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The Frobenius Complex

Eric Clark and Richard Ehrenborg
Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027

Abstract. Motivated by the classical Frobenius problem, we introduce the Frobenius poset on the integers Z, that is,
for a sub-semigroup Λ of the non-negative integers (N,+), we define the order by n ≤Λ m if m− n ∈ Λ. When Λ
is generated by two relatively prime integers a and b, we show that the order complex of an interval in the Frobenius
poset is either contractible or homotopy equivalent to a sphere. We also show that when Λ is generated by the integers
{a, a + d, a + 2d, . . . , a + (a− 1)d}, the order complex is homotopy equivalent to a wedge of spheres.

Résumé. Motivé par le problème de Frobenius classique, nous introduisons l’ensemble partiellement ordonné de
Frobenius sur les entiers Z, c.à.d. que pour un sous-semigroupe Λ de les entiers non-négatifs (N,+) nous définissons
l’ordre par n ≤Λ m si m − n ∈ Λ. Quand le Λ est engendré par deux nombres a et b, relativement premiers entre
eux, noux montrons que le complexe des chaı̂nes d’un intervalle quelquonque dans l’ensemble partiellement ordonné
de Frobenius est soit contractible soit homotopiquement équivalent à une sphère. Nous montrons aussi que dans le
cas où Λ est engendré par les entiers {a, a + d, a + 2d, . . . , a + (a − 1)d}, le complexe des chaı̂nes a le type de
homotopie d’un bouquet de sphères.

Keywords: order complex, homotopy type, Morse matching, cylindrical posets

1 Introduction
The classical Frobenius problem is to find the largest integer for which change cannot be made using
coins with the relatively prime denominations a1, a2, . . . , ad; see for instance [2, Section 1.2]. We will
reformulate this question by introducing the following poset.

Let Λ be a sub-semigroup of the non-negative integers N, that is, Λ is closed under addition and the
element 0 lies in Λ. We define the Frobenius poset P = (Z,≤Λ) on the integers Z by the order relation
n ≤Λ m if m− n ∈ Λ. We denote by [n,m]Λ the interval from n to m in the Frobenius poset, that is,

[n,m]Λ = {i ∈ [n,m] : i− n,m− i ∈ Λ}.

Observe that the interval [n,m]Λ in the Frobenius poset is isomorphic to the interval [n+ i,m+ i]Λ, that
is, the interval [n,m]Λ only depends on the difference m− n. Also note that each interval is self-dual by
sending i in [0, n]Λ to n− i.

In this form, the original Frobenius problem would be to find the largest integer n that is not comparable
to zero in the Frobenius poset when Λ is generated by {a1, a2, . . . , ad}. The largest such integer is known
as the Frobenius number. In general, calculating the Frobenius number is difficult. However, in the
case where the semigroup is generated by two relatively prime integers a and b, it is well known that
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Fig. 1: The filter generated by 0 in the Frobenius poset corresponding to the semigroup Λ generated by a = 3 and
b = 4, that is, Λ = N− {1, 2, 5}. Note that you get a better picture by rolling the page into a cylinder.

the Frobenius number is given by ab − a − b. Also, when the semigroup is generated by the arithmetic
sequence {a, a+ d, . . . , a+ sd}, the Frobenius number was shown by Roberts [17] to be(⌊

a− 2

s

⌋
+ 1

)
· a+ (d− 1)(a− 1)− 1. (1)

We study the topology of the order complex of intervals of this poset in the two generator case and when
the generators form an arithmetic sequence where s = a− 1.

The technique we use is discrete Morse theory which was developed by Forman [8, 9]. Thus we
construct an acyclic partial matching on the face poset of the order complex by using the Patchwork
Theorem. We then identify the unmatched, or critical, cells. These tell us the number and dimension of
cells in a CW-complex to which our order complex is homotopy equivalent. Using extra structure about
the critical cells, we can determine exactly what the homotopy type is.

A more general situation is to consider a semigroup Λ of Nd and define a partial order on Zd by µ ≤Λ λ
if λ−µ ∈ Λ. Define the semigroup algebra k[Λ] as the linear span of the monomials whose powers belong
to Λ, that is, k[Λ] = span{xλ = xλ1

1 · · ·x
λd

d : λ ∈ Λ}. Laudal and Sletsjøe [14] makes the connection
between the homology of the order complex of intervals in this partial order and the semigroup algebra
k[Λ].

Theorem 1.1 (Laudal and Sletsjøe) For Λ a sub-semigroup of Nd with the associated monoid Λ, the
following equality holds

dimk Tor
k[Λ]
i (k, k)λ = dimk H̃i−2(∆([0, λ]Λ), k),
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for all λ ∈ Λ and i ≥ 0.

The papers [5, 10, 16] continue to study the topology of the intervals in this partial order. Hersh and
Welker [10] give bounds on the indices of the non-vanishing homology groups of the order complex of
the intervals. Peeva, Reiner, and Sturmfels [16] show that the semigroup ring k[Λ] is Koszul if and only
if each interval in Λ is Cohen-Macaulay.

We end this paper with some open questions and concluding remarks.

2 Discrete Morse theory
We recall the following definitions and theorems from discrete Morse theory. See [8, 9, 12] for further
details.

Definition 2.1 A partial matching in a poset P is a partial matching in the underlying graph of the Hasse
diagram of P , that is, a subset M ⊆ P ×P such that (x, y) ∈M implies x ≺ y and each x ∈ P belongs
to at most one element of M . For (x, y) ