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Cover time of a random graph with given
degree sequence
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In this paper we establish the cover time of a random graph G(d) chosen uniformly at random from the set of graphs
with vertex set [n] and degree sequence d. We show that under certain restrictions on d, the cover time of G(d) is
with high probability asymptotic to d−1

d−2
θ
d
n logn. Here θ is the average degree and d is the effective minimum degree.

The effective minimum degree is the first entry in the sorted degree sequence which occurs order n times.
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1 Introduction
Let G = (V,E) be a connected graph with |V | = n vertices and |E| = m edges. For v ∈ V , let Cv be
the expected time taken for a simple random walkWv on G starting at v, to visit every vertex of G. The
vertex cover time CG of G is defined as CG = maxv∈V Cv . The vertex cover time of connected graphs
has been extensively studied. It is a classic result of [1] that CG ≤ 2m(n − 1). It was shown by [6],
[7], that for any connected graph G, the cover time satisfies (1− o(1))n log n ≤ CG ≤ (1 + o(1)) 4

27n
3.

Between these two extremal examples, the cover time, both exact and asymptotic, has been determined
for a number of different classes of random and non-random graphs. The above bounds being general,
we can often gain insight into the behavior of random walks by taking into consideration the structural
properties of the underlying graphs, and studying how estimates of the the main parameters - including
cover time - are affected in light of this knowledge.

One way is to specify the degrees of the vertices and investigate how far this determines the properties
of the walk. For any connected graph, [10] gave a cover time upper bound of 4n2dave/dmin, where dave
is the average degree and dmin is the minimum degree. For d-regular graphs, [8] improved this to 2n2. It
is interesting that the vertex degree d does not itself feature in this bound. Although the bound of [10] is
clearly O(n2) when dave/dmin is a constant, the factor of 1/dmin means that the result is not robust to
small numbers of small degree vertices that should have inconsequential effects on the cover time. The
paper [5] addresses this to some extent with a result on cyclic cover time. For an optimal cyclic list of
all the vertices of a graph, the cyclic cover time is the expected time it takes a random walk to travel
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from vertex to vertex along the list, until it completes a full cycle. This is obviously an upper bound on
the cover time. The paper [5] show that the cyclic cover time for a graph is Θ(n2dave(d

−1)ave), where
(d−1)ave is the average of the inverse of the degrees. Note, in the case of a graph where the sets of vertices
of degree d and ∆ >> d each each make up a constant proportion of the total number of vertices, we get
n2dave(d

−1)ave = Ω(n2∆/d)

In this paper we extend the above results by studying the cover time of random graphs G(d) picked
uniformly at random (uar) from the set G(d) of simple graphs with vertex set V = [n] and degree sequence
d = (d1, d2, . . . , dn). We make the following definitions: Let Vj = {i ∈ V : di = j} and let nj = |Vj |.
Let
∑n
i=1 di = 2m and let θ = 2m/n be the average degree.

It seems reasonable to ask how the various entries in the degree sequence affect the cover time. In
particular, how much does the cover time depend on the vertices of low degree, and how much on the
average degree of the graph? In fact, as in [5], both parameters play a part, as is shown in Theorem 1.

Immediately on fixing the degree sequence, d, some definitional problems arise, as e.g. there may
be just a few low degree vertices spread over a wide range. To get round this, we define an absolute
minimum degree δ, and an effective minimum degree d. The effective minimum degree is the first entry
in the sorted degree sequence which occurs order n times. We fix the minimum degree at 3 to ensure the
graph is connected (whp). Between the minimum degree, and the effective minimum degree, we place
an upper bound on the number ni of vertices of degree i. The bound we choose of ni = O(nci/d), is not
as arbitrary as it looks. Certainly when c = d/(d − 1), the effective minimum degree drops below d, so
clearly there is some c < d/(d − 1) which is critical. Finally, we make some constraints on the average
degree and upper tail of the degree sequence, to ensure simple graphs occur with high enough probability
in the configuration model. Thus we are left with the following list of conditions.

Let 0 < α < 1 be constant, 0 < c < 1/8 be constant and let d be a positive integer. Let γ → ∞ with
n. We suppose the degree sequence d satisfies the following conditions:

(i) Average degree θ = o(
√

log n).

(ii) Minimum degree δ ≥ 3.

(iii) For δ ≤ i < d, ni = O(nci/d).

(iv) nd = αn+ o(n). We call d the effective minimum degree.

(v) Maximum degree ∆ = O(nc(d−1)/d).

(vi) Upper tail size
∆∑

j=γθ

nj = O(∆).

We call a degree sequence d which satisfies conditions (i)–(vi) nice, and apply the same adjective to G(d).

Theorem 1 Let G(d) be chosen uar from G(d), where d is nice. Then whp

C(G(d)) ∼ d− 1

d− 2

θ

d
n log n.
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We note that if d ∼ θ, i.e. the graph is pseudo-regular, then

C(G) ∼ d− 1

d− 2
n log n,

which extends the result of [3] for random d-regular graphs.

Structure of the paper
The proof of Theorem 1 is based on an application of (5) below. Put simply, (5) says that, if we ignore
which vertices the random walk visits during the mixing time, the probability a vertex v is not visited by
step t is asymptotic to exp(−πvt/Rv). Here πv = d(v)/2m and Rv is the expected number of returns to
v during the mixing time, for a walk starting at v. We estimateRv in Section 4, and describe and prove the
required whp graph properties in Section 3. The proof that (5) is valid whp for G(d) is similar to proofs
in earlier papers and is given in the Appendix. The cover time C(G) is established as follows in Section
5. Firstly a general upper bound is proved in Section 5.1. In Section 5.2 a lower bound is determined by
the set of vertices S which maximize

∑
v∈S exp(−πvt/Rv).

