvement (for every fixed p ≤ 0.5) of Θ

(√
logq w

)
over the guarantee given in [16] and in Theorem

4.1. It is similar to a heuristic presented in [7] for finding large independent sets in G ∈ G(n, 1/2).
We show that, for every fixed c > 0, one can find in polynomial time an induced DAG of size at least
blogq w + c

√
logq wc.

Let C be the set of those vertices which could be each individually added to the greedy solution. The
idea is to construct greedily a solution A of size g(n, p, c) = dlogq w − c

√
logq we and then add an

optimal solution (found by an exhaustive search) in the subgraph induced by vertices in C. We will
show that exhaustive search can be done in polynomial time and yields (almost surely) a solution of size
2c
√

logq w. As a result, we finally get a solution of the stated size. The algorithm is described below.

MAXDAG(D = (V,E), c)

1. Choose and fix a linear ordering σ of V .

2. c′ := 1.2c; A := ∅; B := V .

3. while B > n/2 and |A| < g(n/2, p, c′) do

4. Let u be the σ-smallest vertex in B.

5. If D[A ∪ {u}] induces an acyclic subgraph then add u to A.

6. remove u from B. endwhile

7. if |A| < g(n/2, p, c′), then Return FAIL and halt.
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8. C := {u ∈ B : (u, v) 6∈ E, ∀v ∈ A}; µ = |B|(1− p)|A|.

9. if |C| 6∈ [(0.9)µ, (1.1)µ] then Return FAIL.

10. for each X ⊂ C : |X| =
⌈
2c′
√

logq w/2 + 2 logq 0.9−W
⌉

do

11. if D[X] is acyclic then Return D[A ∪X] and halt. endfor

12. Return FAIL.

We analyze the above algorithm and obtain the following result.

Theorem 4.2 Let p = p(n) ≤ 0.5 be such that p ≥ τ for some fixed but arbitrary positive constant τ and
let D ∈ D(n, p). Then, for every constant c ≥ 1, with probability 1 − o(1), MAXDAG(D, c) will output
an induced acyclic subgraph of size at least b′ = b(1 + ε′) logq npc, where ε′ = c/

√
logq np.

Proof: : Without loss of generality, we assume that c is sufficiently large.

Correctness : First, we prove the correctness. Note that D[A] is always an induced acyclic subgraph.
Also, each u ∈ C is such that D[A ∪ {u}] is an acyclic subgraph with u as a sink vertex (having zero
out-degree). Hence, any acyclic subgraph D[X] present as a subgraph in D[C] can be safely added to A
so that D[A ∪X] also induces an acyclic subgraph of D.

Time Complexity : It is easy to see that the running time is polynomial except for the for loop of lines
10 and 11. The maximum number of iterations of the for loop is at most(

(1.1) · |B|(1− p)|A|

b2c′
√

logq w/2c

)
≤

(
(2.2) · p−1qc

′√logq w/2

b2c′
√

logq w/2c

)
≤ q2c

′2(logq w/2) · ((2.2)p−1)2c
′√logq w/2 = O

(
nO(1)

)
,

since p is a constant. Since each iteration takes polynomial time, the algorithm always finishes in polyno-
mial time.

Analysis : Consider the following events defined as

E1 : |A| < g(n/2, p, c′) ;

E2 : |C| 6∈ [(0.9)µ, (1.1)µ] ;

E3 : mas(D[C]) <
⌈
2c′
√

logq w/2 + 2 logq 0.9−W
⌉

;

If none of these events holds, then the algorithm will succeed and output a solution whose size is

|A ∪X| ≥ logq(w/2)− c′
√

logq(w/2) + 2c′
√

logq w/2 + 2 logq 0.9−W

≥ (1 + ε′)(logq w) + (c′ − c)
√

logq w/2 + 2 logq 0.9−W − logq 2

≥ (1 + ε′)(logq w) + (0.2c)
√

logq w/2 + 2 logq 0.9− (W + logq 2)

≥ (1 + ε′)(logq w)
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We have

Pr(E1 E2 E3) = Pr(E1) ·Pr(E2 | E1) ·Pr(E3 | E1 E2) ≥ 1−
∑
i≤3

Pr(Ei | ∧j<i Ej) (9)

Let V1 denote the set of first n/2 vertices of σ. Now using Theorem 4.1, the greedy algorithm run on the
first n/2 vertices yields with probability 1− o(1), an acyclic subgraph of size

δ(logq(w/2)) ≥ logq w/2−2(logq(lnw/2))−(10/ ln q) ≥ g(n/2, p, c′) = dlogq w/2−c′
√

logq w/2e,

with probability 1− o(1). Here, δ is defined in Theorem 4.1. Hence, Pr(E1) = o(1).

