
AofA’10 DMTCS proc. AM, 2010, 233–260

Digital Trees and Memoryless Sources:
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Digital trees, also known as “tries”, are fundamental to a number of algorithmic schemes, including radix-based
searching and sorting, lossless text compression, dynamic hashing algorithms, communication protocols of the tree or
stack type, distributed leader election, and so on. This extended abstract develops the asymptotic form of expectations
of the main parameters of interest, such as tree size and path length. The analysis is conducted under the simplest
of all probabilistic models; namely, the memoryless source, under which letters that data items are comprised of are
drawn independently from a fixed (finite) probability distribution. The precise asymptotic structure of the parameters’
expectations is shown to depend on fine singular properties in the complex plane of a ubiquitous Dirichlet series.
Consequences include the characterization of a broad range of asymptotic regimes for error terms associated with trie
parameters, as well as a classification that depends on specific arithmetic properties, especially irrationality measures,
of the sources under consideration.
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Introduction
Digital trees, also known as “tries”, serve to represent finite collections of words over some finite alpha-
bet: each subtree stemming directly from the root is associated with the subcollection of words starting
with a given letter; each subtree at level two corresponds to a given prefix of length two, and so on. Such
trees can then be used to implement dynamic dictionaries, to represent an index in a dynamic hashing
scheme, to provide a simple combinatorial description of radix-based sorting methods, and so on. As a
matter of fact, the simplicity and flexibility of digital trees is at the root of many important algorithms of
computer science [10, 18, 34, 35, 36]; see also the partial listing in our abstract.

The interest of digital tree structures entirely rests upon their average-case and probabilistic properties,
as their worst-case behaviour is unbounded. These properties depend on the probabilistic features of
the process that emits words, which is called a source: a source on the alphabet A = {a1, . . . , ar}
is completely determined by the family of probabilities {πw}, where πw is the probability that a word
begins with the finite prefix w ∈ A?. As noted early [7, 8, 18, 36], quantifying the main parameters of
the digital tree is strongly dependent upon the location of poles in the complex plane of the fundamental
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Dirichlet series associated with the source:

Λ(s) :=
∑
w∈A?

πsw. (1)

This dependency is revealed by an analysis based on either Mellin transforms or the theory of Nörlund–
Rice integrals [11, 12, 36]. The location of poles, especially those near the vertical line <(s) = 1, has
been, for instance, recognized to dictate the asymptotic form of expected size (the number of internal
nodes), expected path length, and the depth profile of the tree, as the number n of items stored in the tree
gets large.

The simplest probabilistic source is the memoryless source, where letters of words are drawn inde-
pendently according to a fixed probability distribution. The model is then determined by the basic letter
probabilities, pj := P(aj) ≡ πaj , with p1 + · · · + pr = 1. The Dirichlet series in this case admits the
simple form

Λ(s) =
1

1− λ(s)
, with λ(s) := ps1 + · · ·+ psr, (2)

which leads us to study the set of the roots of the equation λ(s) = 1. Even though the memoryless
source is the simplest of all models, the rich geometry of this set turns out to be conditioned by arithmetic
properties of the pj to be examined in Section 2.

Here is a representative sample of results relative to the expected size Sn, in the case of a memoryless
source over a binary alphabet (r = 2; p1 + p2 = 1). In the unbiased case, p1 = p2 = 1/2, Knuth
discovered in the mid 1960s that

Sn =
n

log 2
+ nP (log2 n) +O

(
n1/2

)
; (3)

see the account in [18, p. 131]. Here, P (u) is an oscillatory function of a minute amplitude, about 10−5.
The surprise here is that Sn/n does not converge to a limit as n → +∞. In fact, such periodicity
phenomena arise precisely in those cases where (log p1)/(log p2) is a rational number, a property which
seems to have been first enunciated by Fayolle et al. [8] in 1986.

By contrast, we shall see that, in most cases, there exists a real number θ, with θ > 1, which depends
on the probability vector p = (p1, . . . , pr), such that

Sn =
n

H
+O

(
n exp

(
−(log n)1/θ

))
, H := −p1 log p1 − p2 log p2. (4)

An error bound of this form is, in particular, smaller than O(n(log n)−a), but larger than any O(n1−a),
for any a > 0. The exponent θ is conditioned by diophantine approximation properties of the pj spelled
out in Section 2. For instance, in the case p1 = 1/3, p2 = 2/3, we can adopt θ = 8.25, thanks to number-
theoretic works of Rhin, Toffin, Wu, and Salikhov [30, 31, 32, 41]; in addition, a bound of the form (4)
holds for any probability vector p with rational components that satisfies the simple “aperiodicity” condi-
tion of Section 2. We shall also establish that, except for a set of memoryless sources of Lebesgue measure
0, an exponent θ > 3, which only depends on the dimension, is sufficient. In addition, for special values
of (log p1)/(log p2), known as Liouville numbers, the error bounds can come arbitrarily close to O(n).
(Preliminary results not reported here indicate that our upper bounds are essentially tight.)
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Plan of the paper. First, we recall in Section 1 a few classical facts relative to the data structures
under scrutiny and their analysis. This, via Mellin transforms, leads to the Dirichlet series Λ(s) of (2),
which is the central character of our study. We then investigate the geometry of the poles of Λ(s) in
Section 2. Our treatment here develops points left pending in [8], and is inspired by the book by Lapidus
and van Frankenhuijsen [20], dedicated to the complex dimension of fractal strings. We then develop an
abstract asymptotic discussion of Mellin transforms involving Λ(s) in Section 3 and finally reap the crop
and draw conclusions regarding trie parameters in Section 4. The present study is furthermore directly
relevant to the analysis of the Quicksort algorithm [9], equivalently, of path length in binary search trees,
under a “symbol-complexity” model, as discussed in [39], where the rôle of irrationality measures in such
contexts seems to have been first discussed.

History. The saga of the average-case analysis of digital trees starts in the mid-sixties, with works of Knuth (under
some coaching by De Bruijn), who gives an excellent account in volume 3 of his magnum opus [18], first published
in 1973: see especially the discussion of radix-exchange sort on pp. 130–134, with the “right” periodic fluctuations
in the binary unbiased case (p1 = p2 = 1/2). There is also the interesting exercise Ex. 5.2.2.53 (p. 138), whose
solution (pp. 637–638) describes the set of poles as “difficult to analyze” in general, and where a non-trivial periodic
case p1 = 2/(1 +

√
5) is explicitly given.

The problem surfaced again independently around 1980 in the performance evaluation community, when at-
tempting to determine the characteristics of communication protocols of the tree (or stack) type—the Capetanakis–
Tsybakov–Mikhailov (CTM) Protocol. See Longo’s book [21], and especially Massey’s survey [21, pp. 73–137]. The
presence of fluctuations in trie size has an impact on the variance, hence eventually on the stability properties of the
CTM Protocol. Some authors who did not notice the fluctuations, albeit tiny, were then led to wrong conclusions. The
situation was gradually corrected in the early 1980s, especially after the connection with tries and Knuthian analyses
could be established: see the special issue [25] edited by Massey and the contemporary study [8].

The paper by Fayolle et al. [8] seems to have been the first to conduct (in the binary case) a detailed discussion
of the geometry of poles and related integration contours, with the “periodicity criterion” explicitly enunciated (cf
Theorem 1). As it was recognized in subsequent years, largely by Jacquet, Louchard, and Szpankowski (see, e.g., [17,
23]), digital tree analyses can serve as the basis of a remarkably precise understanding of the Lempel and Ziv schemes
for data compression. In the way, some authors occasionally lost sight of the difficulties arising from the complicated
geometry of poles of Λ(s), so that a few relatively minor errors somehow crept into the literature; e.g., the error terms
in the aperiodic case in “Fact 1” of [22, p. 481] and Theorem 1A of [17, p. 165]. (Our own work is not exempt from
criticism: for instance, Theorem 6 of [7] tacitly requires growth assumptions on what is the equivalent of our Λ(s)
here.) These would be corrected shortly after, thanks, largely, to the rigorous and thorough discussion offered by
Schachinger, for instance, in the Appendix to his paper [33]. See also typically Lemma 8.22 in Szpankowski’s
reference text [36]. Some of these questions have been recently revisited by Mohamed and Robert [26, 27]: in their
original perspective, the periodic versus aperiodic dichotomy appears to reflect the lattice and non-lattice cases of
renewal theory.

Interestingly enough, problems of a similar nature arise in a seemingly unrelated domain, that of “fractal strings”.
In Lapidus’ terms, the general question is “Can one hear the shape of a fractal drum?”. (In more dignified words: does
the spectrum of the Laplacian associated to a region determine the shape of the boundary of that region, when this
boundary is fractal?) In the one-dimensional case, a highly informative reference is the monograph [20] by Lapidus
and van Frankenhuijsen, which did inspire several of our developments. Similar comments apply to renewal theory
and dynamical systems theory, where the periodicity–aperiodicity dichotomy (Section 2) plays a rôle: we refer to the
works of Pollicott [29, p. 143], as well as Baladi, Cesaratto, and Vallée [3, 4, 6, 38] for a dynamical discussion.

