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Enumeration of inscribed polyominos

Alain Goupil1†, Hugo Cloutier1 and Fathallah Nouboud1
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Abstract. We introduce a new family of polyominos that are inscribed in a rectangle of given size for which we
establish a number of exact formulas and generating functions. In particular, we study polyominos inscribed in a
rectangle with minimum area and minimum area plus one. These results are then used for the enumeration of lattice
trees inscribed in a rectangle with minimum area plus one.

Résumé. Nous introduisons une nouvelle famille de polyominos inscrits dans un rectangle de format donné pour
lesquels des formules exactes et des séries génératrices sont présentées. Nousétudions en particulier les polyominos
inscrits d’aire minimale et ceux d’aire minimale plus un. Ces résultats sont ensuite utilisés pour l’énumération de
polyominos arbres inscrits dans un rectangle d’aire minimum plus un.
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1 Introduction
S. Golomb introduced polyominos in 1952 [6]. Various families of polyomominos have been defined and
investigated since then (see [1], [2], [4], [5] and ref. therein). Algorithms have also been developed for
their enumeration (see [7]). But the problem of their enumeration in the general case remains unsolved.
In this work, we have developed formulas that, to our knowledge, are counting polyominos of a family
not described in the existing literature so we could not connect our work with it.

A polyomino, sometimes called an animal, is a set of unit square cells in the discrete plane N × N
connected by their edges up to translation. We are interested in the number p(n) of polyominos with
n cells where n is called the area of these polyominos. A polyomino is inscribed in a rectangle b × k
when it is included in the rectangle and each of the four edges of the rectangle is touched by a cell of the
polyomino. The minimum number of cells in a polyomino inscribed in a b × k rectangle has b + k − 1
cells and we will denote respectively by pmin(b, k) and pmin+1(b, k) the number of polyominos that are
inscribed in a b × k rectangle and have minimum area and minimum area plus one. A lattice tree is a
polyomino that contains no cycle and we will also be interested with lattice trees inscribed in a rectangle.
The main results of this work are the following.
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Theorem 1 For integers b ≥ 2, k ≥ 2, the number pmin(b, k) of polyominos inscribed in a rectangle
b× k with minimal area n = b+ k − 1 is given by the fomula

pmin(b, k) = 2k + 2b− 3bk − 8 + 8

(
k + b− 2

b− 1

)
Corollary 1 For all integers n ≥ 1 the number pmin(n) of polyominos with n cells inscribed in a rect-
angle of perimeter 2(n+ 1) is given by the fomula

pmin(n) = 2n+2 − 1

2
(n3 − n2 + 10n+ 4)

The polyominos in the previous corollary can also be seen as animals occupying a rectangular region of
maximal perimeter with respect to their area.

Theorem 2 The two variables generating function for the number pmin(b, k) of polyominos of minimal
area inscribed in a rectangle b× k has the following rational form :

∑
b,k≥1

fmin(b, k)x
byk = 2

(
1 +

xy

(1− x)(1− y)

)2
xy

(1− x− y)
−

(
xy

(1− x)2(1− y)2
− xy2

(1− y)2
− x2y

(1− x)2

)
Theorem 3 For all integers b, k ≥ 1, the number pmin+1(b, k) of polyominos inscribed in a rectangle
b× k that have minimum area plus one is

pmin+1(b, k) =



0 if b = 1 or k = 1
1 if b = k = 2

4b2 − 16b+ 18 if k = 2 and b > 2

8(b+ k − 22)
(
b+k−4
b−2

)
+ 8(2k2+2kb+b−13k+13)

(k−2)
(
b+k−4
b−1

)
+ 8(2b2+2kb+k−13b+13)

(b−2)
(
b+k−4
k−1

)
+ 48

(
b+k−2
b−1

)
− 4

3 (b
3 + k3)− 12(b2k + bk2) + 16(b2 + k2)

+72bk − 266
3 (b+ k) + 120 if b ≥ 3 and k ≥ 3

Corollary 2 For all integers n ≥ 5, the number pmin+1(n) of polyominos with n cells inscribed in a
rectangle of perimeter 2n is

pmin+1(n) = 2n−1(5n− 6)− 2

3
(4n4 − 44n3 + 215n2 − 451n+ 318)

A consequence of theorem 3 and corollary 2 is to obtain exact formulas for corresponding sets of lattice
trees inscribed in a rectangle.

It is clear that any general polyomino is always inscribed in a rectangle so that the set Po(n) of poly-
ominos with area n can be partitionned into classes given by the the dimensions b×k of the circonscribed
rectangles. Our approach in counting inscribed polyominos thus constitute a fair strategy to attack the
well known problem of counting the total number po(n) = card(Po(n)) of polyominos of area n.
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Notations. As a general rule we will use capital letters for sets and corresponding small letters for their
cardinalities. We will introduce specific notations as they are needed.

2 Proofs of the formulas
Proof of theorem 1. We begin with two geometric observations on inscribed polyominos with minimal
area. 1- All inscribed polyominos with minimal area are oriented along one of the two diagonals of
the b × k rectangle noting that polyominos with a cross shape (figure (1 d)) are the only polyominos
with minimal area that can be seen as oriented along both diagonals. 2- Minimal area polyominos all
have a structure in three parts: one hook, possibly reduced to a unique cell, on each end of the diagonal
connected on their corner by a stair polyomino in the direction of the diagonal as shown in figure 1 c).
A stair polyomino (figure (1 b)) along one diagonal, going say from north-west to south-east \ is a path
allowed only two directions for adjacent cells: east→ and south ↓.

b

k

d) Cross polyomino b) Stair polyomino a) Fundamental hook c) Generic polyomino
    with minimal area

Fig. 1: Inscribed minimal polyominos

The geometric triple-structure of polyominos with minimal area appearing in figure 1 c) can also be
given a biological interpretation. Animals with n cells that need to touch the edges of a rectangle of
maximal perimeter must have this geometric triple-structure and shape.

We have produced two proofs of theorem 1. Each proof consists in a case study of the set of polyominos
of minimal area. The first proof uses the triple-structure hook-stair-hook of minimal polyominos and the
second proof is a dynamic construction of the polyominos beginning with the fundamental hook (figure 1
a)) and moving the square cells horizontally or vertically to form a new inscribed polyomino. We present
here only the first proof.

Let Pmin,\(b, k) be the set of polyominos of minimal area inscribed in a rectangle b×k along the diago-
nal from north-west to south-east. Denote by pmin,\(b, k) the cardinality of Pmin,\(b, k). Let Pmin,/(b, k)
and pmin,/(b, k) be similarly defined for the other diagonal. Since there is clearly a bijection between the
two sets Pmin,\(b, k) and Pmin,/(b, k), we need only consider one of the diagonals of the rectangle. The
set P+(b, k) of Cross polyominos satisfies P+(b, k) = Pmin,\(b, k) ∩ Pmin,/(b, k), so that we have

pmin(b, k) = 2pmin,\(b, k)− p+(b, k) (1)

Let Pmin,(i,j)(b, k) be the set of polyominos in Pmin,\(b, k) having the corner cell of their upper left hook
in position (i, j) in matrix notation. Thus pmin,(1,1)(b, k) is the number of polyominos in Pmin,\(b, k)
that have a cell in the upper left corner of the rectangle b×k. Let us count these polyominos. First observe
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that the cell in position (1, 1) must be in one of three situations: a) it is connected to a cell on its right
with no cell below. b) it is connected to a cell below with no cell on the right. c) It has a cell on the right
and a cell below. In the first two cases, if we remove the cell (1, 1) we obtain polyominos with minimal
areas inscribed in a smaller rectangle. There is only one polyomino with minimal area in the third case.
Thus we obtain the recurrence

pmin,(1,1)(b, k) = pmin,(1,1)(b, k − 1) + pmin,(1,1)(b− 1, k) + 1 ∀ b, h ≥ 1 (2)

with the initial conditions pmin,(1,1)(b, 0) = pmin,(1,1)(0, k) = 0. There is also an exact expression for
pmin,(1,1)(b, k). The key observation is the well known fact that the number of stair polyominos inscribed
in a rectangle with cells in each corner of a diagonal is given by a binomial coefficient. Let Pstair(b, k) be
the set of stair polyominos in Pmin,\(b, k) with end cells in each end of the main diagonal of the rectangle
b× k. Then

pstair(b, k) =

(
b+ k − 2

b− 1

)
(3)

