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Abstract. A poset is said to be (2+ 2)-free if it does not contain an induced subposet that is isomorphic to 2+ 2,
the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent
sequences, the generating function for the number of (2+ 2)-free posets: P (t) =

∑
n≥0

∏n
i=1

(
1− (1− t)i

)
.

We extend this result by finding the generating function for (2+ 2)-free posets when four statistics are taken into
account, one of which is the number of minimal elements in a poset. We also show that in a special case when only
minimal elements are of interest, our rather involved generating function can be rewritten in the form P (t, z) =∑

n,k≥0 pn,kt
nzk = 1+

∑
n≥0

zt
(1−zt)n+1

∏n
i=1(1− (1− t)i) where pn,k equals the number of (2+ 2)-free posets

of size n with k minimal elements.

Résumé. Un poset sera dit (2+ 2)-libre s’il ne contient aucun sous-poset isomorphe à 2+ 2, l’union disjointe
de deux chaı̂nes à deux éléments. Dans un article récent, Bousquet-Mélou et al. ont trouvé, à l’aide de “suites de
montées”, la fonction génératrice des nombres de posets (2+ 2)-libres: c’est P (t) =

∑
n≥0

∏n
i=1

(
1− (1− t)i

)
.

Nous étendons ce résultat en trouvant la fonction génératrice des posets (2+ 2)-libres rendant compte de qua-
tre statistiques, dont le nombre d’éléments minimaux du poset. Nous montrons aussi que lorsqu’on ne s’intéresse
qu’au nombre d’éléments minimaux, notre fonction génératrice assez compliquée peut être simplifiée en P (t, z) =∑

n,k≥0 pn,kt
nzk = 1 +

∑
n≥0

zt
(1−zt)n+1

∏n
i=1(1 − (1 − t)i), où pn,k est le nombre de posets (2+ 2)-libres de

taille n avec k éléments minimaux.
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1 Introduction
A poset is said to be (2 + 2)-free if it does not contain an induced subposet that is isomorphic to 2 + 2,
the union of two disjoint 2-element chains. We let P denote the set of (2 + 2)-free posets. Fishburn [7]
showed that a poset is (2 + 2)-free precisely when it is isomorphic to an interval order. Bousquet-Mélou
et al. [1] showed that the generating function for the number pn of (2 + 2)-free posets on n elements is

P (t) =
∑
n≥0

pn t
n =

∑
n≥0

n∏
i=1

(
1− (1− t)i

)
. (1)
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In fact, El-Zahar [4] and Khamis [9] used a recursive description of (2 + 2)-free posets, different from
that of [1], to derive a pair of functional equations that define the series P (t). However, they did not solve
these equations. Haxell, McDonald and Thomasson [8] provided an algorithm, based on a complicated
recurrence relation, to produce the first numbers pn. Moreover, the above series was proved by Zagier [12]
to count certain involutions introduced by Stoimenow [10]. Bousquet-Mélou et al. [1] gave a bijection
between (2 + 2)-free posets and the involutions, as well as a certain class of restricted permutations and so
called ascent sequences. Given an integer sequence (x1, . . . , xi), the number of ascents of this sequence
is

asc(x1, . . . , xi) = |{ 1 ≤ j < i : xj < xj+1 }|.
A sequence (x1, . . . , xn) ∈ Nn an ascent sequence of length n if it satisfies x1 = 0 and xi ∈ [0, 1 +
asc(x1, . . . , xi−1)] for all 2 ≤ i ≤ n. For instance, (0, 1, 0, 2, 3, 1, 0, 0, 2) is an ascent sequence. We let
A denote the set of all ascent sequences (we assume the empty word to be an ascent sequence).