Acknowledgements. Thanks to Cecilia Holmgren for rekindling our interest in these questions and inciting us to
make explicit the bounds (4), which were needed in her analysis of the “deconstruction” of digital trees [16, p. 32].
Thanks also to Tanguy Rivoal and Nicolas Brisebarre for communicating valuable information regarding irrationality
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X :


X1 = babbc · · ·
X2 = abcba · · ·
X3 = abbca · · ·
X4 = ccbaa · · ·
X5 = cccaa · · ·

; Trie(X) =

a b c

X3 X2

X1

X4 X5

Fig. 1: A collection of five infinite words (left) over the alphabet A = {a, b, c} and the associated trie (right).

measures of logarithms and related questions. Thanks to Wojtek Szpankowski, Philippe Jacquet, and Philippe Robert
for useful comments on these questions. We are also grateful to the referees of AOFA’10 for offering many useful
comments and suggestions.

1 Digital trees, parameters, and models
What is fixed throughout is a finite alphabet A = {a1, . . . , ar} of cardinality r ≥ 2, the elements of
which are letters. We consider the basic set W := A∞ of infinite words (or “sequences”) over A. The
product set Wn then represents the collection of all n-tuples of such words.

Tries (digital trees). Given a collection X ∈ Wn of words, assumed to consist of distinct elements
of W, we can associate to it a digital tree or “trie”, denoted by Trie(X), that is defined as follows.
First, introduce the infinite perfect tree T∞ of branching degree r and consider the jth edge stemming
from a node as labelled by the letter aj ∈ A; a finite or infinite branch in T∞ is then identified by a
word, either finite or infinite. A node in the infinite perfect tree T∞ will also be referred to as a place.
An n-collection of distinct elements then becomes a collection of n infinite branches in the tree, which
themselves determine an infinite subtree of T∞, called the “pre-trie”. The digital tree, Trie(X), associated
with X ∈Wn is the minimal finite subtree of the pre-trie that separates from one another all the elements
of X . An internal node corresponds to a place, which is “occupied” by at least two elements of X; an
external node either is empty or corresponds to exactly one element of X . See Figure 1 or refer to the
classical literature [18, 24, 35] for details.

Models. Our purpose is to analyse tries when words of W are produced by certain information sources.
This amounts to endowing W with a probability distribution. A general source is completely defined by
the set of probabilities πw, for w ∈ A?, where πw is the probability that a random element of W starts
with the prefix w. The probabilities πw are called the fundamental probabilities.

This induces a product probability structure on Wn, under which all elements of a sequence X ∈Wn

are distinct with probability 1 (see [28] for measure-theoretic definitions). A parameter, such as the size of
Trie(X), then becomes a random variable, which is finite with probability 1. Note that the product space
structure signifies that the n components of a random X ∈Wn are chosen independently.

In addition to the fixed-size model just described, it is of advantage to consider the Poisson model of
parameter x, under which the number N of elements placed in the trie is itself a random variable with the
distribution P(N = n) = e−xxn/n!. If ξ is a parameter defined over each Wn, with expectation EWn [ξ],
then, its expectation under the Poisson model of parameter x is

EP(x)[ξ] = e−x
∑
n≥0

EWn [ξ]
xn

n!
. (5)
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Thus, for large real x, the Poisson expectation is a weighted average of the fixed-n expectations with a
preponderance of those cases for which x = n±O(

√
n).

Analysis. We now restrict attention to the trie-size parameter S, and consider the expectation S(x) :=
EP(x)[S]. We refer to [7, 36] for details. Briefly, the size of Trie(X) is the number of places in the tree
which are occupied by at least two different words Xj . If the prefix w identifies the place, then, under
the Poisson model, that place w is occupied by at least two words with probability 1− (1 + πw x)e−πw x,
where πw is the probability that a random element of W starts with the prefix w. Summing over all
possible places, we find that the poissonized expectation of size is a sum over the set A? of all finite
words w, of the form

S(x) =
∑
w∈A?

[
1− (1 + πwx)e−πwx

]
, (6)

This formula is our starting point. Note also that (5) implies an explicit form of Sn := EWn [S].

Asymptotics. As it is well known [11, 36], a royal road to the asymptotic analysis of S(z) as given
by (6) is the Mellin transform. In the case at hand, it is

S?(s) =

∫ ∞
0

S(x)xs−1 dt. (7)

Then the harmonic sum property of Mellin transforms [11, 13, 36] yields:

S?(s) = −(s+ 1)Γ(s)Λ(−s); Λ(s) ≡
∑
w∈A?

πsw (8)

Analogous developments yield the expectation of path length in tries [7, 24, 36], defined as the sum of
the distances of the root to all (non-empty) terminal vertices. In addition, a similar treatment is applicable
to the path length of binary search trees, and to the Quicksort algorithm, when the total cost of compar-
isons between symbols is taken into account [9, 39]: in this case, we are dealing with a cost function,
which relies on suitable characteristics of prefixes(i) and is consequently of the “trie type”.

What we have just done amounts to lifting to the level of a general source the main algebraic arguments
to be found in the classical literature [7, 9, 18, 24, 36]. These are often only developed in the case of the
simplest of all source models, the memoryless source, which assumes that letters of words are produced
independently: if pj is the probability of letter aj , the probability πw is then equal to the product of the
probabilities of symbols, which the prefixw is comprised of. Such a memoryless source is then completely
specified by the vector p = (p1, . . . , pr), with pj ∈ (0, 1) and the condition

∑
pj = 1. In this case, the

Dirichlet series Λ(s) takes the form of a “quasi-inverse”, as in (2). We state:

Proposition 1 The Mellin transforms of the Poissonized expectations of trie size (S), trie path length
(P ), and symbol-comparison cost of Quicksort (Q) are expressible in terms of the Dirichlet series Λ(s):

S?(s) = −(s+ 1) Γ(s) Λ(−s) (trie size, S);
P ?(s) = −sΓ(s) Λ(−s) (trie path length, P );

Q?(s) =
2

s(s+ 1)
Γ(s) Λ(−s) (Quicksort cost, Q).

(9)

(i) In this analysis, each infinite word is associated with a “parameter” v and the computation involves EP(x)[2/(N[u,t] + 2)],
where N[u,t] is the number of words whose parameter v belongs to the interval [u, t].
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In the case of a memoryless source with probability vector p = (p1, . . . , pr), the series Λ(s) admits the
simple form Λ(s) = 1/(1− λ(s)) with λ(s) := ps1 + · · ·+ psr.

Note: there are similar expressions for variants of tries, such as Patricia tries and digital search trees. All
involve Λ(−s) modulated by a Gamma factor and an elementary function; see, e.g., [24, 36].

It is then well known (via Mellin inversion and the Residue Theorem) that singularities of a Mellin
transform such as (9) provide, under suitable conditions, the asymptotic expansion of the original func-
tion, here, as x → ∞. In this way, all parameters listed in Proposition 1 (and many more!) can be
precisely analysed, once enough information has been gathered regarding the complex-analytic structure
of Λ(s). We are going to carry out the programme just outlined in what follows, starting with a detailed
investigation of the structure of poles of the fundamental Dirichlet series Λ(s) in the next section.

2 Geometry of the poles of Λ(s)
The purpose of this section is to gather information on the set Z of solutions to the equation

λ(s) = 1, where λ(s) = ps1 + ps2 + · · ·+ psr,

with s the unknown. The family of probabilities p = (p1, . . . , pr) will be conventionally indexed in
decreasing order, p1 ≥ · · · ≥ pr. Since Λ(s) = (1− λ(s))−1, the set Z coincides with the set of poles of
Λ(s). In addition, by conjugacy, it is sufficient to study Z+ := Z ∩ {=(z) > 0}.

Definition 1 If all the ratios (log pj)/(log pk) are rational numbers, then the family of probabilities p is
said to be periodic. If at least one such ratio is irrational, the family of probabilities is said to be aperiodic.

It is easily recognized that periodicity of p is equivalent to the existence of a positive real number a
such that each pj is of the form aej , for some ej ∈ Z>0. In that case, the entire function λ(s) admits the
complex period iτ , where τ := 2π/| log a|, so that the roots of the equation λ(s) = 1 are invariant under
the translation s 7→ s + iτ . Also, clearly, s = 1 is the only real root of the equation λ(s) = 1. This,
supplemented by the strong triangle inequality yields the following well-known statement.

Theorem 1 The following conditions are equivalent: (a) the family of probabilities p is periodic in the
sense of Definition 1; (b) the set Z ∩{<(s) = 1} contains a point s 6= 1; (c) the set Z ∩{<(s) = 1} is of
the form 1 + iτZ, for some τ > 0; (d) the function λ(s) admits the imaginary period iτ , for some τ > 0.