For any fixed vertex u ∈ B,

Pr(u ∈ C) = Pr(∀ v ∈ A, (u, v) 6∈ E) = (1− p)|A|.

Hence
µ = E[|C|] = |B| · (1− p)|A|.

Since |C| is the sum of |B| identical and independent indicator random variables, by applying Chernoff-
Hoeffding bounds (see [10, 1]), we get that

Pr (|C| 6∈ [(0.9)µ, (1.1)µ]) ≤ 2e−µ/300.

Since |A| = g(n/2, p, c′), we deduce that

µ ≈ |B| · 2qc
′√logq w/2/w,

after justifiably ignoring the effect of the ceiling function used in the definition of g(n/2, p, c′). Given that
E1 holds and also since |B| ≥ n/2, it is easy to verify that µ→∞ as n→∞. Hence Pr(E2 |E1) = o(1).

Given that neither of E1 and E2 holds, it follows that |C| ≥ (0.9)µ ≈ (0.9) · p−1 · qc
′√logq w/2.

Hence, using q ≤ 2 and applying Theorem 1.4,

mas(D[C]) ≥ b2c′
√

logq w/2c+ 2 logq 0.9−W ≥ b2c′
√

logq w/2c − 1

with probability 1 − o(1). This establishes that Pr(E3 | E1 E2) = o(1). It then follows from (9) that
MAXDAG(D, c) outputs a solution of required size with probability 1− o(1).

2

Remarks on approximating MAS(D, k) and minimum fvs
The MAXDAG(D, c) algorithm in the previous section gives an average-case approximation ratio of
2 for the MAS(D, k) problem. Since the vertices left on removing an induced acyclic subgraph form
a feedback vertex set, we notice that a concentration for the minimum feedback vertex set in random
digraphs is also obtained. This follows from Theorems 1.3. As stated in Section 1, a polynomial-time
approximation algorithm with a worst-case approximation ratio of O(nε) for some fixed ε is NP-hard.
However, it can be shown that the algorithm MAXDAG(D, c) yields on average an approximate solution
with an approximation ratio of

(
1 +O

(
lnw
w

))
.
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Conclusions
We studied the problem of determining the mas(D), the size of the largest induced acyclic subgraph
in a random directed graph D = (V,E). The range of the concentration of mas(D) is reduced from
the previously known O(p−1 ln lnnp) to O(

√
n) for all ranges of the arc probability p = p(n), using

a martingale-based approach. Using the Second Moment method, the lower bound is improved from
2

ln q (lnnp − ln lnnp − O(1)) to 2
ln q (lnnp − O(1)) for all p ≥ n−1/2(log n)2, and in particular, to

2 lnnp
ln q −O(1), for p ≥ n−1/3+ε for any constant ε. Thus, for all p, the concentration band is improved to
O(min{p−1,

√
n}).

Further, we use an upper bound on the maximum number ao(G) of acyclic orientations of an undirected
graph G = (V,E), to get an upper bound on mas(D). This bound seems to be the best possible, using
the first moment method. This is suggested by the result of Kahale and Schulman, who in [6] show that a
tight upper bound of the number of acyclic orientations is given by the determinant of the Kirchoff matrix
which is asymptotically close (in the exponent) to the simple bound used in Section 3.

Lastly, we analyse a polynomial time heuristic MAXDAG(D, c) for getting a large induced acyclic
subgraph in a random digraph, and show that for fixed values of the arc-probability p, it gives an acyclic
subgraph of size at least logq w + c

√
logq w for any constant c, which is a slight improvement over the

bound of the greedy heuristic MaximalAcyclic(D) given in [16]. In proving this, we also showed that
the MaximalAcyclic(D) algorithm itself can be shown to yield a (slightly) larger subgraph than that of
Theorem 3.1 of [16] where it was proved only to yield a subgraph of size at least ε(logq w), for fixed (but
arbitrary) ε < 1. We improved this by allowing ε→ 1 as n→∞.
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