Polyominos in Pmin,(1,1)(b, k) are in bijective correspondance with polyominos in (∪i<b,j<kPstair(i, j))∪
Pstair(b.k) so that using basic binomial identities we obtain

pmin,(1,1)(b, k) =

b−1∑
i=1

k−1∑
j=1

(
i+ j − 2

i− 1

)
+

(
b+ k − 2

b− 1

)
= 2

(
b+ k − 2

b− 1

)
− 1 (4)

Moreover it is also immediate that

pmin,(i,j)(b, k) = pmin,(1,1)(b− i+ 1, k − j + 1) (5)

so that by equation (4) we have

pmin,(i,j)(b, k) = 2

(
b+ k − i− j

b− i

)
− 1. (6)

Since p+(b, k) = bk and

pmin,\(b, k) = pmin,(1,1)(b, k) +

b∑
i=2

k∑
j=2

pmin,(i,j)(b, k), (7)

using (1) we obtain

pmin(b, k) = 2

pmin,(1,1)(b, k) +

b∑
i=2

k∑
j=2

pmin,(i,j)(b, k)

− bk, (8)

Now using (8) and (6) we obtain an exact expression for pmin(b, k):

pmin(b, k) = 2

2

(
b+ k − 2

b− 1

)
− 1 +

b∑
i=2

k∑
j=2

(
2

(
b+ k − i− j

b− i

)
− 1

)− bk

= 8

(
b+ k − 2

b− 1

)
− 6− 2(b− 1)(k − 1)− bk ∀b, k ≥ 1. (9)

which proves theorem 1. �
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Proof of corollary 1. Polyominos with minimal area inscribed in a rectangle can also be seen as poly-
ominos that are maximally stretched. These polyominos occupy a rectangle of maximal perimeter 2n+2
when their area is n. If we sum maximally stretched polyominos over all rectangles of perimeter 2n+ 2,
we obtain the number pmin(n) of maximally stretched polyominos:

pmin(n) =

n∑
b=1

pmin(b, k) = 2 +

n−1∑
b=2

(
8

(
b+ k − 2

b− 1

)
− 6− 2(b− 1)(k − 1)− bk

)
(10)

= 2n+2 − 1

2
(n3 − n2 + 10n+ 4)

which proves corollary 1. Observe that we have computed separately the cases b = 1 and b = n in
equation (10) �

n 1 2 3 4 5 6 7 8 9 10
pmin(n) 1 2 6 18 51 134 328 758 1677 3594

Tab. 1: Numbers pmin(n) of maximally stretched polyominos of area n

Proof of theorem 2. We construct the rational form of the generating function
∑

b,k≥1 fmin,\(b, k)x
byk

from its triple-structure hook − stair − hook described before and the multiplication principle.
Since there is at most one hook in the upper left corner of the rectangle having its corner in position
(i, j) and because we choose not to count the corner cell, the generating function for hooks with corner in
position (i, j) is

1 +
∑
i,j≥2

xi−1yj−1 = 1 +
xy

(1− x)(1− y)
(11)

Recall that the number of stairs from the upper left corner of a rectangle to the cell (i, j) is
(
i+j−2
i−1

)
so

that the generating function for stair polyominos is∑
i,j≥1

(
i+ j − 2

i− 1

)
xiyj = xy

∑
i,j≥1

(
i+ j − 2

i− 1

)
xi−1yj−1 = xy

∑
k≥0

(x+ y)k

=
xy

1− x− y
(12)

Now applying the multiplication principle and equations (11) and (12) we obtain

∑
b,k≥1

fmin,\(b, k)x
byk =

(
1 +

xy

(1− x)(1− y)