Thus families such as (1/2, 1/2), (1/2, 1/4, 1/4), (1/3, 1/3, 1/3), and (ϕ−1, ϕ−2), with ϕ the golden
ratio, are periodic. A periodic family being associated with an algebraic number a (since

∑
aej = 1), the

class of periodic families is denumerable, hence of measure 0: periodic families are exceptional.
The remainder of this section is devoted to the structure of the setZ in the aperiodic case. The following

notations will be employed throughout:

wi := | log pi|; αk,j :=
wj
wk
≡ log pj

log pk
; α(k) := (αk,j)j∈[1..r]. (10)

Aperiodicity in this context means that, for each k, at least one αk,j is irrational.
We first offer a brief informal discussion of what goes on. With s = σ + it, the equation λ(s) = 1

becomes
pσ+it

1 + · · ·+ pσ+it
r = 1, p1 + · · ·+ pr = 1. (11)
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For Mellin asymptotics, we are interested in those complex roots that are close to the line <(s) = 1, that
is, 1− σ is close to 0. It is then easily realized that the only way to satisfy the equation in (11) is to have
all the quantities pitj simultaneously close to 1. Accordingly, we must have, simultaneously(ii)

t ≈ 2πq1

| log p1|
, · · · , t ≈ 2πqr

| log pr|
, (12)

for some qj ∈ Z (here, A ≈ B means that A − B is close to 0). In other words, each rational number
qj/q1 should be a “good” approximation to the corresponding ratio (log pj)/(log p1) = α1,j . Note here
the rôle of the “common denominator” q1. Accordingly, the search for elements of Z close to <(s) = 1
involves “good” simultaneous rational approximations to the quantities α1,j (of which one at least is an
irrational number). Note that, in the case r = 2, the best rational approximants are well-described by
continued fraction theory.

The next step borrows material from important works of Lapidus and van Frankenhuijsen. The quality
of the approximations in (12) is essentially determined by the quantities (v1, . . . , vr), where

vj := q1
log pj
log p1

− qj . (13)

We first discuss the case of a binary alphabet, r = 2 and write v := v2. For a root s = σ + it, set now

s = 1 +
2iπ

w1
q1 + ∆, (14)

so that <(∆) = σ − 1, where we consider |∆| small. The original equation (11) becomes, upon taking
into account the simplifications e2iπ = 1:

e−w1e−w1∆ + e−w2e−2iπve−w2∆ − 1 = 0. (15)

The main idea then consists in regarding this equation as implicitly defining ∆. By the analytic version
of the Implicit Function Theorem, this determines ∆ as an analytic function of v, and one finds

∆(v) = d1iv − d2v
2 +

∞∑
j=3

dj(iv)j , (16)

where the expansion holds for all v satisfying |v| < R0 (for some R0 > 0), and the computable constants
d1, d2 are real, with d2 > 0. An immediate consequence is the existence of a root of λ(s) = 1 associated
with any sufficiently good approximation q2/q1 to α1,2 satisfying |v| < R0. Precisely, there is a root of
λ(s) = 1 at

s = σ + it, σ = 1− d2v
2 +O(v4), t =

2π

w1
q1 + d1v +O(v3). (17)

The imaginary part is very close to an integer multiple of 2π/w1; the closeness of the real part to 1 is
dictated by the quality of the approximation, as measured by (13) (the last quantity is itself conditioned by
fine diophantine properties of α1,2). Figure 2 illustrates the usefulness of (17), when p1 = 2/3, p2 = 1/3.

(ii) In this discussion and later, we use the notation “A ≈ B” to indicate informally that quantities A and B are “approximately
equal”; that is, up to additive terms or multiplicative factors that are inessential in context.
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q2/q1 v 2πq1/w1 =(s0) <(s0)

65/24 +2.8 · 10−2 371.90 371.81 0.9977

84/31 −5.1 · 10−3 480.383 480.400 0.999925

485/179 +2.5 · 10−3 2773.8272 2773.8189 0.99998222

1054/389 −1.0 · 10−4 6028.03801 6028.03836 0.9999999675

Fig. 2: For p = (2/3, 1/3), the first few best (continued fraction) approximants q2/q1, the corresponding values of
the “quality factor” v and 2πq1/w1, and the associated poles s0 found near <(s) = 1, in accordance with (17).

The general case r ≥ 2 proceeds along similar lines. A reasoning once more based on the Implicit
Function Theorem (now in its multivariate version), with the change of variables (14), implies that el-
ements of Z close to <(s) = 1 can be associated to good simultaneous approximations. The distance
1−<(s) of such a pole s to the line <(s) = 1 is then governed by a quadratic form in the components vj
of the quality vector; the imaginary part is essentially proportional to the common denominator q1.

As the foregoing discussion suggests, properties of the geometry of poles of Λ(s) crucially depend on
simultaneous approximation properties of the ratios | log pj |/| log pk| supplemented by analytic arguments
related to the Implicit Function Theorem.

2.1 Simultaneous approximations, BSADs, and approximation functions
Let bxe represent the nearest integer function, bxe := bx+ 1

2c, and {x} = x− bxe the centred fractional
part. For a vector x = (x1, . . . , xr) ∈ Rr, we define {x} to be the vector {x} = ({x1}, . . . , {xr}). We
consider a norm on Rr denoted by ‖.‖.

Approximation function and irrationality exponent. The integer Q is a best simultaneous approxima-
tion denominator of the vector β ∈ Rr, BSAD for short, if

||{Qβ}|| < ||{qβ}||, for all integers q with 0 < q < Q. (18)

The existence, for β ∈ Rr \ Qr, of arbitrarily good approximations is a basic fact of number theory; it
implies that the set of BSADs is infinite [15, Th. 200].

Consider a vector β 6∈ Qr. The approximation function of β is the staircase function f : R>0 → R>0,
which is constant on each interval [Q−, Q+) formed with two successive BSAD and satisfies

f(q) =
1

‖{Q−β}‖
, for any q ∈ [Q−, Q+), so that f (q) ≥ 1

‖{qβ}‖
, for all q ∈ Z>0

A real ν is called an approximation exponent(iii) of β 6∈ Qr if there exists a function g(t) = Aνt
ν−1,

with Aν > 0, which satisfies g(q) ≥ f(q), where f is the approximation function. The irrationality
exponent µ(β) of the vector β is the infimum of the approximation exponents. The irrationality exponent
µ(β) is infinite if there does not exist any approximation function with polynomial growth. When µ(β) is
finite, the vector β is said to be diophantine; otherwise it is said to be Liouvillean. Many scalars β (such
as π, tan(1), exp(−2), ζ(3), log(5)) and a few special vectors (such as those formed with logarithms of
suitably independent rational or algebraic numbers [2, Th. 3.1]) are known to have finite irrationality

(iii) Since all norms on Rr are equivalent, this notion is independent of the choice of the norm.
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Fig. 3: Approximation function of p1 = cot(1), p2 = e−2, and p3 = 1− p1 − p2. Left: The quantities ‖{qα(1)}‖,
corresponding to α(1) = (1, w2/w1, w3/w1) and denominators q ∈ [1 . . 100], with BSADs rendered by diamonds.
Right: the corresponding approximation function f1 with jumps at the BSADs. (Data are for the sup-norm ‖ · ‖∞.)

exponent. The existence of such an exponent indicates that β cannot be too well approximated by rational
vectors with a common denominator.

Approximation function and irrationality exponent of a family of probabilities. In an aperiodic family
of probabilities (pi), each row of the matrix A := (αk,`), written as α(k) := (αk,1, . . . , αk,r), has its
diagonal element equal to 1, has at least one irrational component, and admits an approximation function
fk. The following related definition will be of use later.

Definition 2 [Global approximation function] For each k ∈ [1 . . r], consider a norm (which may depend
on k) and the approximation function fk of α(k) relative to this norm. The functions F−, F+ defined as

F−(t) := min
k
{fk(ρkt)}, F+(t) := max

k
{fk(ρkt)}, with ρk := wk/(2π). (19)

are the lower, respectively, upper, global approximation function relative to the family of norms.

It can be proved elementarily (Proposition 3 in Appendix A) that these approximation functions fk are
in a suitable sense similar, and so are F−, F+. As a consequence, if there exists k for which α(k) has
a finite irrationality exponent, then any α(`) has the same irrationality exponent: this is the irrationality
exponent of the family of probabilities p = (p1, p2, · · · , pr). Several facts are known about irrationality
exponents. We quote here two important results, which will be useful later.

Proposition 2 The irrationality exponent µ(p) of a family p = (p1, p2, · · · , pr) satisfies the following:
(i) it is finite, as soon as all the probabilities pi are rational and form an aperiodic system; (ii) it satisfies
almost surely, in the sense of Lebesgue measure(iv), µ(p) = r/(r − 1).

Proof: (i) This is a direct consequence of Baker’s general theorem on linear form in logarithms [2, Th. 3.1], which
implies in particular that any irrational ratio ρ := (log pj)/(log pk) admits an (effectively computable) irrationality
exponent. See also Rhin [30] for non-astronomical values of bounds on such exponents.

(ii) We rely on a classical result [5, Ch. VII] in the metric theory of diophantine approximation, which generalizes
Khinchin’s Theorem in the metric theory of continued fractions. It asserts the following, with |{x}|, the distance to the

(iv) Namely, the Lebesgue measure on the simplex consisting of the set of (p1, . . . , pr) such that pj > 0 and p1 + · · ·+ pr = 1.
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nearest integer: for a decreasing function ψ(q), the set of solutions to the simultaneous inequalities, |{qyj}| < ψ(q),
for 1 ≤ j ≤ n, is almost surely (with respect to Lebesgue measure in (y1, . . . , yn) ∈ [0, 1]n) infinite if

∑
ψ(q)n

diverges; the set of solutions is almost surely finite if
∑
ψ(q)n converges. Here, due to the fact that αk,k = 1, our

problem is in fact an (r − 1) dimensional one, so n = r − 1. Note that
∑
q−nγ converges or diverges, according as

nγ > 1 or nγ < 1. This means that, almost surely, we can adopt ν := 1 + 1/(r− 1) as the irrationality exponent of
the vector p. 2

2.2 Statement of the main result
As a consequence of Theorem 1, in the aperiodic case, there does not exist any point of Z located on
the vertical line <(s) = 1. The following result makes precise the geometry of the set Z near the
line <(s) = 1, and describes how this geometry depends on approximation properties of the family of
probabilities. It involves a particular family of norms (the canonical family), which is itself attached to
the family p and will be defined in Subsection 2.4, together with the function ∆.