2 Estimating first visit probabilities
Convergence of the random walk

In this section G denotes a fixed connected graph with n vertices. A random walkWu is started from
a vertex u. Let Wu(t) be the vertex reached at step t, let P be the matrix of transition probabilities of
the walk and let P (t)

u (v) = Pr(Wu(t) = v). We assume that the random walkWu on D is ergodic with
stationary distribution π, where πv = d(v)/(2m), and d(v) is the degree of vertex v.

Let
d(t) = max

u,x∈V
|P (t)
u (x)− πx|,

and let T be a positive integer such that for t ≥ T

max
u,x∈V

|P (t)
u (x)− πx| ≤ n−3. (1)

Fix two vertices u, v. Considering the walkWv , starting at v, let rt = Pr(Wv(t) = v) be the probability
that this walk returns to v at step t = 0, 1, ... . Let

RT (z) =

T−1∑
j=0

rjz
j (2)

and

λ =
1

KT
(3)

for a sufficiently large constant K.
For t ≥ T let Av(t) be the event thatWu does not visit v in steps T, T + 1, . . . , t.



4 Mohammed Abdullah and Colin Cooper and Alan Frieze

Lemma 2 Suppose that

(a) For some constant ψ > 0, we have
min
|z|≤1+λ

|RT (z)| ≥ ψ.

(b) T 2πv = o(1) and Tπv = Ω(n−2) for all v ∈ V .

There exists
pv =

πv
Rv(1 +O(Tπv))

, (4)

where
Rv = RT (1)

is from (2), such that for all v ∈ V and t ≥ T ,

Pr(Av(t)) =
(1 +O(Tπv))

(1 + pv)t
+O(T 2πve

−λt/2). (5)

3 Required graph properties
3.1 Mixing time
Given a graph G, the conductance Φ(G) of a random walkWu on G is defined by

Φ(G) = min
π(S)≤1/2

e(S : S)

d(S)

where d(S) =
∑
i∈S di, and e(A : B) denotes the number of edges with one endpoint in A and the other

in B. The lemma below follows from Lemma 10 of the Appendix by applying (8).

Lemma 3 Let d be a nice degree sequence and let G(d) be chosen uniformly at random from the G(d),
then whp

Φ(G) ≥ 0.01.

Note that Φ(G) ≥ 0.01 in Lemma 3 implies G(d) is connected.
We note a result from Sinclair [11], that

|P (t)
u (x)− πx| ≤ (πx/πu)1/2(1− Φ2/2)t. (6)

Referring to Lemma 3 and (6), if we choose A sufficiently large and

T = A log n (7)

then (1) holds.
There is a technical point here. The result (6) assumes that the walk is lazy. A lazy walk moves to a

neighbour with probability 1/2 at any step. This assumption halves the conductance. Asymptotically, the
cover time, and the value of RT (1) are also doubled. Otherwise, the lazy assumption has a negligible
effect on the analysis. We will ignore this assumption for the rest of the paper, and continue as though
there are no lazy steps.
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3.2 Structural properties of G(d)
We make our calculations in the configuration model, see Bollobás [2]. Let W = [2m] be our set of
configuration points and let Wi = [d1 + · · ·+ di−1 + 1, d1 + · · ·+ di], i ∈ [n], partition W . The function
φ : W → [n] is defined by w ∈ Wφ(w). Given a pairing F (i.e. a partition of W into m pairs) we
obtain a (multi-)graph GF with vertex set [n] and an edge (φ(u), φ(v)) for each {u, v} ∈ F . Choosing a
pairing F uniformly at random from among all possible pairings of the points of W produces a random
(multi-)graph GF . Let ν =

∑
i di(di − 1)/(2m). Assuming that ∆ = o(m1/3) (as it will be for nice

sequences), the probability that GF is simple is given by

PS = Pr(GF is simple) ∼ e− ν2− ν
2

4 , (8)

(see e.g. [9]), and each simple graph G ∈ G(d) is equiprobable.
Observe that our assumptions (i)–(vi) that d is nice imply that ν = o(

√
log n). Indeed if θ =

√
log n/γ3

where γ →∞ then

ν ≤ 1

θn

 γθ∑
j=3

njj
2 +

∆∑
j=γθ

njj
2

 ≤ 1

θn
(nγ2θ2 +O(∆3)) = o(

√
log n).

All the whp statements in this paper fail with probability at most n−Ω(1), whereas PS in (8) is at least
e−o(logn). This justifies our use of the configuration model.

Let C be a large constant and let

ω = log log log n, ω′ = C log logn. (9)

We use these values for ω, ω′ throughout the paper. A cycle C or path P is small, if it has at most 2ω′+ 1
vertices, otherwise it is large.

Let
` = B log2 n (10)

for some large constant B. A vertex v is light if it has degree at most `, otherwise it is heavy. A small
path is light if all vertices are light. A small cycle is light if it has at most one heavy vertex.

For a vertex v, let Gv be the subgraph induced by the set of vertices within a distance ω of v. A vertex
v is locally tree-like if Gv is a tree. A vertex v is r-regular, if it is locally tree-like and each vertex of Gv ,
(with the possible exception of v), has degree r. A vertex v is r-compliant, if there exists a tree subgraph
Tv of Gv rooted at v, in which each vertex of Tv (with the possible exception of v) has degree r.

Lemma 4 Whp:

(a) No pair of small light cycles are connected by a small light path.

(b) No pair of vertices on a small light cycle are joined by a small light path.