Amongst other results concerning (2 + 2)-free posets [5, 6], the following characterization plays an
important role in [1]: a poset is (2 + 2)-free if and only if the collection of strict principal down-sets (for
an element, a down-set is the set of its predecessors) can be linearly ordered by inclusion [6]. Here for
any poset P = (P,<p) and x ∈ P , the strict principal down set of x, D(x), in P is the set of all y ∈ P
such that y <p x. The trivial down-set is the empty set. Thus if P is a (2 + 2)-free poset, we can write
D(P ) = {D(x) : x ∈ P} as

D(P ) = {D0, D1, . . . , Dk}
where ∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dk. In such a situation, we say that x ∈ P has level i if D(x) = Di.

Bousquet-Mélou et al. [1] described a decomposition of a (2 + 2)-free poset removing at each step a
maximal element located on the lowest level, together with certain relations. Recording the levels from
which we just removed a maximal element, and reading the obtained sequence backwards after removing
all the elements, one obtains an ascent sequence. This gives a bijection between (2 + 2)-free posets and
ascent sequences. We note that in the process of decomposing a (2 + 2)-free poset, element by element,
at some point, the current poset will be a (possibly 1-element) antichain. The statistic lds is defined as the
size of the (maximum) antichain in the last sentence, which is the size of the down-set of the last removed
element that has a non-trivial down-set. By definition, the value of lds on an antichain is 0 (there are no
non-trivial down-sets there). We refer to [1, Section 3] for the detailed description of the decomposition,
as it is rather space-consuming to state here.

Bousquet-Mélou et al. [1] studied a more general generating function F (t, u, v) of (2 + 2)-free posets,
which are counted by size=“number of elements” (variable t), levels=“number of levels” defined below
(variable u), and minmax=“level of minimum maximal element” (variable v). The first few terms of
F (t, u, v) are

F (t, u, v) = 1 + t+ (1 + uv)t2 + (1 + 2uv + u+ u2v2)t3 +O(t4).

An explicit form of F (t, u, v) can be obtained from [1, Lemma 13] and [1, Proposition 14]. The main
result of this paper, Theorem 4, is an explicit form of the generating function G(t, u, v, z, x) for a gen-
eralization of F (t, u, v), when two more statistics are taken into account — min=“number of minimal
elements” in a poset (variable z) and lds=“size of non-trivial last down-set” (variable x). That is, we shall
study the following generating function:

G(t, u, v, z, x) =
∑
p∈P

tsize(p)ulevels(p)vminmax(p)zmin(p)xlds(p).
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Reduction of the main problem to considering ascent sequences. The basic idea used by Bousquet-
Mélou et al. [1] to find the generating function F (t, u, v) was to reduce the problem to counting ascent se-
quences using their bijection between (2 + 2)-free posets and ascent sequences. We follow a similar strat-
egy to find G(t, u, v, z, x). That is, we define the following statistics on an ascent sequence: length=“the
number of elements in the sequence,” last=“the rightmost element of the sequence,” zeros=“the number
of 0’s in the sequence,” run=“the number of elements in the leftmost run of 0’s”=“the number of 0’s to
the left of the leftmost non-zero element.” By definition, if there are no non-zero elements in an ascent
sequence, the value of run is 0.

Lemma 1 The function G(t, u, v, z, x) defined above can alternatively be defined on ascent sequences as

G(t, u, v, z, x) =
∑
w∈A

tlength(w)uasc(w)vlast(w)zzeros(w)xrun(w) =
∑

n,a,`,m,r≥0

Gn,a,`,m,rt
nuav`zmxr.

Proof: To prove the statement we need to show equidistribution of the statistics involved. All but one
case follow from the results in [1]. More precisely, we can use the bijection from (2 + 2)-free posets
to ascent sequences presented in [1] which sends size → length, levels → asc, minmax → last, and
min→ zeros.

The fact that lds goes to run follows from the definition of the statistics and the idea of the bijection
in [1] described above. Indeed, while recording levels of just removed elements, after we removed the
element, say e, whose down-set gives lds, we will be left with incomparable elements located on level 0,
which gives in the corresponding ascent sequence the initial run of 0’s followed by 1 corresponding to e
located on level 1. 2

Note that G(t, u, v, 1, 1) = F (t, u, v) as studied in [1].