Theorem 2 Consider an aperiodic family of probabilities (p1, p2, . . . , pr). There is a family of norms for
which the global approximation functions F−, F+ of Definition 2 satisfy the following.

For any η > 0, there exists an ε > 0 and t0 such that

(i) all the elements s = σ + it of the set Z+ ∩ {=(s) > t0} satisfy

σ ≤ σ+(t) := 1− 1− η
F−(t+ ε)2

;

(ii) there are infinitely many elements s = σ + it of Z+, which satisfy

σ ≥ σ−(t) := 1− 1 + η

F+(t− ε)2
.

Moreover, ε→ 0 (and t0 →∞), as η → 0.

Theorem 2 specializes immediately to the case of finite irrationality exponents.

Theorem 3 If the aperiodic family (pi) has a finite irrationality exponent µ, then, the following holds:

(i) For any ν > µ, there exists Bν > 0, for which all elements s = σ + it of the set Z+ ∩ {=(s) ≥ 1}
satisfy

σ ≤ 1−Bνt2−2ν . (20)

(ii) For any θ < µ, there exist Cθ > 0, and an infinite set of elements s = σ + it of Z+ such that

σ ≥ 1− Cθt2−2θ, t ≥ 1.

Part (i) of this theorem, is essential to the subsequent sections, as it guarantees a pole-free region
for Λ(s), under the assumption of a finite irrationality exponent. Part (ii) indicates that the corresponding
bounds are essentially best possible. See Figure 4 for an illustration.

The proof of Theorem 2 (and its specialization, Theorem 3) is in two phases: we first show that poles
of Λ(s) can only be present in definite regions, “ladders”, that are associated with “good” (including
best) approximants (Subsection 2.3). We then show, conversely, that any sufficiently good approximant
is indeed attached to a pole (Subsection 2.4), this by methods markedly inspired by the treatment of
Lapidus and van Frankenhuijsen in [20, §3.5]. We can then conclude with the proof of Theorem 2 in
Subsection 2.5.
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s = 1

<(s) = 1

C : σ = 1−Bνt2−2ν

�������)

D : σ = 1− Cνt2−2θ

PPPPPPPq

Fig. 4: Left: Excluded and guaranteed regions for poles s = σ+ it of Λ(s), according to Theorem 3: the region right
of the curve C (hashed) is pole-free (except s = 1); the region between the two curves C,D is guaranteed to contain
infinitely many poles. Right: The poles of Z+ with <(s) > 1

2
and =(s) < 250, for p = ( 1

2
, 1
3
, 1
6
).

2.3 Ladders and poles
We shall deal repeatedly with vertical strips of the form

B(δ) := {s = σ + it; σ ∈]1− δ, 1]}, (21)

our purpose being to locate elements of Z in such sufficiently narrow strips. This is made precise by
Lemmas 1–3 below, with proofs to be found in Appendix A. First the notion of ladder is essential.

Definition 3 [Ladders] Denote byR(δ, ε) the rectangle

R(δ, ε) := {s = σ + it; σ ∈]1− δ, 1], |t| ≤ εw},

where the scaling parameter is w := 1/wr. For each index k ∈ [1 . . r], the translate Rk(q, δ, ε) of
R(δ, ε) by the complex 2iπq/wk gives rise, when q varies in Z, to a regular ladder, denoted by Lk(δ, ε).
The intersection

⋂
Lk(δ, ε) for k ∈ [1 . . r] defines the joint ladder L(δ, ε) relative to parameters (δ, ε).

First, the geometry of a joint ladder is closely related to approximability properties. Precisely, a step of
the joint ladder exists only if it is associated with good approximation denominators.

Lemma 1 For any ε, with 0 < ε < π/2, the step of the joint ladder L(δ, ε) relative to the sequence of
integers (q1, q2, . . . , qr) is nonempty, if and only if, for any k ∈ [1 . . r], the vector {qkα(k)} lies in the set

U(ε) :=
{

(u1, . . . , ur) ∈ Rr; |u`| ≤
ε

π
ww`

}
. (22)

Next, the elements of Z close enough to the line <(s) = 1 must belong to a joint ladder.

Lemma 2 For any ε, with 0 < ε < π/2, there exists δ(ε) > 0 for which the inclusion Z ∩B(δ) ⊂ L(δ, ε)
holds for any δ ≤ δ(ε). Furthermore, δ(ε) is O(ε2), as ε → 0. A pair (ε, δ) with δ ≤ δ(ε) is called
compatible.
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Fig. 5: Ladders associated with the probabilities p = (1/2, 1/3, 1/6), when εw = 0.15. Left: the three regular
ladders L1(δ1, ε),L2(δ1, ε),L3(δ3, ε), with δ1 = 0.5, δ2 = 0.6, δ3 = 0.7 (different δ are adopted for readability).
Middle: The joint ladder L(0.5, ε) resulting from the intersection of the three regular ladders on the left, for =(s) ≤
15. Right: the joint ladder L(0.5, ε), for =(s) < 300. (Data are here relative to the sup-norm.)

Finally, for well chosen parameters (ε, δ), each step of the joint ladder contains at most one pole of Λ.

Lemma 3 There exists a compatible pair (ε, δ), for which all the elements of Z located in the vertical
strip B(δ) belong to the joint ladder L(δ, ε) and any step of the ladder contains at most one element of Z .

Figuratively: poles close enough to <s = 1 are somewhere to be found among steps of sufficiently
narrow ladders.

2.4 The ∆–function and the canonical family of norms
We now establish the converse property that poles systematically arise in association with sufficiently
good simultaneous approximations. In accordance with the indications above (e.g., Equation (15)), the
proof crucially relies on the existence of an analytic (effectively computable) mapping ∆, which describes,
for well chosen parameters (ε, δ), the unique possible root of Z contained in each step of the joint ladder.
The proofs of Lemmas 4 and 5 are to be found in Appendix A.

Lemma 4 There exist a compatible pair (ε, δ), and an analytic function ∆, defined on the hypercube
U(ε) of (22), for which the only possible root of Z contained in the step of the joint ladder L(δ, ε) of index
(q1, q2, . . . , qr) can be written, for any k ∈ [1 . . r], as

z = 2iπ
qk
wk

+ ∆({qkα(k)}). (23)

The key idea from [20, §3.5] is to start from a multivariate extension of λ(s)

λ(s, u) :=

r∑
`=1

ps` exp (−2πiu`) , (24)

where u = (u1, . . . , ur) (see Appendix A for details). The function ∆(u) is then defined as the mul-
tivariate analytic function that expresses the solution in s of the equation λ(s, u) = 1, whose existence
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is granted by the Implicit Function Theorem. Then, one can determine a canonical family of norms, at-
tached to the mapping ∆ (Equations (49) and (50) of Appendix A), which prove to be well adapted to the
geometry of the poles of Λ.

Lemma 5 Let S := 1 − <(∆) and denote by T the Hessian quadratic form of S at the origin. Each
restriction of T to a hyperplane {uk = 0} is positive definite and defines a norm denoted by Tk. Then, for
any η > 0, there exists ε > 0, such that, for any u that belongs to U(ε), with uk = 0 for some k ∈ [1 . . r],
one has

(1− η)‖u‖2Tk
≤ S(u) ≤ (1 + η)‖u‖2Tk

(25)

2.5 Proof of Theorem 2
Lemmas 1–5 now make it possible to conclude with the proof of Theorem 2.

Proof: [(i) of Theorem 2]. Consider an aperiodic family of probabilities, and the family of norms (Tk). For any
η > 0, there exists ε0 > 0 such that the inequality (25) holds on U(ε0). Fix a pair (ε, δ) as in Lemma 4, with
ε < ε0. By this lemma, any root s = σ + it of λ(s) = 1 in the vertical strip B(δ), distinct from 1, is written for any
k ∈ [1 . . r] as in (23) for some qk ∈ Z, qk 6= 0, with {qkα(k)} ∈ Ũ(ε). Then, the inequality (25) applies to each
{qkα(k)}, and

δ > 1− σ = 1−<[∆({qkα(k)})] ≥ (1− η)‖{qkα(k)}‖2Tk
≥ 1− η
fk(qk)2

, (26)

where fk is the approximation function of α(k) relative to the norm Tk. Furthermore, since s = σ + it belongs to
Rk(qk, δ, ε), one has ∣∣∣∣t− 2π

qk
wk

∣∣∣∣ ≤ εw, and thus qk ≤ ρk(t+ εw).

Then, any root s = σ + it of the vertical strip B(δ), distinct of s = 1, satisfies, for any k,

δ > 1− σ ≥ 1− η
fk(qk)2

, and thus 1− σ ≥ 1− η
F−(t+ εw)2

,

where F−(t) := min{fk(ρkt)} is the (canonical) lower global approximation function. Then, assertion (i) holds as
long as t0 is chosen such that F−(t0 + εw) > (1− η)/δ.

[(ii) of Theorem 2]. For any η > 0, there exists ε0 > 0 such that the inequality (25) holds on U(ε0). Fix a pair
(ε, δ) as in Lemma 4. Consider now a BSAD qk of α(k). Since qk is a BSAD large enough, then the vector {qkα(k)}
is close enough to 0, and the complex number ∆({qkα(k)}) belongs to R(δ, ε). The root s = σ + it associated to
this BSAD qk of α(k) satisfies

1− σ ≤ (1 + η) ‖{qkα(k)}‖2Tk
=

1 + η

fk(qk)2

where fk is the approximation function of α(k) relative to the norm Tk. Thus, in the same vein as previously, the
inequality qk ≥ ρk(t− εw) holds and entails, for t > εw,

1− σ ≤ 1 + η

fk(qk)2
and thus 1− σ ≤ 1 + η

F+(t− εw)2
,

where F+(t) := max{fk(ρkt)} is the (canonical) upper global approximation function. 2

Note. Our purpose has been to locate poles in as precise a way as seems possible, so as to supplement
some of the results of [20]. Weaker estimates can be obtained in a simpler way, by considering only
the approximation function f1, taken relative to any of the classical norms, for instance the sup-norm.
In that case, the resulting boundaries of the two regions of Theorem 2 become of the (less tight) form
1− c1F (c2t)

−2 and 1− d1F (d2t)
−2, for some c1, c2, d1, d2 > 0, with here F ≡ f1.
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3 Mellin analysis and the function Λ(s)

We can now start to exploit the results of Section 2, which provide a precise description of the location
of the poles of Λ(s). This only involves a routine use of Mellin transform theory [11]. It is convenient
to develop a somewhat abstract analytic framework, which covers the applications of Section 1 as well as
many more of algorithmic interest. We shall then easily specialize the discussion and treat our three pilot
examples relative to trie parameters in the next section, Section 4.

We show here that any exclusion region for the poles of Λ(s) provides an estimate of (an upper bound
on) the error term in asymptotic forms associated with a natural class of functions that includes the trie
parameters of Section 1. See Theorem 4 below, with bounds of the form exp(−(log x)1/θ), with θ > 1,
in the case of a finite irrationality exponent. Direct consequences of Theorem 4 —and the deep literature
on diophantine approximation— are that such bounds, exp(−(log x)1/θ), with θ > 1 hold for all ape-
riodic sources involving rational probabilities, see Corollary 1; they also hold for almost all probability
vectors p, in a measure-theoretic sense, see Corollary 2.

3.1 Error bounds
First we formalize the analytic context(v) common to problems such as size and path length of tries, or the
symbol-complexity of quicksort.

Definition 4 A function F (x) and its Mellin transform assumed to be of the form F ?(s) = Λ(−s)g(s)
are said to satisfy Assumption A if the following conditions hold:

(i) for some h > 0, the open fundamental strip of F ?(s) intersects the substrip −1 < <(s) < −1 + h;
(ii) the function g(s) is meromorphically continuable to the strip −1 − h < <(s) < −1 + h, with at

most a pole at <(s) = −1, and it satisfies, as |s| → ∞ in that strip, the following conditions, uniformly
with respect to <(s),

|g(s)| = O
(
e−K|=(s)|

)
, −1− h < <(s) < −1 + h, |s| → ∞, (27)

for some constant K > 0.

For instance(vi), g(s) = Γ(s) satisfies (27) with h = 1/2 and any K < π/2.

Regarding Λ(s), we gather here a few properties to be of use. These are based on Theorems 2 and 3, as
well as on the proofs of the supporting Lemmas (Section 2 and Appendix A).

There exists a vertical strip B(δ) and a parameter ε, such that the following holds.

(i) Poles χ ∈ Z+ are uniformy separated from one another.
(ii) Outside of the ladder L(δ, ε), the function Λ(s) is uniformly bounded.

(iii) Inside the ladder, the function Λ(s) remains uniformly bounded, provided that s be uniformly far
from the set Z+.

(iv) The values of the derivative λ′(χ) at poles χ are uniformy bounded away from 0.

(v) Other scenarios are possible and various growth assumptions imply various asymptotic scales: see typically [20, Ch. 7] for error
terms in the prime orbit function of suspended flows.

(vi) See Item 6.1.44 of [1], after which |Γ(x+ iy)| ∼
√

2πe−π|y|/2|y|x−1/2 (Stirling’s formula!), as |y| → ∞.
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+1 <(s)

=(s)
(1 + h

2
+ iT )

(1− h
2
− iT )

+1 <(s)

=(s)
(1 + h

2
+ iT )

(1− h′ − iT )

Fig. 6: The original integration contour C0(T ) [left]; the final contour C1(T ) [right].

For convenience, we shall take the inverse Mellin integral under the form

F (x) =
1

2iπ

∫ 1+h/2+i∞

1+h/2−i∞
g(−s)Λ(s)xs ds, (28)

so that poles farther left contribute lesser terms in asymptotic expansions. Under Assumption A, the
contribution of the pole s = 1 of the integrand is of the form xP (log x), where deg(P ) = m and m is the
multiplicity of the pole of g(−s) at s = 1 (with m = 0 in case g(−s) is analytic at s = 1).

Lemma 6 Under Assumption A, for an aperiodic probability vector p, the estimate

F (x) = xP (log x) + xΦ(x) +O
(
x1−h′

)
, x→ +∞, (29)

holds for some h′ ∈ R>0 with h′ ≤ h, where P (log x) := Res(g(−s)Λ(s)xs−1; s = 1) is a polynomial
in log x, and

Φ(x) :=
∑
χ

g(−χ)

λ′(χ)
xχ−1, (30)

with the sum being extended to all the poles χ of Λ(s) such that 1− h′ ≤ <(χ) < 1.

Note. This formula is, in its own small way, a pendant of “explicit formulae” in the theory of prime
numbers. (We believe that it can be extended to a sum over all poles of Λ(s).) It does have some merit
for the understanding of the non-asymptotic regime of finite values of x: see Appendix B.

Proof: The proof is, as usual, based on contour integration and the residue theorem (cf [8]). We start by considering
the integral of (28) taken along the rectangular contour C0(T ) defined by its corners at 1−h/2−iT and 1+h/2+iT ;
see Figure 6 (left). By suitably narrowing the strip with h′, we may assume that all the results of the previous section
apply, to the effect that poles are separated by a distance at least D in the strip 1− 2h′ < <(s) < 1.

We shall later let T → +∞, but first restrict values of T in such a way that T lies outside of a fixed ladder
L(δ1, ε1) satisfying the conditions of Lemma 3 in the previous section. In this way, we guarantee that |1 − λ(s)|
stays uniformly bounded away from 0 on the horizontal segments of the contour. (See Theorem 2 and Equation (42)
of Appendix A.) and use |1− λ(s)| > |<(1− λ(s))|.)
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We then set d := D/10 (say) and deform C0(T ) into a new contour C1(T ) obtained as follows. Draw around each
pole χ a disc of radius d. If the vertical segment on the left of the contour C0 intersects one of the discs, then replace
the intersection of the segment and the disc by an arc of the boundary of the disc, keeping the contour connected
(Figure 6). We shall also choose that arc of the boundary, which lies to the left of <(s) = 1 − h′. In this way,
all points of C1(T ) are at distance at least d of a pole and, on the left boundary of the contour C1(T ), we have
<(s) ≤ 1− h′.

We can now argue as follows. Along the left boundary of C1(T ), with s = σ + it, either some of the quantities
cos(wjt) are sufficiently bounded away from 1, which ensures that <(λ(s)) is bounded away from 1; or, else, by
Lemma 4 of the previous section, there must be a root of λ(s) = 1. The latter case is precisely avoided by the
contour’s deformation. Thus, the inverse Mellin integral (28) taken along this left boundary of the contour is in
absolute value bounded from above by a quantity of the form K1x

1−h′
, for some K1 > 0.

Finally, let T →∞. The contribution of the two horizontal segments of C1(T ) tends to 0 (see previous remarks).
The inverse Mellin integral of (28) taken along C1(∞) can then be classically evaluated in two different ways: (i) as
a sum of the contributions on the left and right sides, which gives F (x) +O(x1−h

′
); (ii) as a sum of residues, which

gives xP (log x) + xΦ(x). This completes the proof. 2

Theorem 4 Consider a function F (x) and its Mellin transform that satisfy Assumption A. Let the proba-
bility vector p have a finite irrationality exponent µ and take any ν > µ. Then, F (x) admits the asymptotic
form (29), with the correction term Φ satisfying

Φ(x) = O
(

exp
(
−(log x)1/(2ν−1)

))
, x→∞. (31)

Proof: As before, the set of poles of Λ(s) is denoted by Z , and we let Z+ be the subset of poles χ such that
=(χ) > 0. We use here c1, c2, . . . to represent positive constants, which need not be made explicit.