Proof We first note a useful inequality. For integer x > 0, let F (2x) = (2x)!
2xx! , then

F (θn− 2x)

F (θn)
=

(θn− 2x)!(
θn
2 − x

)
!2
θn
2 −x

(
θn
2

)
!2
θn
2

(θn)!
=

(
x∏
i=1

θn− 2i+ 1

)−1

≤
(

1

θn− 2x+ 1

)x
.
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We prove part (a) in detail; the calculations for part (b) are similar.
(a) Let µ denote the expected number of light cycle-path-cycle subgraphs consisting of cycles of length

a, b joined by a path length c. Then

µ ≤
2ω′+1∑
a=3

2ω′+1∑
b=3

2ω′+1∑
c=1

(
n

a

)(
n

b

)(
n

c

)
(a− 1)!

2

(b− 1)!

2
c!ab`2(a+b+c−2)∆6F(θn− 2(a+ b+ c+ 1))

F(θn)

(11)

Explanation. Choose a vertices for one cycle, b vertices for the other and c vertices for the path. At most
one vertex in a cycle is not light, and has degree more than ` (and at most ∆). Each light vertex has up
to `(`− 1) ways to connect to a neighbour, for a total of (at least) ((a− 1) + (b− 1) + c) light vertices,
explaining the exponent of `. The remaining, possibly heavy vertex in each cycle can connect in up to
∆(∆− 1) ways to neighbours in the cycle and ∆− 2 ways from a cycle to a path. Thus µ is bounded by

µ =

2ω′+1∑
a=3

2ω′+1∑
b=3

2ω′+1∑
c=1

nanbnc`2(a+b+c−2)∆6

(
1

θn− 12ω′ + 6

)a+b+c

≤ ∆6

θn− 12ω′ + 6

∑
a

∑
b

∑
c

(
n`2

θn− 12ω′ + 6

)a+b+c

= O

(
∆6`12ω′+6ω′3

θn

)
.

Thus Pr(µ > 0) = o(n−ε), for some constant ε > 0, since ∆ = O(nc(d−1)/d) where c < 1/6. 2

Lemma 5 Whp:
(a) The number of vertices v ∈ V that are not d-compliant is at most n4c(d−1)/d.
(b) There is no small vertex v, δ ≤ d(v) < d which is not d-compliant.

Proof (a) We lower bound the probability P that v is d-compliant by the success, in the configuration
model, of the following process.
Process P: For 0 ≤ i ≤ ω − 1, and for each vertex w at level i, the first d− 1 unpaired points of w pair
with points of distinct unused vertices u of degree d(u) ≥ d.

The tree created by process P involves N1 − 1 = dv
∑i=ω−1
i=0 (d − 1)i ≤ ∆(d − 1)ω pairings. Let σ

represent the sum of degrees of vertices of degree less than d. Thus

P ≥
N1∏
i=1

θn− i∆− σ
θn− 2i+ 1

≥
(

1− N1∆ + σ

θn

)N1

.

Let X count the number of vertices v that are not d-compliant. Using the inequality 1 − (1 − x)y ≤ xy
for real x, y, 0 ≤ x ≤ 1, y ≥ 1, we have

E[X] ≤ n(1− P ) = n

(
1−

(
1− N1∆ + σ

θn

)N1
)
≤ N1(N1∆ + σ)

θ
. (12)
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We have that ∆ = O(nc(d−1)/d), and from ni = O(nci/d) we find that σ = O(nc(d−1)/d). Thus

E[X] = Õ(∆3 + ∆σ) = Õ(n3c(d−1)/d) ≤ K logL nn3c(d−1)/d

for some K,L > 0. Then,
Pr(X ≥ n4c(d−1)/d) = Õ(n−c(d−1)/d). (13)

(b) In this case we have that the number of small vertices is O(n
c(d−1)
d ) and so E[X] = Õ(n

2c(d−1)
d −1).

2

Lemma 6 Whp: There are n1−o(1) d-regular vertices v ∈ V with d(v) = d.

Proof We consider d-regular vertices that have a root vertex v of degree d. Recall that nd = |Vd| =
αn + o(n) for some constant α > 0. Let N2 = 1 + d(d − 1)ω . A d-regular tree of depth ω contains
N2 vertices. We proceed in a similar manner to Lemma 5, and bound the probability P that a vertex v is
d-regular by bounding the probability of success of the construction of a d-regular tree in the configuration
model.

P = Pr(a vertex v is d-regular) =

N2−1∏
i=1

d(nd − i)
θn− 2i+ 1

≥
(
d
nd −N2

θn

)N2

. (14)

Let M count the number of d-regular vertices, then E[M ] = µ = ndP , and

µ = E[M ] ≥ n1−o(1). (15)

To estimate Var[M ], let Iv be the indicator that vertex v is d-regular. We have

E[M2] = µ+
∑
v∈Vd

∑
w∈Vd,w 6=v

E[IvIw], (16)

and

E[IvIw] = Pr(v, w are d-regular, Gv ∩Gw = ∅) + Pr(v, w are d-regular, Gv ∩Gw 6= ∅).

Now

Pr(v, w are d-regular, Gv ∩Gw = ∅) =

2N2−2∏
i=1

d(nd − i− 1)

θn− 2i+ 1
≤ P 2. (17)

For any vertex v, the number of vertices u such that Gv ∩Gw 6= ∅ is bounded from above by N2 + dN2
2 .

Using this and (17), we can bound (16) from above by µ+ µ2 + µ(N2 + dN2
2 ).