Organization of the paper. In Section 2 we find explicitly the function G = G(t, u, v, z, x) using ascent
sequences (see Theorem 4). In Section 3 we show that in a special case when only minimal elements are
of interest, a rather involved generating function G(t, u, v, z, x) can be rewritten in the form

P (t, z) =
∑
n,k≥0

pn,kt
nzk = 1 +

∑
n≥0

zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i)

where pn,k equals the number of (2 + 2)-free posets of size n with k minimal elements. We shall see
that our expression for P (t, z) cannot be directly derived from G(t, u, v, z, x) by substituting 1 for the
variables u, v, and x.

2 Main results
For r ≥ 1, let Gr(t, u, v, z) denote the coefficient of xr in G(t, u, v, z, x). Thus Gr(t, u, v, z) is the
generating function of those ascent sequences that begin with r ≥ 1 0’s followed by 1. We let Gra,l,m,n
denote the number of ascent sequences of length n which begin with r 0’s followed by 1, have a ascents,
the last letter `, and a total of m zeros. We then let

Gr := Gr(t, u, v, z) =
∑

a,`,m≥0,n≥r+1

Gra,l,m,nt
nuav`zm. (2)
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Clearly, since the sequence 0 . . . 0 has no ascents and no initial run of 0’s (by definition), we have that
the generating function for such sequences is

1 + tz + (tz)2 + · · · = 1

1− tz

where 1 corresponds to the empty word. Thus, we have the following relation between G and Gr:

G =
1

1− tz
+
∑
r≥1

Gr x
r. (3)

Lemma 2 For r ≥ 1, the generating function Gr(t, u, v, z) satisfies

(v − 1− tv(1− u))Gr = (v − 1)tr+1uvzr + t((v − 1)z − v)Gr(t, u, 1, z) + tuv2Gr(t, uv, 1, z). (4)

Proof:
Our proof follows the same steps as in Lemma 13 in [1]. Fix r ≥ 1. Let x′ = (x1, . . . , xn−1) be an

ascent sequence beginning with r 0’s followed by 1, with a ascents and m zeros where xn−1 = `. Then
x = (x1, . . . , xn−1, i) is an ascent sequence if and only if i ∈ [0, a+ 1]. Clearly x also begins with r 0’s
followed by 1. Now, if i = 0, the sequence x has a ascents and m+ 1 zeros. If 1 ≤ i ≤ `, x has a ascents
and m zeros. Finally if i ∈ [` + 1, a + 1], then x has a + 1 ascents and m zeros. Counting the sequence
0 . . . 01 with r 0’s separately, we have

Gr = tr+1u1v1zr +
∑

a,`,m≥0

n≥r+1

Gra,`,m,nt
n+1

(
uav0zm+1 +

∑̀
i=1

uavizm +

a+1∑
i=`+1

ua+1vizm

)

= tr+1uvzr + t
∑

a,`,m≥0

n≥r+1

Ga,`,m,nt
nuazm

(
z +

v`+1 − v
v − 1

+ u
va+2 − v`+1

v − 1

)

= tr+1uvzr + tzGr(t, u, 1, z) + tv
Gr −Gr(t, u, 1, z)

v − 1
+ tuv

vGr(t, uv, 1, z)−Gr
v − 1

.

The result follows. 2

Next just like in Subsection 6.2 of [1], we use the kernel method to proceed. Setting (v − 1− tv(1−
u)) = 0 and solving for v, we obtain that the substitution v = 1/(1 + t(u− 1)) will kill the left-hand side
of (4). We can then solve for Gr(t, u, 1, z) to obtain that

Gr(t, u, 1, z) =
(1− u)tr+1uzr + uGr

(
t, u

1+t(u−1) , 1, z
)

(1 + zt(u− 1))(1 + t(u− 1))
. (5)

Next we define

δk = u− (1− t)k(u− 1) and (6)
γk = u− (1− zt)(1− t)k−1(u− 1) (7)