First a preliminary remark. By developments of the previous section, the quantities 1/|λ′(χ)| are bounded by an
absolute constant, so that we have

Φ(x) = O

 ∑
χ∈Z+

∣∣g(−χ)xχ−1
∣∣ . (32)

From Theorem 2, all the poles s = σ + it of Z+ satisfy

σ < 1− c1
G(c2t)2

, (33)

where G is any upper bound for the lower approximation function F−. In the case of a finite approximation expo-
nent µ, we choose (momentarily) some ν̃ such that µ < ν̃ < ν and we may accordingly adopt G(t) = c3t

ν̃−1.
Let χ1, χ2, . . . be the sequence of poles χ ∈ Z+ ordered by increasing values of =(χ) and write χj = σj + itj .

Thanks to the (vertical) uniform separation property, we have, the lower bound tj > c4j, for some c4 > 0, so that
|g(−χj)| is bounded from above:

|g(−χj)| ≤ e−Kc4j . (34)

On the other hand, we have tj < c5j since the number of poles in a vertical strip is bounded from above by the
number of steps of any sufficiently narrow ladder L(δ, ε); see the previous section. This last upper bound on tj then
implies

σj − 1 < − c6
j2ν̃−2

. (35)
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In summary, thanks to (32), (34), and (35), we have obtained, for some c′,K′ > 0, the estimate

Φ(x) = O

(∑
j≥1

exp (U(j))

)
, with U(j) := −K′j − c′j2−2ν̃ log x. (36)

The function j 7→ U(j) is unimodal with a peak at j0 ≡ j0(x), which is determined by cancelling a derivative. With
L := log x, it is found to satisfy j0 ∼ c7L

1/(2ν̃−1), to the effect that U(j0) ∼ c8L
1/(2ν̃−1), We can then simply

bound the terms j ≤ j0 of the sum in (36) by the maximal term eU(j0); we can also take advantage of the geometric
decay of the remaining terms, corresponding to j > j0 (due to the g(−χ) factor), see (34). In this way, we find

|Φ(x)| ≤ c9j0 expU(j0) +O (exp(U(j0))) = O
(

exp
(
−c10L1/(2ν̃−1)

))
.

This last estimate implies the statement, since ν̃ > ν. 2

Note on the Liouvillean case (infinite irrationality exponent). Let G(t) be an upper bound of the global ap-
proximation function in the sense of the previous section and of (33) above. We abbreviate the discussion and, for
convenience, assume enough differentiability and convexity properties ofG. Also, we disregard inessential constants.
The case of a superpolynomial functionG corresponds to the Liouvillean case of number theory, where the irrational-
ity exponent is infinite and the ratios wi/wj are (simultaneously) extremely well approximated by rationals. (For the
binary case r = 2, corresponding probability vectors p can be constructed by means of continued fraction theory.)
Here, we take f ≈ g to mean that f and g are asymptotically equivalent up to a polynomial transformation. (i.e.,
log log f ∼ log log g). Then, the computations of the previous section generalize: the index j0 of the maximum
term satisfies G(j0)3/G′(j0) ≈ L, with L = log x. Note that for smooth fast growing functions, such as towers of
exponentials, we have G′ ≈ G, so that G(j0) ≈

√
L. It then suffices to solve asymptotically for j0 and bound the

terms as before. For instance, we have the following approximate correspondences,

G(t) ≈ et =⇒ Φ(x) ≈ O
(

exp(− log
√

log x)
)
≈ 1

log x

G(t) ≈ ee
t

=⇒ Φ(x) ≈ O
(

exp(− log log
√

log x)
)
≈ 1

log log x
,

(37)

and so on. In this way, probability vectors can be constructed such that the upper bound (31) on |Φ(x)| tends to 0
arbitrarily slowly.

3.2 Rational probabilities and metric aspects
Here are two consequences of the foregoing developments and of Proposition 2 of the previous section.

Corollary 1 Let p = (p1, . . . , pr) be an aperiodic probability vector all of whose components are rational
numbers. Then there exists an effectively computable number θ > 1 such that the error term Φ(x) ≡
Φp(x) satisfies

Φ(x) = O
(

exp
(
−(log x)1/θ

))
.

The statement also holds in the case where the pj are algebraic.

Corollary 2 Fix r and take any θ > (r + 1)/(r − 1). In the sense of Lebesgue measure, almost all
probability vectors p = (p1, . . . , pr) are such that the error term Φ(x) ≡ Φp(x) satisfies

Φ(x) = O
(

exp
(
−(log x)1/θ

))
.

In the binary case, the bound is, for any ε>0, almost surely of the form Φ(x)=O
(
exp

(
−(log x)1/3−ε)) .
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Parameter Mellin transform multiplicity asymptotics

Trie size S?(−s) = (s− 1)Γ(−s)Λ(s) r = 1 S(x) ∼ 1

h1
x

Trie path length P ?(−s) = sΓ(−s)Λ(s) r = 2 P (x) ∼ 1

h1
x log x

Quicksort cost Q?(−s) =
2

s(s− 1)
Γ(−s)Λ(s) r = 3 Q(x) ∼ 1

h1
x(log x)2

Fig. 7: The three reference Mellin transforms, S?(−s), P ?(−s), Q?(−s). The last two columns indicate the multi-
plicity r of the pole at s = 1 and the main asymptotic term relative to the original functions, S(x), P (x), Q(x). The
quantity h1 is the natural entropy of the source.

4 Asymptotic analysis of tries
We can finally conclude regarding the fine structure of trie parameters. For ease of reference, Figure 7
tabulates the three Mellin transforms that appear in Proposition 1 of Section 1, and are relative to trie
size (S), trie path length (P ), and the symbol-comparison cost of Quicksort (Q). (Since we make use of
the non-standard form of Mellin inversion (28), these are expressed here in terms of −s.)

The function Γ(−s) has a simple pole at s = 1, where Γ(−s) ∼ 1/(s − 1) and higher terms involve
Euler’s constant as well as Riemann zeta values at the integers [40]. The function Λ(s) being Λ(s) =

1
1−λ(s) , where λ(s) =

∑r
j=1 p

s
j , it can be expanded near its simple pole at s = 1, based on

1− λ(s) =

∞∑
m=1

hm(−1)m−1 (s− 1)m

m!
, hm =

r∑
j=1

pj | log pj |m,

where the hj represent generalized entropies. Accordingly, Λ(s) has a simple pole at s = 1, with residue
equal to the (natural) entropy h1, also often denoted by H .

All the ingredients are in place to compute (automatically even, under the symbolic system MAPLE)
the dominant contributions in the asymptotic expansion of S(x), P (x), Q(x), which are of the form
xA(log x) where A is a polynomial: the quantities A(log x) are given by Res (f?(−s)xs−1)s=1, with
f?(−s) any one of the three functions of Figure 7. This gives us, with L = log x, the polynomials relative
to the three parameters of interest,

A(S)(L) =
1

h1
, A(P )(L) =

1

h1
L+

1

h1

(
γ +

h2

2h1

)
,

A(Q)(L) =
1

h1
L2 +

1

h1

(
2γ − 4 +

h2

h1

)
L+ c0,

(38)

where c0 involves γ, ζ(2) ≡ π2/6, and h1, h2, h3.
It is then a trivial task to transpose Theorem 4 (set a := h′) and state our final result.

Theorem 5 Consider the three parameters S, P,Q of tries built from a random number Poisson(x) of infi-
nite words drawn independently from a fixed memoryless source with probability vector p = (p1, . . . , pr).
Assume that the system p is aperiodic with a finite irrationality exponent µ and take ν to be any number
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larger than µ. Then, each parameter ξ ∈ {S, P,Q} has an expectation that satisfies asymptotically

EP(x)[ξ] = xA(ξ)(log x) + xΦ(ξ)(x) +O
(
x1−a) , x→∞, (39)

for some a > 0, where A(ξ) is polynomial given by (38) and Φ(ξ) satisfies in each case the estimate

Φ(ξ)(x) = O
(

exp
(
−(log x)1/(2ν−1)

))
. (40)

Appendix B illustrates some of the subtle numerical phenomena at stake in the aperiodic case. By contrast,
in the periodic case, it is well known [18, 36] that the asymptotic expansion (39) assumes a simpler form:
for some a > 0,

EP(x)[ξ] = xA(ξ)(log x) + xΦ(ξ)(x) +O
(
x1−a) ,

where Φ(x) is plainly a periodic function of log x.

Notes. All previous remarks apply. Namely:

1. A bound of the form (40) holds as soon as the probabilities pj are all rational and satisfy the
aperiodicity condition (Corollary 1). Also, such a bound holds almost surely, with an exponent that
then only depends on the dimension (Corollary 2).

2. The knowledge of the order of growth of a best approximation function implies a whole range of
upper bounds, which are weaker than (40), and can come arbitrarily close to x; see (37). We believe
that lower bounds of a similar shape can be developed.

3. The results above apply to many algorithms involving variants of tries, such as digital search
trees and Patricia tries, Lempel–Ziv data compression, tree or stack communication protocols, the
Bentley–Sedgewick Ternary Search Tries, and so on [24, 36].

4. Similar results can be obtained for the fixed-size model, where the number of elements in the trie
is fixed at n, asymptotically in n. This fact owes to the complex Wahlverwandtschaften between
Mellin transforms and the Nörlund–Rice integrals of difference calculus [12].