By the Chebychev Inequality, for some constant 0 < ε̃ < 1,

Pr
(
|M − µ| > µ

1
2 +ε̃
)
≤ Var[M ]

µ1+2ε̃
=

E[M2]− E[M ]2

µ1+2ε̃
≤ µ+ µN2 + µdN2

2

µ1+2ε̃
= O(n−ε).

The lemma now follows from (15). 2



8 Mohammed Abdullah and Colin Cooper and Alan Frieze

4 Expected number of returns in the mixing time
The local graph Γv . For vertex v, inductively define a sub-graph Γv of Gv as follows: If u ∈ Gv is
heavy, delete an edge (u,w) ∈ Gv iff there is no (w, v)-path that is light. After this process is completed,
let Γv be the connected component of Gv rooted at v. The following lemma is a consequence of this
construction.

Lemma 7 Either Γv is a tree, or Γv contains a unique light cycle C.

Denote by Γ◦v the subset of the vertices of Γv consisting of pruned heavy vertices, and vertices at
distance ω from the root v.

Lemma 8 Let W∗v denote the walk on Γv starting at v with Γ◦v made into absorbing states. Let R∗v =∑∞
t=0 r

∗
t where r∗t is the probability thatW∗v is at vertex v at time t. There exists a constant ζ ∈ (0, 1)

such that
Rv = R∗v +O(ζω).

Proofs of a lemma similar to Lemma 8 are given in e.g. [3]. For completeness the proof of Lemma 8 is
given in the Appendix.

Lemma 9 Let G(d) be good. For a vertex v ∈ V ,

(a) If v is d-regular, then Rv = d−1
d−2 +O(ζω).

(b) If v is d-compliant then Rv ≤ d−1
d−2 (1+o(1)).

(c) For any v, Rv ≤ δ−1
δ−2 (1+o(1)).

(a) We calculate R∗v for a walk W∗v on an d-regular tree Γv with Γ◦v made into absorbing states. For
a biased random walk on (0, 1, ..., k), starting at vertex 1, with absorbing states 0, k, and with transition
probabilities at vertices (1, . . . , k − 1) of q = Pr(move left), p = Pr(move right); then

Pr(absorption at k) =
(q/p)− 1

(q/p)k − 1
. (18)

We projectW∗v onto (0, 1, . . . , ω) with p = d−1
d and q = 1

d giving

Pr( absorption at Γ◦v) =

(
1− 1

d− 1

)(
1 +O

(
1

(d− 1)ω

))
.

Let fv be the probability of a return to v. Then

R∗v =
1

1− fv
=
d− 1

d− 2
+O

(
1

(d− 1)ω

)
(19)

and part (a) of the lemma follows.

(b) If v is d-compliant, we can prune Gv removing edges from each vertex (other than v) until v is
d-regular. Treating the edges as having unit resistance, this pruning process cannot decrease the effective
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resistance between v and a hypothetical vertex ζ that is connected by a zero-resistance edge to each of the
vertices in Γ◦v (and no others). Then by part (a) and Rayleigh’s monotonicity law part (b) of the lemma
follows. (Here we are using the the fact that the probability of reaching ζ before returning to v is equal
to 1

d(v)R where R is the effective resistance between v and ζ. Rayleigh’s Law states that deleting edges
increases R).

(c) All vertices on a path from v to Γ◦v have degree at least δ. Thus in expectation there are at most
(δ − 1)/(δ − 2) + o(1) returns to v before absorption. If absorption is at distance ω, the arguments in
(a), (b) above apply. If not, absorption is at a heavy vertex u ∈ Γ◦v , that is at distance less then ω from v.
Such a vertex will have at most two paths back (on the unique light cycle). All other paths to v in G(d)
go via other heavy vertices. Hence if a particle is at u, with probability at most 2/` it will enter a path to
v in Γv and probability at least 1− 2/` enter a path in which it will only reach v by going through another
vertex in Γ◦v first. Thus the probability of reaching v in time T after having visited a heavy vertex in Γ◦v is
at most O(T/`). So

∑ω
t=0 rt − r∗t = O(ωT/l) = o(1). 2

5 Cover time of G(d)
5.1 Upper bound on cover time
Let TG(u) be the time taken by the random walkWu to visit every vertex of a connected graph G. Let Ut
be the number of vertices of G which have not been visited byWu at step t. We note the following:

Cu = E[TG(u)] =
∑
t>0

Pr(TG(u) ≥ t), (20)

Pr(TG(u) ≥ t) = Pr(TG(u) > t− 1) = Pr(Ut−1 > 0) ≤ min{1,E[Ut−1]}. (21)

Recall from (5) that As(v) is the event that vertex v has not been visited by time s. It follows from (20),
(21) that

Cu ≤ t+ 1 +
∑
s≥t

E[Us] = t+ 1 +
∑
v

∑
s≥t

Pr(As(v)). (22)

Let t0 =
(
d−1
d−2

θ
d

)
n log n and t1 = (1 + ε) t0, were ε = o(1) is sufficiently large that all inequalities

claimed below hold. We will use the notation dv for d(v). We assume that the high probability claims of
Sections 3, 4 hold. In the Appendix, we establish that condition (a) of Lemma 2 holds. Condition (b) of
Lemma 2, that Tπv = o(1), holds trivially as the maximum degree is na, a < 1.

Recall from (4) that pv = (1 + (Tπv))dv/(θnRv). Thus by (5), the probability thatWu has not visited
v during [T, t] is given by

Pr(At(v)) = (1 + o(1))e−tpv +O(T 2πve
−λt/2) (23)

= (1 + o(1))e−tpv . (24)

Thus ∑
t≥t1

(1 + o(1))e−tpv = (1 + o(1))e−t1pv
∑
t≥t1

e−(t−t1)pv

≤ 2p−1
v e−t1pv

= O(1)
θnRv
dv

exp

{
−(1 + Θ(ε))

dv
d

d− 1

d− 2

log n

Rv

}
. (25)
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We consider the following partition of V :
(i) VA =

⋃
δ≤i<d Vi.