Enumerating (2+2)-free posets by the number of minimal elements and other statistics 825

for k ≥ 1. We also set δ0 = γ0 = 1. Observe that δ1 = u − (1 − t)(u − 1) = 1 + t(u − 1) and
γ1 = u− (1− zt)(u− 1) = 1 + zt(u− 1). Thus we can rewrite (5) as

Gr(t, u, 1, z) =
tr+1zru(1− u)

δ1γ1
+

u

δ1γ1
Gr(t,

u

δ1
, 1, z). (8)

For any function of f(u), we shall write f(u)|u= u
δk

for f(u/δk). It is then easy to check that

1. (u− 1)|u= u
δk

=
(1− t)k(u− 1)

δk
,

2. δs|u= u
δk

=
δs+k
δk

,

3. γs|u= u
δk

=
γs+k
δk

, and

4.
u

δs
|u= u

δk
=

u

δs+k
.

Using these relations, one can iterate the recursion (8) to prove by induction that for all n ≥ 1,

Gr(t, u, 1, z) =
tr+1zru(1− u)

δ1γ1
+

(
tr+1zru(1− u)

2n−1∑
s=2

us(1− t)s

δsδs+1

∏s+1
i=1 γi

)
+ (9)

u2
n

δ2n
∏2n

i=1 γi
Gr(t,

u

δ2n
, 1, z).

Since δ0 = 1, it follows that as a power series in u,

Gr(t, u, 1, z) = tr+1zru(1− u)
∑
s≥0

us(1− t)s

δsδs+1

∏s+1
i=1 γi

. (10)

We have used Mathematica to compute that

G1(t, u, 1, z) = uzt2 +
(
uz + u2z + uz2

)
t3

+
(
uz + 3u2z + u3z + uz2 + 3u2z2 + uz3

)
t4

+
(
uz + 6u2z + 7u3z + u4z + uz2 + 8u2z2 + 7u3z2 + uz3 + 5u2z3 + uz4

)
t5 +O[t]6.

For example, the coefficient of t4u2, 3z + 3z2 makes sense as there are 3 ascent sequences of length 4
with 2 ascents and 1 zero, namely, 0112, 0121, and 0122, while there are 3 ascent sequences of length 4
with 2 ascents and 2 zeros, namely, 0101, 0102, and 0120 (there are no other ascents sequences of length
4 with 2 ascents).

Note that we can rewrite (4) as

Gr(t, u, v, z) =
tr+1zruv(1− v)

vδ1 − 1
+
t(z(v − 1)− v)

vδ1 − 1
Gr(t, u, 1, z) +

uv2t

vδ1 − 1
Gr(t, uv, 1, z). (11)
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For s ≥ 1, we let

δ̄s = δs|u=uv = uv − (1− t)s(uv − 1) and
γ̄s = γs|u=uv = uv − (1− zt)(1− t)s−1(uv − 1)

and set δ̄0 = γ̄0 = 1. Then using (11) and (10), we have the following theorem.

Theorem 3 For all r ≥ 1,

Gr(t, u, v, z) =
tr+1zru

vδ1 − 1

v(v − 1) + t(1− u)(z(v − 1)− v)
∑
s≥0

us(1− t)s

δsδs+1

∏s+1
i=1 γi

+uv3t(1− uv)
∑
s≥0

(uv)s(1− t)s

δ̄sδ̄s+1

∏s+1
i=1 γ̄i

 (12)

It is easy to see from Theorem 3 that

Gr(t, u, v, z) = tr−1zr−1G1(t, u, v, z). (13)

This is also easy to see combinatorially since every ascent sequence counted by Gr(t, u, v, z) is of the
form 0r−1a where a is an ascent sequence a counted by G1(t, u, v, z).

We have used Mathematica to compute that

G1(t, u, v, z) = uvzt2 +
(
uvz + u2v2z + uz2

)
t3

+
(
uvz + u2vz + 2u2v2z + u3v3z + uz2 + u2z2 + u2vz2 + u2v2z2 + uz3

)
t4

+
(
uvz + 3u2vz + u3vz + 3u2v2z + 2u3v2z + 4u3v3z + u4v4z + uz2 + 3u2z2 + u3z2 + 3u2vz2

+u3vz2 + 2u2v2z2 + 2u3v2z2 + 3u3v3z2 + uz3 + 3u2z3 + u2vz3 + u2v2z3 + uz4
)
t5 +O[t]6.