)2
xy

(1− x− y)
(13)

Finally recalling equation 1 we deduce theorem 2 when we agree that the generating function for crosses
is∑
b,k≥1

f+(b, k)x
byk =

∑
k≥1

xyk +
∑
b≥2

xby +
∑
b,k≥2

bkxbyk =
xy

(1− x)2(1− y)2
− xy2

(1− y)2
− x2y

(1− x)2
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Proof of theorem 3. The proof of theorem 3 is also a case study, with more cases though than in the
proof of theorem 1. We will need 2 × t bench polyominos that we define as polyominos of area t + 2
inscribed in a 2× t rectangle, t ≥ 2, with one full row, or column, of cells plus the two cells at each end of
the other row as shown in figure 2 a). We will use the following triple-structure description of polyominos

0 0

…
…

… …

00

…
………

t

t

t

t

0

0

0

0

0 0
,

a) b)

0 0

c)

,

Fig. 2: Bench polyominos

of area min+ 1 inscribed in a rectangle.

Facts. a) A polyomino of area min+ 1 inscribed in a rectangle contains exactly one bench polyomino
in one of the four possibles positions of figure 2 a). b) Moreover there is exactly two ways to complete a
fixed bench into a polyomino of area min+1 along one diagonal of the b×k rectangle. First, a polyomino
of minimal area is attached to a corner of the bench (figure 2 b)) and if it is a hook, it may have its corner
cell on any cell of the 2 × t circonscribed rectangle (figure 2 c)), provided the connectivity condition is
satisfied. Second, a polyomino of minimal area is attached on the opposite corner and if it is a hook, it
may have its corner on any cell of the 2× t circonscribed rectangle up to connectivity.
c) Starting on the north-west corner and moving clockwise, let c1, c2, c3 and c4 be the four corner cells
of a bench polyomino B included in a b × k rectangle. Let f1, f2, f3, f4 be the number of polyominos
inscribed in the respective rectangles determined by the diagonals from the northwest corner of the b× k
rectangle to the northwest corner c1 ∈ B and so on for the other three rectangles as in figure 3.

0 0
c4 c3
c1 c2

f3

f2

f4

f1

Fig. 3: A polyomino of area min+ 1 constructed from a bench polyomino

The number p(B) of polyominos of area min+1 inscribed in a b× k rectangle and containing the bench
polyomino B is given by the formula

p(B) = f1 · f3 + f2 · f4 − 8t (14)

Case 1. The bench is in a corner. Let us start by considering the case where a bench is in one corner
of the rectangle.
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Proposition 1 For integers t ≥ 2 let pt,1(b, k), resp. pt,2(b, k), be the number of polyominos in Pmin+1(b, k)
containing a 2× t bench in the northwest corner of the rectangle with the seating part (figure 4 a), resp.
the leg part (figure 4 b), upward. Then we have

pt,1(b, k) = 2

(
b+ k − t− 2

b− 2

)
+ 2 (15)

pt,2(b, k) = 2

(
b+ k − t− 2

b− 2

)
+ 2(t− 1) (16)

Proof: We have to observe that once a bench is placed in a corner of the rectangle, we may complete it
into a polyomino of area min + 1 either by adding a polyomino of minimal area inscribed in the sub-
rectangle with corners given by the southeast corner of the bench and the southeast corner of the rectangle
or by adding a hook as shown in figure 4. In the case where the legs of the bench are upwards, the corner
of the hook, sometimes absent, is any of the 2t cells of the rectangle containing the bench. In the case
where the legs of the bench are downwards, there are 4 possible hooks, one of which is already counted.
Formulas (15) and (16) then follow from equation (4). 2

0 0

min+1
= hooks+

t

…
… 0 0

min

t

…
…

(2t-1)
0 0

min+1

= hooks,+

t

…
…

0 0

min

t

…
…

3

a) b)

Fig. 4: Case 1. A bench in a corner

Corollary 3 For integers b, k ≥ 3, the number g1(b, k) of polyominos of area min + 1 inscribed in a
b× k rectangle with a bench polyomino 2× t in any corner of the rectangle is given by the formula

g1(b, k) = (4

k−1∑
t=3

pt,1(b, k) + 4) + (4

k−1∑
t=3

pt,2(b, k) + 2k) (17)