(ii) VB =
⋃
i≥δ{v ∈ Vi : v is d-compliant}.

(iii)VC =
⋃
i≥δ{v ∈ Vi : v is not d-compliant}.

Case (i): δ ≤ dv < d.
For these vertices, Γv is d-compliant by Lemma 5. Consider vertices in Vi, i < d. By Lemma 9 (b),
Rv ≤ (1 + o)1))d−1

d−2 so for v ∈ Vi (25) is bounded by O(θn)n−(1+o(1)) id . Recall that |Vi| = O(nci/d)
where c < 1. Thus∑

v∈Vi

∑
t≥t1

(1 + o(1))e−tpv ≤ O(θn)nci/dn−(1+o(1))i/d = o(t1).

Case (ii): d ≤ dv , v is d-compliant.
For v ∈ VB (25) is bounded by O(θ)n−Θ(ε). Therefore∑

v∈VB

∑
t≥t1

(1 + o(1))e−tpv ≤
∑
v∈VB

O(θ)n−Θ(ε) = O(θn)n−Θ(ε) = o(t1).

Case (iii): d ≤ dv , v is not d-compliant.
For vertices v ∈ VC (25) is bounded by O(θn)n−(1+Θ(ε)) δ−2

δ−1
d−1
d−2 . By Lemma 5, |VC | ≤ n4c(d−1)/d

where 4c < 1/2 ≤ d
d−2

δ−2
δ−1 . Hence∑

v∈VC

∑
t≥t1

(1 + o(1))e−tpv =
∑
v∈VC

O(θn)n−(1+Θ(ε)) δ−2
δ−1

d−1
d−2

= O(nc(d−1)/dθn)n−(1+Θ(ε)) δ−2
δ−1

d−1
d−2

= o(t1).

In each of the cases above, the term
∑
v

∑
s≥t Pr(As(v)) = o(t1) and thus, from (22), Cu ≤ (1+o(1))t1

as required. This completes the proof of the upper bound on cover time of G(d). 2

5.2 Lower bound on cover time
Let t2 = (1− ε)t0, were ε = o(1) is sufficiently large that all inequalities claimed below hold. For vertex
u of degree d, we exhibit a set of vertices S such that at time t2 the probability the set S is covered by the
walkWu tends to zero. Hence TG(u) > t2, whp which implies that CG ≥ t0 − o(t0).

We construct S as follows. Let Sd be the set of d-regular vertices of degree d. Lemma 6 tells us that
|Sd| = n1−o(1). Let ω′ = C log log n for some large C. Let S be a maximal subset of Sd such that the
distance between any two elements of S is least ω′. Thus |S| = Ω(n1−o(1)/dω

′
).

Let S(t) denote the subset of S which has not been visited byWu after step t. Let v ∈ S, then

Pr(Av(t2)) = (1 + o(1))e−t2pv(1−O(pv)) + o(n−2).

Hence

E(|S(t2)|) ≥ (1 + o(1))|S|e−(1−ε)t0pv (26)

= Ω

(
nε/2−o(1)

dω′

)
→∞. (27)
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Let Yv,t be the indicator for the event At(v). Let Z = {v, w} ⊂ S. We will show (below) that that for
v, w ∈ S

E(Yv,t2Yw,t2) =
1 +O(Tπv)

(1 + pZ)t2
+ o(n−2), (28)

where pZ ∼ pv + pw + o(1/ log n). Thus

E(Yv,t2Yw,t2) = (1 + o(1))E(Yv,t2)E(Yw,t2)

which implies
E(|S(t2)|(|S(t2)| − 1)) ∼ E(|S(t2)|)(E(|S(t2)|)− 1). (29)

It follows from (27) and (29), that

Pr(S(t2) 6= ∅) ≥ E(|S(t2)|)2

E(|S(t2)|2)
=

1
E(|S(t2)|(|S(t2)|−1))

E(|S(t2)|)2 + E(|S(t2)|)−1
= 1− o(1).

Proof of (28). Let Ĝ be obtained from G by merging v, w into a single node Z. This node has degree
2d and is d-regular. RZ = (Rv + Rw)/2 + ρ where ρ is the expected number of passages between v, w
in T steps. By Lemma 4 the number of light paths between v, w is at most 2. Using arguments similar to
Lemma 9, we find ρ = O(T/(δ − 1)ω

′
) = o(1/ log n).

There is a natural measure-preserving mapping from the set of walks in G which start at u and do not
visit v or w, to the corresponding set of walks in Ĝ which do not visit Z. Thus the probability thatWu

does not visit v or w in steps T...t is asymptotically equal to the probability that a random walk Ŵu in Ĝ
which also starts at u does not visit Z in steps steps T...t. The detailed argument is given in [4].

We apply Lemma 2 to Ĝ. That πZ = 2d
θn is clear. Furthermore, the vertex Z is tree-like up to distance

ω in Ĝ. The derivation of RZ as in Lemma 9(a) is valid. The fact that the root vertex of the corresponding
infinite tree has degree 2d does not affect the calculation of R∗Z . 2
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Appendix
Proof of conductance bound in Lemma 3
By the conductance of a configuration C, we mean the conductance of a random walk on the underlying
multi-graph M(C). It is however, the configurations we sample uar in the proof of Lemma 10.