For example, the coefficient of t4u is zv+ z2 + z3 which makes sense since the sequences counted by the
terms are 0111, 0110, and 0100, respectively.

Note that

G(t, u, v, z, x) =
1

(1− tz)
+
∑
r≥1

Gr(t, u, v, z)x
r

=
1

(1− tz)
+
∑
r≥1

tr−1zr−1G1(t, u, v, z)xr

=
1

(1− tz)
+

1

1− tzx
xG1(t, u, v, z)

Thus we have the following theorem.
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Theorem 4

G(t, u, v, z, x) =
1

(1− tz)
+

t2zxu

(1− tzx)(vδ1 − 1)

(
v(v − 1)

+ t(1− u)(z(v − 1)− v)
∑
s≥0

us(1− t)s

δsδs+1

∏s+1
i=1 γi

+ uv3t(1− uv)
∑
s≥0

(uv)s(1− t)s

δ̄sδ̄s+1

∏s+1
i=1 γ̄i

)
. (14)

Again, we have used Mathematica to compute the first few terms of this series:

G(t, u, v, z, x) = 1 + zt+
(
uvxz + z2

)
t2 +

(
uvxz + u2v2xz + uxz2 + uvx2z2 + z3

)
t3

+
(
uvxz + u2vxz + 2u2v2xz + u3v3xz + uxz2 + u2xz2 + u2vxz2

+u2v2xz2 + uvx2z2 + u2v2x2z2 + uxz3 + ux2z3 + uvx3z3 + z4
)
t4(

uvxz + 3u2vxz + u3vxz + 3u2v2xz + 2u3v2xz + 4u3v3xz + u4v4xz

+uxz2 + 3u2xz2 + u3xz2 + 3u2vxz2 + u3vxz2 + 2u2v2xz2 + 2u3v2xz2 + 3u3v3xz2

+uvx2z2 + u2vx2z2 + 2u2v2x2z2 + u3v3x2z2 + uxz3 + 3u2xz3 + u2vxz3 + u2v2xz3

+ux2z3 + u2x2z3 + u2vx2z3 + u2v2x2z3 + uvx3z3 + u2v2x3z3 + uxz4

+ux2z4 + ux3z4 + uvx4z4 + z5
)
t5 +O[t]6.

One can check that, for instance, the 3 sequences corresponding to the term 3u2v2xzt5 are 01112, 01122
and 01222.

3 Counting (2+ 2)-free posets by size and number of minimal
elements

In this section, we shall compute the generating function of (2 + 2)-free posets by size and the number
of minimal elements which is equivalent to finding the generating function for ascent sequences by length
and the number of zeros.

For n ≥ 1, let Ha,b,`,n denote the number of ascent sequences of length n with a ascents and b zeros
which have last letter `. Then we first wish to compute

H(u, z, v, t) =
∑

n≥1,a,b,`≥0

Ha,b,`,nu
azbv`tn. (15)

Using the same reasoning as in the previous section, we see that

H(u, z, v, t) = tz +
∑
a,b,`≥0

n≥1

Ha,b,`,nt
n+1

(
uav0zb+1 +

∑̀
i=1

uavizb +

a+1∑
i=`+1

ua+1vizb

)

= tz + t
∑
a,b,`≥0

n≥r+1

Ha,b`,nt
nuazb

(
z +

v`+1 − v
v − 1

+ u
va+2 − v`+1

v − 1

)

= tz +
tv(1− u)

v − 1
H(u, v, z, t) +

t(z(v − 1)− v)

v − 1
H(u, 1, z, t) +

tuv2

v − 1
H(uv, 1, z, t).
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Thus we have the following lemma.

Lemma 5

(v− 1− tv(1− u))H(u, v, z, t) = tz(v− 1) + t(z(v− 1)− v)H(u, 1, z, t) + tuv2H(uv, 1, z, t). (16)

Setting (v− 1− t(1− u)) = 0, we see that the substitution v = 1 + t(u− 1) = δ1 kills the left-hand side
of (16). We can then solve for H(u, 1, z, t) to obtain the recursion

H(u, 1, z, t) =
zt(1− u)

γ1
+

u

δ1γ1
H(uv, 1, z, t). (17)

By iterating (17), we can prove by induction that for all n ≥ 1,

H(u, 1, z, t) =
zt(1− u)

γ1
+

(
2n−1∑
s=1

zt(1− u)us(1− t)s

δs
∏s+1
i=1 γi

)
+

u2
n

δ2n
∏2n

i=1 γi
H(

u

δ2n
, 1, z, t). (18)

Since δ0 = 1, we can rewrite (18) as

H(u, 1, z, t) =

(
2n−1∑
s=0

zt(1− u)us(1− t)s

δs
∏s+1
i=1 γi

)
+

u2
n

δ2n
∏2n

i=1 γi
H(

u

δ2n
, 1, z, t). (19)

Thus as a power series in u, we can conclude the following.

Theorem 6

H(u, 1, z, t) =

∞∑
s=0

zt(1− u)us(1− t)s

δs
∏s+1
i=1 γi

. (20)

We would like to set u = 1 in the power series
∑∞
s=0

zt(1−u)us(1−t)s

δs
∏s+1
i=1 γi

, but the factor (1 − u) in the
series does not allow us to do that in this form. Thus our next step is to rewrite the series in a form where
it is obvious that we can set u = 1 in the series. To that end, observe that for k ≥ 1,

δk = u− (1− t)k(u− 1) = 1 + u− 1− (1− t)k(u− 1) = 1− (1− t)k − 1)(u− 1)

so that

1

δk
=
∑
n≥0

((1− t)k − 1)n(u− 1)n
∑
n≥0

(u− 1)n =

n∑
m=0

(−1)n−m
(
n

m

)
(1− t)km. (21)
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Substituting (21) into (20), we see that

H(u, 1, z, t) =
zt(1− u)

γ1
+
∑
k≥1

zt(1− u)uk(1− t)k∏k+1
i=1 γi

∑
n≥0

(u− 1)n
n∑

m=0

(−1)n−m
(
n

m

)
(1− t)km

=
zt(1− u)

γ1
+
∑
n≥0

n∑
m=0

(−1)n−m−1
(
n

m

)
(u− 1)n−mzt

∑
k≥1

(u− 1)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

=
zt(1− u)

γ1
+
∑
n≥0

n∑
m=0

(−1)n−m−1
(
n

m

)
(u− 1)n−m

zt

(1− zt)m+1
×

∑
k≥1

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

.

Next we need to study the series

∑
k≥1

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

where m ≥ 0. We can rewrite this series in the form

− (u− 1)m+1(1− zt)m+1

γ1
+
∑
k≥0

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

.

We let

ψm+1(u) =
∑
k≥0

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

. (22)

We shall show that ψm+1(u) is in fact a polynomial for all m ≥ 0. First, we claim that ψm+1(u) salsifies
the following recursion:

ψm+1(u) =
(u− 1)m+1(1− zt)m+1

γ1
+
uδm1
γ1

ψm+1

(
u

δ1

)
. (23)

That is, one can easily iterate (23) to prove by induction that for all n ≥ 1,

ψm+1(u) =

(
2n−1∑
s=0

(u− 1)m+1(1− zt)m+1us(1− t)s(m+1)∏s+1
i=1 γi

)
+
u2n(δ2n)m∏2n

i=1 γi
ψm+1(

u

δ2n
). (24)

Hence it follows that if ψm+1(u) satisfies the recursion (23), then ψm+1(u) is given by the power series
in (22). However, it is routine to check that the polynomial

φm+1(u) = −
m∑
j=0

(u− 1)j(1− zt)jum−j
m∏

i=j+1

(1− ((1− t)i) (25)
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satisfies the recursion that

γ1φm+1(u) = (u− 1)m+1(1− zt)m+1 + uδm1 φm+1

(
u

δ1

)
. (26)

Thus we have proved the following lemma.

Lemma 7

ψm+1(u) =
∑
k≥0

(u− 1)m+1(1− zt)m+1uk(1− t)k(m+1)∏k+1
i=1 γi

= −
m∑
j=0

(u− 1)j(1− zt)jum−j
m∏

i=j+1

(1− ((1− t)i). (27)

It thus follows that

H(u, 1, z, t) =
zt(1− u)

γ1
+
∑
n≥0

n∑
m=0

(−1)n−m−1
(
n

m

)
(u− 1)n−m

zt

(1− zt)m+1
×

− (u− 1)m+1(1− zt)m+1

γ1
−

m∑
j=0

(u− 1)j(1− zt)jum−j
m∏

i=j+1

(1− ((1− t)i).

There is no problem in setting u = 1 in this expression to obtain that

H(1, 1, z, t) =
∑
n≥0

zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i). (28)

Clearly our definitions ensure that 1 +H(1, 1, z, t) = P (t, z) as defined in the introduction so that we
have the following theorem.

Theorem 8

P (t, z) =
∑
n,k≥0

pn,kt
nzk = 1 +

∑
n≥0

zt

(1− zt)n+1

n∏
i=1

(1− (1− t)i). (29)

For example, we have used Mathematica to compute the first few terms of P (t, z) as

P (t, z) = 1 + zt+
(
z + z2

)
t2 +

(
2z + 2z2 + z3

)
t3 +

(
5z + 6z2 + 3z3 + z4

)
t4

+
(
15z + 21z2 + 12z3 + 4z4 + z5

)
t5 +

(
53z + 84z2 + 54z3 + 20z4 + 5z5 + z6

)
t6 +O[t]7.

Next we observe that one can easily derive the ordinary generating function for the number of (2 + 2)-
free posets or, equivalently, for the number of ascent sequences proved by Bousquet-Mélou et al. [1] from
Theorem 8. That is, for any sequence of natural numbers a = a1 . . . an, let a+ = (a1 + 1) . . . (an + 1) be
the result of adding one from each element of the sequence. Moreover, if all the elements of a = a1 . . . an
are positive, then we let a− = (a1− 1) . . . (an− 1) be the result of subtracting one to each element of the



Enumerating (2+2)-free posets by the number of minimal elements and other statistics 831

sequence. It is easy to see that if a = a1 . . . an is an ascent sequence, then 0a+ is also an ascent sequence.
Vice versa, if b = 0a is an ascent sequence with only one zero where a = a1 . . . an, then a− is an ascent
sequence. It follows that the number of ascent sequences of length n is equal to the number of ascent
sequences of length n+ 1 which have only one zero. Hence

P (t) =
∑
n≥0

pnt
n =

1

t

∂P (t, z)

∂z

∣∣
z=0

=
∑
n≥0

n∏
i=1

(1− (1− t)i).

Results in [1, 2, 3] show that (2 + 2)-free posets of size n with k minimal elements are in bijection
with the following objects. (See [1, 2, 3] for the precise definitions.)

• ascent sequences of length n with k zeros;

• permutations of length n avoiding whose leftmost-decreasing run is of size k;

• regular linearized chord diagrams on 2n points with initial run of openers of size k;

• upper triangular matrices whose non-negative integer entries sum up to n, each row and column
contains a non-zero element, and the sum of entries in the first row is k.

Thus (29) provides generating functions for -avoiding permutations by the size of the leftmost-
decreasing run, for regular linearized chord diagrams by the size of the initial run of openers, and for
the upper triangular matrices by the sum of entries in the first row. Moreover, Theorem 4, together with
bijections in [1, 2, 3] can be used to enumerate the permutations, diagrams, and matrices subject to 4
statistics.
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