+(4

b−1∑
t=3

pt,1(k, b) + 4) + (4

b−1∑
t=3

pt,2(k, b) + 2b),

= 16

((
b+ k − 4

b− 1

)
+

(
b+ k − 4

k − 1

))
+ 2k(2k − 1) + 2b(2b− 1)− 72 (18)

Proof: This is a consequence of proposition 1 and of a careful study of the particular cases involved. In
each corner of the rectangle there are up to four benches to consider; the sums in formula (17) cannot be
taken up to t = k because there are less cases to consider. Also symmetry in b, k have been integrated to
shorten the expressions. 2
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min+1

t

0 0
…
…

0 0

min+1

t

…
…

0 0

t

…
…

j j

i

a) b) c)

Fig. 5: The three dispositions of a horizontal bench along one side

Case 2. The bench touches one side of the rectangle and is not in a corner. There are three ways to
put a horizontal bench on one side of a b× k rectangle as shown in figure 5.

Proposition 2 Let g2−horiz(b, k) be the number of polyominos of area min + 1 inscribed in a b × k
rectangle with a horizontal bench polyomino of length t ≥ 3 along one of the sides without being in a
corner of the b× k rectangle. We have

g2−horiz(b, k) = 2

k−2∑
t=3

k−t∑
j=2

2pt,1(b, k − j + 1) + 2pt,1(b, j + t− 1)− 8

+

2

k−2∑
t=3

k−t∑
j=2

2pt,2(b, k − j + 1) + 2pt,2(b, j + t− 1)− 4t

+

4

[
k−1∑
t=3

b−2∑
i=2

tpt,1(b− i+ 1, k) + 2pt,2(i+ 1, k)− 4t

]
+ 4k(b− 3)

= 8

[
−2k + 6 + 2

(
b+ k − 4

b

)]
+ 2

[
8

(
b+ k − 4

b

)
+

2

3
(k − 3)(k2 − 6k − 4)

]
+2

[
2(5b+ k − 7)

(k − 2)

(
b+ k − 4

b− 1

)
− 7bk + 2b+ bk2 − 4k2 + 14k + 2

]
+ 4k(b− 3)

Proof: Omitted. 2

Corollary 4 Let g2(b, k) be the number of polyominos inscribed in a b × k rectangle and area min + 1
containing a bench polyomino 2 × t, t ≥ 3 touching one of the sides without being in a corner of the
b× k rectangle. We have

g2(b, k) = g2−horiz(b, k) + g2−horiz(k, b)

= 32

((
b+ k − 4

b

)
+

(
b+ k − 4

k

))
+

8

(
(5k + b− 7)

(b− 2)

(
b+ k − 4

k − 1

)
+

(5b+ k − 7)

(k − 2)

(
b+ k − 4

b− 1

))
+

4

3
(b3 + k3)− 28(k2 + b2)− 48bk +

164

3
(b+ k) + 4(bk2 + b2k) + 144



Enumeration of inscribed polyominos 745

Proof: The first equality partitions polyominos into polyominos containing horizontal and vertical benches
and the second equality is obtained from proposition 2. 2

Case 3. The bench touches no side of the rectangle. Let g3−horiz(b, k) and g3−vert(b, k) be the
number of polyominos inscribed in a b×k rectangle and area min+1 containing a 2× t, t ≥ 3 horizontal
and vertical bench polyomino respectively that touches no side of the rectangle.