Lemma 10 Let d = (d1, d2, ..., dn) be a sequence of natural numbers, satisfying min di ≥ 3 and θ ≤
n1/4. With probability 1 − o(n−1/9) the conductance Φ of a uar sampled configuration C(d) satisfies
Φ ≥ 0.01.

Proof Let F (a) = a!/((a/2)!2(a/2)). With this notation,

F (b)F (a− b)
F (a)

=

(
a/2
b/2

)(
a
b

) = O(1)

(
b

a

)b/2(
1− b

a

)(a−b)/2

. (30)

For any S ⊆ V let d(S) denote the sum of the degrees of the vertices of S. A set S is small if d(S) ≤
(θn)1/4. A set is large if (θn)1/4 ≤ d(S) ≤ θn/2. Let β < 1 be a positive constant. We choose β = 0.99.

SMALL SETS (δ|S| ≤ d(S) ≤ (θn)1/4).
Let N(s, β) be the expected number of small sets S of size s with at least βd(S) induced edges.

N(s, β) =
∑
S

(
d(S)

βd(S)

)
F (βd(S))F (θn− βd(S))

F (θn)
. (31)

Thus using (30), δs ≤ d(s) ≤ (θn)1/4 and δ ≥ 3 we find

N(s, β) ≤ O(1)
∑
S

(
e

β

)βd(S)(
βd(S)

θn

)βd(S)/2

≤ O(1)

(
ne

s

(
e2

β(θn)3/4

)3β/2
)s

= O(n−(9β/8−1)s).

Thus ∑
|S|=s
S Small

N(s, β) = O(n−(9β/8−1)).

LARGE SETS((θn)1/4 ≤ d(S) ≤ θn/2).
Let N(s, β) be the expected number of large sets S of size s inducing at least βd(S) edges. As before,
N(s, β) is given by (31). Let d(S) = αθn where 0 < α ≤ 1/2. Let ε = 1 − β. We note the following
approximation: (

d(s)

βd(S)

)
=

(
αθn

βαθn

)
=

O(1)√
εβαθn

1

ββαθnεεαθn
.

Thus

N(s, β) ≤
∑
S

O(1)√
εβαθn

(
(αβ)αβ(1− αβ)1−αβ

(εεββ)2α

) θn
2

=
∑
S

f(S). (32)
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Let s = cn. We henceforth assume that we choose the value α = α∗ which maximizes f(S) for |S| = cn.
With this convention we can write

N(cn, β) ≤ O(1)√
εβc(1− c)αθn2

((
(αβ)αβ(1− αβ)1−αβ

(εεββ)2α

) θ
2 1

cc(1− c)1−c

)n
. (33)

We split the proof for large sets into two parts: Those sets for which α ≤ 1/θ and those for which
1/θ ≤ α ≤ 1/2.

Case of α ≤ 1/θ.
We need to remove the dependence on c in the right hand side of the expression (33) for N(cn, β). We
first deal with the square root term. Since 1

n ≤ c ≤
(n−1)
n , we have that c(1− c) ≥ n−1

n2 and so

c(1− c)αθn2 ≥ n− 1

n2
(θn)1/4n ≥ (θn)

1/4
/2.

Therefore, as β, ε are positive constants,

1√
εβc(1− c)αθn2

=
O(1)

(θn)1/8
.

We next consider the main term of (33). For 0 ≤ x ≤ 1/2, the function

g(x) = xx(1− x)1−x

satisfies, g(0) = 1 and is monotonically decreasing with minimum g(1/2) = 1/2.
Since d(S) ≥ 3s, and s = cn, from d(S) = αθn we deduce that c ≤ αθ/3. As α ≤ 1/θ then

c ≤ αθ/3 ≤ 1/3. Therefore g(c) ≥ g(αθ/3), and we can replace c by αθ/3 in (33). Hence

N(cn, β) =
O(1)

(θn)1/8

(
(αβ)αβθ/2(1− αβ)1−αβθ/2

(αθ/3)αθ/3(1− αθ/3)1−αθ/3
(1− αβ)θ/2−1

(εεββ)αθ

)n
=

O(1)

(θn)1/8
(φ(α, β, θ))n.

We next maximize φ(α, β, θ). Let h(x, y) = (yx)x(1− yx)1−x for 0 < x, y ≤ 1. Considering h(x, y) as
a function of y, there is a unique maximum at y = 1, given by

∂

∂y
log(h(x, y)) = x

(
1

y
− 1− x

1− yx

)
= 0,

∂2

∂y2
log(h(x, y)) = −x

(
1

y2
+

x(1− x)

(1− yx)2

)
< 0.

Therefore h(x, y) < h(x, 1) = g(x). So h(αβθ/2, 2/θ) < g(αβθ/2) < g(αθ/3). Hence

φ(α, β, θ) ≤ (1− αβ)θ/2−1

(εεββ)αθ
.
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We prove below, that
∂

∂θ

{
(1− αβ)θ/2−1

(εεββ)αθ

}
< 0. (34)

Since θ ≥ δ ≥ 3, we have that

(1− αβ)θ/2−1

(εεββ)αθ
≤ e−αβ/2

(εεββ)3α
≤ λα,

where λ < 0.7, provided β ≥ 0.99.
Now since αθn ≥ (θn)1/4 for large sets, and θ ≤ n1/4 by conditions of the lemma, we have that

αn ≥ n1/16. Thus

N(cn, β) =
O(1)

(θn)1/8
(φ(α, β, θ))n

= O(λn
1/16

).

As s = cn can take at most n values we have that
∑
N(cn, β) = O(nλn

1/16

).
Proof of (34).

∂

∂θ

{
(1− αβ)θ/2−1

(εεββ)αθ

}
=

1

1− αβ

(
(1− αβ)

1
2

(εεββ)α

)θ
log

(
(1− αβ)

1
2

(εεββ)α

)
.

Let

f(α, β) =
(1− αβ)

(εεββ)2α
.

When α = 0, f(α, β) = 1. We prove that, for β ≥ 0.99, f(α, β) < 1 for α > 0, which will establish the
result. Note that

∂

∂α
f(α, β) =

−1

(εεββ)2α

(
β + (1− αβ) log(εεββ)2

)
. (35)

Consider

d

dβ

{
log(εεββ)2 + β

}
≡ d

dβ

{
log((1− β)

1−β
ββ)2 + β

}
= 2 log

(
β

1− β

)
+ 1.

For β > 1
2 , the last line above is positive, and thus log(εεββ)2 > −β. It follows that (35) is negative, as

required.
Case of 1/θ ≤ α ≤ 1/2.

Continuing to evaluate N(s, β) as before, and referring to f(S) as given by the right hand side term of
(32), let

A(α) =
(αβ)αβ(1− αβ)1−αβ

(εεββ)2α
.
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Thus

log(A(α)) = (αβ) log((αβ)) + (1− αβ) log(1− αβ)− 2α log(εεββ),

∂

∂α
log(A(α)) = β log(αβ)− β log(1− αβ)− 2 log(εεββ).

Setting ∂
∂α log(A(α)) = 0 gives

α =
ε2ε/ββ

1 + ε2ε/ββ2
.

Let α0 be the solution to this when β = 0.99. Thus α0 ≈ 0.477. Also,

∂2

∂α2
log(A(α)) = β

(
1

α
+

β

1− αβ

)
> 0

hence the stationary point α0 is a minima. As θ ≥ 3 and by inspection, A(0.5) < A(1/3) then A(α0) ≤
A(1/θ). We can use α∗ = 1/θ as the value of α maximizing A(α) in the range 1/θ ≤ α ≤ 1/2. It
follows that ∑

SLarge
α≥1/θ

f(S) =

(
1√
θn

)
2n(A(1/θ))

θn
2

= O(1)2n

(
(β/θ)

β
2 (1− β/θ) 1

2 (θ−β)

εεββ

)n
.

Let

T (θ) =

(
β

θ

)β (
1− β

θ

)θ−β
,

then
∂

∂θ
log(T (θ)) = log

(
θ − β
θ

)
.

Thus T (θ) is monotone decreasing in θ, and so T (θ) ≤ T (3). Finally

∑
N(s, β) ≤ O(n)2n

(
(β/3)

β
2 (1− β/3)

1
2 (3−β)

εεββ

)n
= O (n (0.8)n) .

This completes the proof of the lemma. 2

Proof of Lemma 8
For convenience, we restate the lemma.

Lemma 11 LetW∗v denote the walk on Γv starting at v with Γ◦v made into absorbing states. Let R∗v =∑∞
t=0 r

∗
t where r∗t is the probability thatW∗v is at vertex v at time t. There exists a constant ζ ∈ (0, 1)

such that
Rv = R∗v +O(ζω).
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Proof We bound |Rv −R∗v| by using

Rv −R∗v =

(
ω∑
t=0

rt − r∗t

)
+

(
T∑

t=ω+1

rt − r∗t

)
−

∞∑
t=T+1

r∗t . (36)

Case t ≤ ω. When a particle starting from v is absorbed at Γ◦v , this is either at at distance ω, or by a heavy
vertex u at distance less than ω from v. In the case of a heavy vertex u, by the light cycle condition, there
are at most two light paths back to v from u of length at most ω. All other paths of length at most ω go
via other heavy vertices. Hence if a particle is at u, with probability at most 2/` it will enter a light path
to v. Thus the probability of reaching v in time ω after having landed on a heavy vertex of Γ◦v is at most
O(ω/`) = o(ζω). In the alternative case that absorption is at distance ω from v, then for t < ω, r∗t = rt.
Thus we can write (

ω∑
t=0

rt − r∗t

)
= o(ζω). (37)

Case ω + 1 ≤ t ≤ T . Using (6) with x = u = v and ζ = (1 − Φ2/2) < 1, we have for t ≥ ω, that
rt = πv +O(ζt). Since ∆ = O(na), a < 1, we have Tπv = o(ζω) and so

T∑
t=ω+1

|rt − r∗t | =
T∑

t=ω+1

rt ≤
T∑

t=ω+1

(πv + ζt) = O(ζω). (38)

Case t ≥ T + 1. It remains to estimate
∑∞
t=T+1 r

∗
t . We upper bound r∗t by a probability σt as follows.

Assume first that Γv is a tree. Consider an unbiased random walk X(b)
0 , X

(b)
1 , . . . starting at |b| < a ≤ ω

on the infinite line (...,−a, ...,−1, 0, 1, ..., a, ...). X(b)
m is the sum ofm independent±1 random variables.

The central limit theorem implies that there exists a constant c > 0 such that

Pr(|X(0)
ca2 | < a) ≤ e−1/2. (39)

Now for any t and b with |b| < a, we have

Pr(|X(b)
τ | < a, τ = 0, ..., t) ≤ Pr(|X(0)

τ | < a, τ = 0, ..., t) (40)

which is justified with the following game: We have two walks, A and B coupled to each other, with A
starting at position 0 and B at position b, which, w.l.o.g, we shall assume is positive. The walk is a simple
random walk which comes to a halt when either of the walks hits an absorbing state (that being, −a or a).
Since they are coupled, B will win iff they drift (a − b) to the right from 0 and A will win iff they drift
−a to the left from 0. Given the symmetry of the walk, B has a higher chance of winning.