The research just presented here fits into a broader scheme, that of “dynamical sources” [7, 14, 37, 38],
themselves further extended as “general sources” in [39]; see especially the discussion at the end of [39,
§3]. Recent work of Cesaratto and Vallée [6] for instance shows that, for a large class of such sources,
not including memoryless sources, the limit distribution of the average depth in tries is asymptotically
normal. It is piquant to note that the conceptually simplest of all information sources are, in certain ways,
far from being the ones exhibiting the simplest behaviour.
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A Proofs relative to Section 2 (Geometry of poles)
A.1 Invariance of the irrationality exponent
We establish here the fact, asserted in Subsection 2.1, that the irrationality exponent is well-defined,
independently of the ordering of the probabilities (pj). We recall that α(k), defined in (10), belongs to the
hyperplane {uk = 0}. For any integer qk, the sequence of integers (q`)` 6=k defined by q` := bqk αk,`e is
called the sequence of numerators of α(k) relative to denominator qk.

Proposition 3 Fix an aperiodic family of probabilities (pi)i∈[1..r] and, for any k ∈ [1..r], a norm ‖.‖(k)

defined on the hyperplane {uk = 0}. Then

(i) Consider for some k ∈ [1 . . r], an integer qk for which the inequalities |{qkαk,`}| ≤ (w`)/(4wr)
hold for any `; associate the sequence (q`)` 6=k of numerators of α(k) relative to denominator qk.
Then, for any ` ∈ [1..r], the integers q` satisfy the inequalities |{q`α`,j}| ≤ (wj)/(2wr) for any j,
and the sequence (qj)j 6=` is the sequence of numerators of α(`) relative to denominator q`.

(ii) There exists a constant c (that depends on the family of norms ‖‖(k)) such that any quadruple
(fk, f`, qk, q`), formed with the approximation function fk of α(k) relative to norm ‖‖(k), the ap-
proximation function f` of α(`) relative to norm ‖‖(`), a BSAD qk of α(k) relative to ‖‖(k), and a
numerator q` of α(k) relative to denominator qk, satisfies fk(qk) ≤ cf`(q`).

(iii) If there exists k for which α(k) has a finite irrationality exponent equal to µ, then, any α(`) has the
same finite irrationality exponent.

Proof: Here, it proves convenient to operate with the norm ‖.‖? defined by ‖u‖? = sup |u`|
w`

.

Assume that q1 is a good enough approximation denominator of α(1), so that {q1α(1)} is small enough, namely
‖{q1α(1)}‖? ≤ η, with η to be fixed later. Denote by (q1, q2, . . . , qr) the numerators of the approximation. For any
pair (k, `) of indices, let

δ(k, `) :=

∣∣∣∣ qkwk − q`
w`

∣∣∣∣ , A(k, `) :=

∣∣∣∣qk w`wk − q`
∣∣∣∣ .

(i) Since q1, . . . , qr are the numerators of the approximation of α(1), the following equalities hold

A(1, `) = |{q1α1,`}|, ‖{q1α(1)}‖? = sup δ(1, i).

On the other hand, the relations between the δ(k, `) and the A(k, `) imply

A(k, `)

w`
= δ(k, `) ≤ δ(1, k) + δ(1, `) ≤ 2‖{q1α(1)}‖?

Then, if η ≤ w/4, with w := 1/wr , then A(k, `) equals |{qkαk,`}|. This proves finally, for any k ∈ [1 . . r], the
inequalities ‖{qkα(k)}‖? ≤ 2‖{q1α(1)}‖?.

(ii) Since all norms are equivalent, the last bound yields the second Assertion of the statement.

(iii) Suppose now that q1 is a BSAD for α(1) relative to the norm ‖.‖?, with ‖{q1α(1)}‖? ≤ η. For the pair
(fk, f1) of approximation functions, relative to the norm ‖.‖?, fk for α(k), f1 for α(1), the relations

1

fk(qk)
≤ ‖{qkα(k)}‖? ≤ 2‖{q1α(1)}‖? =

2

f1(q1)
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entail the inequality f1(q1) ≤ 2fk(qk), for any BSAD q1 of α(1).
This is true in particular when qk is a BSAD for α(k). If now α(k) has an irrationality exponent equal to µ(α(k)),

then, for any ν > µ, we have

f1(q1) ≤ Aνqν−1
k ≤ Aν

(
qk
q1

)ν−1

qν−1
1 ≤ Bνqν−1

1

This last inequality implies that the irrationality exponent µ(α(1)) is at least equal to µ(α(k)). Consequently, all the
irrationality exponents are equal. 2

A.2 Proofs relative to ladders and poles (§2.3)

Proof: [of Lemma 1]. We first consider a family of intervals of the real line I(ai, ε) with centers ai (for 1 ≤ i ≤ n)
and the same radius ε and use the fact that this family has a nonempty intersection if and only if any intersection of
two intervals of the family is nonempty. (Order the centers ai in increasing order, and observe that, as the inequality
|a1 − an| < 2ε holds, the middle a of the interval [a1, an] satisfies |ai − a| < ε for any i, with 1 ≤ i ≤ n.) We then
apply this property to the vertical intervals that define a step of the joint ladder: this proves that the step of the ladder
relative to the sequence of integers (q1, q2, . . . , qr) is nonempty if and only if, for any pair (k, `),

Rk(qk, δ, ε) ∩ R`(q`, δ, ε) 6= ∅. (41)

Then, for any pair (k, `) of indices, the following three assertions are equivalent to Assertion (41),

2π

∣∣∣∣ qkwk − q`
w`

∣∣∣∣ ≤ 2εw,

∣∣∣∣qk w`wk − q`
∣∣∣∣ ≤ ε

π
w`w, |{qkαk,`}| ≤

ε

π
w`w,

since 0 < ε < π/2. 2

Proof: [of Lemma 2]. First, for any ε with 0 < ε < π/2, the continuity of the map σ 7→ cos(ε) pσk +
∑
j 6=k p

σ
j

together with the equality
cos(ε) pk +

∑
j 6=k

pj = 1− [1− cos(ε)]pk < 1

imply the following property: Denote by α− = minαj,k = αr,1. For any k, and any ε with 0 < ε < π/2, there
exists δk(ε) > 0 such that

cos(εα−) pσk +
∑
j 6=k

pσj < 1 for any σ > 1− δk(ε). (42)

Assume now (by contradiction) that there exists ε > 0, such that, for any δ > 0, there is an index k ∈ [1 . . r] and
a root s = σ + it of λ(s) = 1 that satisfy

1− δ < σ < 1, and ∀q ∈ Z,
∣∣∣∣t− 2q

π

wk

∣∣∣∣ > εw.

This implies the inequality cos(twk) < cos(εα−), and, by Equation 42, the existence of δ := min δk(ε) for which,
for any σ > 1− δ,

1 = <λ(s) <
∑
j 6=k

pσj + pσk cos(εα−) < 1, (43)

which provides a contradiction. 2
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Proof: [of Lemma 3]. Consider an element s = σ + it which belongs to the joint ladder L(δ, ε). Then, the
inequalities cos(twj) ≥ cos(εwwj) ≥ cos ε and pσj > pj hold and imply

|<(λ′(s))| =
r∑
j=1

wjp
σ
j cos(twj) > (cos ε)

[
r∑
j=1

wjpj

]
= (cos ε)|λ′(1)|.

We have proved: For any ε > 0, δ > 0, the derivative λ′(s) at any point of the ladder L(δ, ε) satisfies

|<(λ′(s))| > (cos ε)|λ′(1)|. (44)

Consider now two roots s and s+ h of the equation λ(s) = 1, located in the vertical strip B(δ). Then, the Taylor
expansion of λ at s+ h yields the inequality

|λ(s+ h)− λ(s)− hλ′(s)| = |hλ′(s)| ≤ |h|
2

2
sup{|λ′′(z); z ∈ B(δ)} (45)

If z ∈ B(δ), the inequality |λ′′(z)| ≤ λ′′(1 − δ) holds, and, then, by Lemma 2 supplemented by Inequalities (44)
and (45), the distance |h| between the two roots satisfies

|h| ≥ (2 cos ε)
λ′(1)

λ′′(1− δ) .

Since the lower bound tends to 2|λ′(1)|/λ′′(1) when ε (thus δ) tends to 0, it is possible to choose ε (thus δ), so that
the inequality [

δ2 + 4ε2w2]1/2 < (2 cos ε)
|λ′(1)|

λ′′(1− δ) (46)

holds. In this case, each rectangleRk(q, δ, ε) contains at most one element of Z . 2

A.3 Proofs relative to the ∆–function (§2.4)

Proof: [of Lemma 4]. We take a compatible pair (ε, δ), as granted by Lemma 2. The only possible element z of
Z contained in a (nonempty) step of the joint ladder, relative to the sequence (q1, q2, . . . , qr), is written, for any
k ∈ [1 . . r], as z = 2iπqk/wk + sk, where s := sk belongs toR(δ, ε), and it satisfies

p
sk
k +

∑
6̀=k

p
sk
` exp (−2πiqkαk,`) =

r∑
`=1

p
sk
` exp (−2πi{qkαk,`}) = 1. (47)

The main idea [20, §3.5] is now to consider the more general equation, λ(s, u) = 1, for u = (u1, u2, . . . , ur) ∈ Cr ,
where λ(s, u) is as defined by (24). Each solution z ∈ Z belonging to the step of label (q1, q2, . . . , qr) of the ladder
L(δ, ε) leads to r solutions of the form (sk, {qkα(k)}), which satisfy, by Lemma 1,

∀`, k, <sk = <s`, =(sk − s`) = 2π

(
q`
w`
− qk
wk

)
{qkα(k)} ∈ U(ε),

where U(ε) is defined in Lemma 1. The pair (1, 0), together with all the pairs (sk, {qkα(k)}), belong to the set

Z(ε, δ) := {(s, u) ∈ Σ(δ, ε); λ(s, u) = 1}, with Σ(δ, ε) = R(δ, ε)× U(ε).