Proposition 3 We have

g3−horiz(b, k) = 2

k−2∑
t=3

b−2∑
i=2

k−t∑
j=2

pt,1(i+ 1, k − j + 1)pt,2(b− i+ 1, j + t− 1) +

pt,1(i+ 1, j + t− 1)pt,2(b− i+ 1, k − j + 1)− 8t

= 2

k−2∑
t=3

b−2∑
i=2

k−t∑
j=2

(2

(
i+ k − j − t

i− 1

)
+ 2)(2

(
b+ j − i− 2

j − 1

)
+ 2(t− 1)) +

2

k−2∑
t=3

b−2∑
i=2

k−t∑
j=2

(2

(
i+ j − 2

i− 1

)
+ 2)(2

(
b+ k − j − i− t

b− i− 1

)
+ 2(t− 1)− 8t

= 64 kb− 352

3
k − 8

3
k3 + 40k2 − 32(b− 1)− 16k2b+ 16 (k − 4)

(
b+ k − 4

b− 2

)
+

16b
(
k2 − 5 k + 8

)
(b+ k − 3)

(
b+ k − 3

k − 2

)
− 32

(
b+ k − 4

k − 4

)

Proof: As before, we surround the bench with rectangles that reduce our enumeration to case 1 using
inclusion-exclusion for two sets. The four surrounding rectangles are arranged in pairs that allow the
completion of polyominos along one of the diagonals of the rectangle as shown in figure 6. This gives
the first equality of proposition 3. Then we use equations (15) and (16) to obtain the second binomial
expression which we reduce to the third expression using standard binomial identities. 2

min+1

t

0 0
…
…

j

i

t

0 0
…
…

j

i

b-i+1

j+t-1

k-j+1

i+1

min+1

b-i+1

i+1

k-j+1

j+t-1

Fig. 6: Decompositions of a polyomino with an inner horizontal bench

Now to complete our count for polyominos in case 3, observe that g3−vert(b, k) = g3−horiz(k, b).
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Corollary 5 The number g3(b, k) of polyominos inscribed in a rectangle b×k of area min+1 containing
a bench polyomino of length t ≥ 3 touching no side of the rectangle is given by

g3(b, k) = g3−horiz(b, k) + g3−horiz(k, b)

=
8

3

[
24− 6(b2k + bk2) + 48bk − 56(b+ k) + 15(b2 + k2)− (b3 + k3)

−12
((

b+ k − 4

b

)
+

(
b+ k − 4

k

))
+ 6(b+ k − 6)

((
b+ k − 4

b− 1

)
+

(
b+ k − 4

k − 1

))
−60

(
b+ k − 4

b− 2

)
+ 18

(
b+ k − 2

b− 1

)]

Proof: This is immediate from proposition 3. 2

One ingredient is missing to obtain a formula for the number fmin+1(b, k). We have to analyse sep-
arately the case where the bench has format 2 × 2 because it contains more symmetries than the other
benches and the formulas are not special cases of the formulas for 2× t benches.

Case 4. 2× 2 benches. The cases are similar to the cases for 2× t benches with t ≥ 3.

Proposition 4 a) The number p2×2−corner(b, k) of polyominos inscribed in a b×k rectangle and of area
min+ 1 containing a 2× 2 bench in the upper left corner satisfies the formulas

p2×2−corner(b, k) = pmin,(1,1)(b− 1, k − 1) + 3

=

(
2

(
b+ k − 4

b− 2

)
− 1

)
+ 3 (19)

b) The number p2×2−side(b, k) of polyominos inscribed in a b× k rectangle of area min+ 1 containing
a 2× 2 bench along one side and not in a corner of the rectangle satisfies the formula

p2×2−side(b, k) =


4(b− 3) if k = 2 and b ≥ 3
4(k − 3) if b = 2 and k ≥ 3

16
[(

b+k−4
k−1

)
+
(
b+k−4
b−1

)
− 2
]

if k ≥ 3 and b ≥ 3
(20)

c) For integers b ≥ 3 and k ≥ 3, the number p2×2−center(b, k) of polyominos inscribed in a rectangle
b × k, of area min + 1 and containing a 2 × 2 bench polyomino that touches no side of the rectangle is
given by

p2×2−center(b, k) = 8

[(
b+ k − 4

b− 3

)
(k − 3) +

(
b+ k − 4

k − 3

)
(b− 3) +

(
b+ k − 4

b− 2

)
+ b+ k − bk + 1

]
(21)