For t > T , we define σt by

σt = Pr(|X(0)
τ | < a, τ = 0, 1, . . . , t) ≤

(
e−1/2

)bt/(ca2)c
. (41)

The paths from v to Γ◦v in the tree satisfy a ≤ ω, and so

∞∑
t=T+1

σt ≤
∞∑

t=T+1

e−t/(3cω
2) ≤ e−T/(3cω

2)

1− e−1/(3cω2)
= O(ω2e−Θ( logn

ω2 )) = O(ζω)
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We now turn to the case where Γv contains a unique light cycle C. Let x be the furthest vertex of C from
v in Γv . This is the only possible place where the random walk is more likely to get closer to v at the next
step. We can see this by considering the breadth first construction of Γv . Thus we can compare our walk
with random walk on [−a, a] where there is a unique value x < a such that only at ±x is the walk more
likely to move towards the origin and even then this probability is at most 2/3. Using results (39), (40) for
the unbiased walk on the line, we have

Pr(∃τ ≤ ca2 : |X(b)
τ | ≥ x) ≥ 1− e−1/2.

The probability the particle walks from x to a without returning to the cycle is at least 1/3(a− x). Thus

Pr(∃τ ≤ ca2 : |X(b)
τ+a−x| ≥ a) ≥ (1− e−1/2)/3a ≥ 13

100a
,

and so

σt = Pr(|X(0)
τ | < a, τ = 0, 1, . . . , t) ≤ (1− 13/(100a))bt/(2ca

2)c ≤ e−t/(20ca3). (42)

As a ≤ ω,
∞∑

t=T+1

σt ≤
∞∑

t=T+1

e−t/(20cω3) ≤ e−T/(20cω3)

1− e−1/(20cω3)
= O

(
ω3e−O( logn

ω3 )
)

= O(ζω)

2

Condition (a) of Lemma 2
Lemma 12 There exists a constant ψ > 0 such that for |z| ≤ 1 + λ, |RT (z)| ≥ ψ.

Proof As in Lemma 8, we consider the walkW∗v on Γv , starting from v, and with absorption at Γ◦v .
For this walk, let βt be the probability of a first return to v at step t, and let r∗t be the probability of a
return to v at step t.

Let β(z) =
∑T
t=1 βtz

t, let α(z) = 1/(1 − β(z)), and write α(z) =
∑∞
t=0 αtz

t. Thus αt is the
probability of a return to v at time t for a walk W†v , all of whose excursions from v are length at most
T . Observe that αt ≤ r∗t ≤ rt. We shall prove below that the radius of convergence of α(z) is at least
1 + Ω(1/ω3).

We can write

RT (z) = α(z) +Q(z)

=
1

1− β(z)
+Q(z), (43)

where Q(z) = Q1(z) +Q2(z), and

Q1(z) =

T∑
t=0

(rt − αt)zt

Q2(z) = −
∞∑

t=T+1

αtz
t.
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We note that Q(0) = 0, α(0) = 1 and β(0) = 0.
We claim that the expression (43) is well defined for |z| ≤ 1 + λ. We will show below that

|Q2(z)| = o(1) (44)

for |z| ≤ 1 + 2λ and thus the radius of convergence of Q2(z) (and hence α(z)) is greater than 1 + λ.
This will imply that |β(z)| < 1 for |z| ≤ 1 + λ. For suppose there exists z0 such that |β(z0)| ≥ 1. Then
β(|z0|) ≥ |β(z0)| ≥ 1 and we can assume (by scaling) that β(|z0|) = 1. We have β(0) < 1 and so we can
assume that β(|z|) < 1 for 0 ≤ |z| < |z0|. But as ρ approaches 1 from below, (43) is valid for z = ρ|z0|
and then |RT (ρ|z0|)| → ∞, contradiction.

Recall that λ = 1/KT . Clearly β(1) ≤ 1 and so for |z| ≤ 1 + λ

β(|z|) ≤ β(1 + λ) ≤ β(1)(1 + λ)T ≤ e1/K .

Using |1/(1− β(z))| ≥ 1/(1 + β(|z|)) we obtain

|RT (z)| ≥ 1

1 + β(|z|)
− |Q(z)| ≥ 1

1 + e1/K
− |Q(z)|. (45)

We now prove that |Q(z)| = o(1) for |z| ≤ 1 + λ and the lemma will follow.
Turning our attention first to Q1(z), we have

|Q1(z)| ≤ (1 + λ)T |Q1(1)| ≤ e2/K
T∑
t=0

|rt − αt|. (46)

From (37), (38) of the proof of Lemma 8, we see that
∑T
t=0 |rt − αt| = o(1), hence |Q1(z)| = o(1).

We now consider Q2(z). As in Lemma 8, let r∗t be the probability that a walkW∗v on Γv starting at v
has not been absorbed at Γ◦v by step t. Then αt ≤ r∗t ≤ σt, so

|Q2(z)| ≤
∞∑

t=T+1

σt|z|t,

In the case where Gv is a tree we can use (41) to prove that the radius of convergence of Q2(z) is at least
e1/(3cω2) � 1 + 2λ. So for |z| ≤ 1 + λ,

|Q2(z)| ≤
∞∑

t=T+1

eλt−t/(3cω
2) = o(1).

In the case that Gv contains a unique cycle, we can use (42) to see that the radius of convergence of
Q2(z) is at least e

1
20cω3 � 1 + 2λ. So for |z| ≤ 1 + λ,

|Q2(z)| ≤
∞∑

t=T+1

eλt−t/(20cω3) = o(1).

2
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