In order to describe the set Z(ε, δ), we apply the Implicit Function Theorem to the equation λ(s, u) = 1 near the
point (1, 0). This is possible since the function λ : Σ(δ, ε)→ C is of class C1 (it is indeed analytic), and the derivative
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∂λ/∂s(1, 0), which is equal to λ′(1), is nonzero. This implies the existence of a neighborhood V ⊂ U(ε) of 0 in
Rr , a complex neighborhoodW ⊂ R(δ, ε) of 1, and a function ∆ defined on V real-analytic such that, any solution
(s, u) of the equation λ(s, u) = 1 with (s, u) ∈ W × V can be written as s = ∆(u). This means:

(W ×V)
⋂
Z(ε, δ) = {(s, u) ∈ W × V; s = ∆(u)}. (48)

Choose first ε′ < ε, δ′′ < δ such that the two inclusions U(ε′) ⊂ V, R(δ′′, ε′) ⊂ W hold. Then, the choice
δ′ = min(δ(ε′), δ′′) leads to a compatible pair (ε′, δ′), and the equality (48) implies

Z(ε′, δ′) =
{

(s, u) ∈ R(δ′, ε′)× U(ε′); s = ∆(u)
}
.

We can now return to the set Z ∩ B(δ′), via all the special elements of Z(ε′, δ′) of the form (sk, {qkα(k)}).
We have proved that the only possible element of Z in a nonempty step of label (q1, q2 . . . , qr) of the ladder

L(δ, ε) can be written as in (23). This element does exist as soon as the quantities ∆({qkα(k)}) lie inR(δ, ε). 2

Proof: [of Lemma 5]. The first derivative ∆′(0) (which is nonzero, by the Implicit Function Theorem) and the
second derivative ∆′′(0) of ∆ at 0 are easily computed. Furthermore, the function ∆ can be extended to a complex
neighborhood of 0, on which it is an analytic function of complex numbers (z1, z2, . . . zr). Near 0, the values ∆(iu)
are real for u ∈ Rr . This implies that the components of ∆′(0) belong to iR, whereas all the coefficients of the
Hessian matrix of ∆′′(0) are real,

1

4π2
∆′′(0)j,k =

(
λ′′(1)

λ′(1)3
+
wj + wk
λ′(1)2

)
pjpk + pkδj,k

(
1

λ′(1)

)
(49)

(here, δj,k is the Kronecker symbol) and define the quadratic form

− T (u) :=
1

2
tu∆′′(0)u (50)

which is real for real r-uples. (Generally, the coefficients of the derivative of order k are real for even k, and purely
imaginary for odd k.) The Taylor expansion of ∆ at u ∈ U(ε),

∆(u) = 1 + u ·∆′(0) +
1

2
tu∆′′(0)u+O(‖u‖3) (51)

entails the two relations, for any u ∈ U(ε),

S(u) := 1−<∆(u) = T (u) +O(‖u‖4), =∆(u) = −iu ·∆′(0) +O(‖u‖3).

Observe that the second component {qkα(k)} of the solutions (sk, {qkα(k)}) of interest belongs to the union of
hyperplanes of the form {u` = 0}, and consider the restriction of ∆ to

Ũ(ε) := U(ε) ∩
⋃
{u` = 0}. (52)

We now prove that the restriction of the quadratic form u 7→ T (u) to each hyperplane {uk = 0} is (real) positive
definite . We use a more general result:

Lemma 7 Any point (s, u) ∈ Z(ε, δ) satisfies <s ≤ 1. The only point (s, u) of Z(ε, δ) for which <s = 1 and
uk = 0 for some k ∈ [1 . . r] is the point (1, 0).
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Proof: Note that all the points (1 + it, u) defined by the equations 2πuk = −twk are points of Z(ε, δ) which satisfy
<s = 1 with u 6= 0. In fact, for any element (s, u) of Z(ε, δ), the equality

<λ(s, u) =

r∑
k=1

pσk cos(twk + 2πuk) = 1 (53)

holds and implies that <s ≤ 1 for any (s, u) in Z(ε, δ). Consider now a point (s, u) ∈ Z(ε, δ) with σ = 1 and a
component uk = 0, for some k ∈ [1 . . r]. For this index k, the equality cos(twk + 2πuk) = 1 implies the equality
t = 0, and thus, the other equalities cos(tw` + 2πu`) = 1, for ` 6= k imply the equalities u` = 0. 2

To conclude, Lemma 7 implies that the restriction T` of the quadratic form u 7→ T (u) to each hyperplane {u` = 0}
is positive definite. Denote by ‖u‖T` the norm relative to the positive definite form T`. Then, for any η > 0, there
exists ε > 0 such that the inequalities (25) hold for any u in Ũ(ε) defined in (52). 2

B Numerical aspects
Here is a campaign of experiments conducted with p1 = 1/3, p2 = 2/3, corresponding to an entropy H

.
=

0.636514168. We consider the poissonized mean trie-size S(x) of Section 1 and examine the correction function

κ1(x) = S(x)−
( x
H
− 1
)
,

which measures the error committed when approximating S(x) by the sum of its main asymptotic term (n/H) and
the contribution (−1) induced by the pole at 0 of the Mellin transform S?(s). Thus κ1(x) = xΦ(x) + O(x1−a) in
the notations of Section 3

For moderately large values of x, this correction seems to decay steadily to 0, as suggested by the plots of κ1(x)
in Figure 8 (left, centre).

Fig. 8: The correction function κ1(x). Left, centre: plot of κ1(x), for x ∈ [5, 5 ·102] (where |κ1(x)| < 2 ·10−3) and
x ∈ [5·102, 5·104] (where |κ1(x)| < 10−4). Right: plot of κ1(x)·x0.62686 against log10 x, for 5·102 ≤ x ≤ 5·104.

This smallness of κ1(x) continues further and, for instance, the values of κ1(x) appear to stay in the range
[−10−5, 10−5] for all x with 104 ≤ x ≤ 107. Indeed, the behaviour of κ1(x) in this whole range is remark-
ably well accounted for by a term of the form x−0.62686 (modulated by oscillations), as is illustrated by Figure 8
(right). Here, the exponent 0.62686 is dictated by the two “low” singularities of Λ(s) at s = 0.62686 ± 5.17927i
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Fig. 9: The correction function κ1(x). Left: for x near 106. Right: for x in x ∈ [5 · 105, 5 · 107].

and the corresponding coefficient is small since |Γ(s)| .= 9 · 10−4. The regularity and the smooth periodic aspect of
the curve are striking.

As a matter of fact, in spite of the former numerical data, our analytic results predict that the function κ1(x) must
tend to infinity, rather than decaying to 0, and it is even the case that κ1(x) should exceed infinitely often any function
x1−ε, for any ε > 0. This is illustrated by the two diagrams of Figure 9: the one on the left exemplifies a first “phase
transition” region near x = 106; the one on the right corresponding to x ∈ [5 · 105, 5 · 107] shows the beginning of
the region where κ1(x) actually starts to grow:

For higher values of x, the increase becomes more and more pronounced, as evidenced by the following table:

x : 1010 1011 1012 1013 1014

κ1(x) : 6.0 · 10−5 −9.8 · 10−4 −1.2 · 10−2 −1.0 · 10−1 −7.4 · 10−1

It can be seen that, amongst the poles of Λ(s), only the ones nearest to <(s) = 1 matter: these are “record” poles
in the sense that there is no other pole in their south-east quadrant. Then, a term Tj(x) in xΦ(x) that corresponds to
such a pole χj has a certain region of prevalence, something like [xj , yj ], for at least doubly exponentially growing
sequences (xj), (yj) (this last fact that can be deduced from general results of Lagarias [19]). Under mild additional
assumptions (namely, that the intervals [x`, y`] be of “limited overlap”), in a region [xj , yj ], the term Tj(x) dominates
in amplitude the earlier Tk(x) (those with k < j), since these have too small an exponent of x; it also dominates the
later Tm(x) (those with m > j), since these are still too much tamed by the smallness of their Gamma factor. Here
is then a simplified depiction of the succession of regimes of κ1(x), as x increases:

Initial decay slower growth faster growth
[1, y1] [xj−1, yj−1] [xj , yj ]

lower frequency higher frequency.

Note. A somewhat related phenomenon, but one that involves the complex Riemann zeros, is discussed in [14] in
relation with the size of tries built on continued fraction representations of uniform [0, 1] real numbers.
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