Proof: The proof is similar to the proof for benches of length t ≥ 3 and we will not repeat the arguments.
2
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Corollary 6 For all positive integers b, k, the number p2×2(b, k) of polyominos inscribed in a rectangle
with area min+ 1 and containing a 2× 2 bench is given by the formula

p2×2(b, k) =



0 if k = 1 or b = 1
1 if k = 2 and b = 2

4(b+ k − 4) if (k = 2 and b > 2) or (k > 2 and b > 2)

8
[(

b+k−4
b−2

)
+ 2
(
b+k−4
b−1

)
+ 2
(
b+k−4
k−1

)
− 3
]

if (k = 3 and b ≥ 3) or (k ≥ 3 and b = 3)

8
[((

b+k−4
b−2

)
+ 1
)
(b+ k − 2)− bk

]
if k ≥ 4 and b ≥ 4

Proof: The first three cases are immediate and the last two cases are consequences of proposition 4. 2

We are now ready to complete the proof of theorem 3 which is an immediate consequence of the identity

pmin+1(b, k) = g1(b, k) + g2(b, k) + g3(b, k) + p2×2(b, k)

and of corollaries 3, 4, 5 and 6.

Proof of corollary 2. This is a consequence of theorem 3 and the identity

pmin+1(n) =

n−2∑
b=2

pmin+1(b, n− b)

n 4 5 6 7 8 9 10 11 12 13
pmin+1(n) 1 12 80 384 1468 4756 13656 35982 88740 209420

Tab. 2: Number pmin+1(n) of polyominos of area n inscribed in a rectangle of perimeter 2n

3 Applications
We observe two consequences of the formulas developped in the previous section. First, it is possible to
count the number `min+1(b, k) of lattice animals inscribed in a b×k rectangle with area min+1 because

`min+1(b, k) = pmin+1(b, k)− p2×2(b, k). (22)

Proposition 5 For positive integers b, k, the number `min+1(b, k) of lattice trees inscribed in a rectangle
b× k and of area min+ 1 is given by the formula

`min+1(b, k) =



0 if k ≤ 2 and b ≤ 2
4b2 − 20b+ 26 if (k = 2 and b > 2)

or (k > 2 and b > 2)

8(b+ k − 23)
(
b+k−4
b−2

)
+ 8(2k2+2kb+b−15k+17)

k−2

(
b+k−4
b−1

)
+ 8(2b2+2kb+k−15b+17)

b−2

(
b+k−4
k−1

)
+ 48

(
b+k−2
b−1

)
− 4

3
(b3 + k3) if (k = 3 and b ≥ 3)

−12(b2k + bk2) + 16(b2 + k2) + 72bk − 266
3
(b+ k) + 144, or (k ≥ 3 and b = 3)

−160
(
b+k−4
b−2

)
+ 8(2k2+2kb+b−13k+13)

k−2

(
b+k−4
b−1

)
+ 136

+ 8(2b2+2kb+k−13b+13)
b−2

(
b+k−4
k−1

)
+ 48

(
b+k−2
b−1

)
+ 80bk

− 4
3
(b3 + k3)− 12(b2k + bk2) + 16(b2 + k2)− 290

3
(b+ k), if k ≥ 4 and b ≥ 4
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Proof: This is an immediate consequence of equation (22), theorem 3 and corollary 6. 2

Corollary 7 For all integers n ≥ 5 the number `min+1(n) of lattice trees of area n inscribed in a rect-
angle of perimeter 2n is given by the formula

`min+1(n) = 2n+1(n− 1)− 2

3
(4n4 − 46n3 + 227n2 − 473n+ 318) (23)

Proof: This is a consequence of proposition 5 and the equation

`min+1(n) =

n−2∑
b=2

`min+1(b, n− b)

2

n 4 5 6 7 8 9 10 11 12 13
`min+1(n) 0 4 40 232 988 3420 10240 27680 69588 166132

Tab. 3: Number `min+1(n) of lattice trees of area n inscribed in a rectangle of perimeter 2n

Remark. All the formulas described in this paper have been verified numerically with independent
computer programs that can construct and count the relevant polyominos.
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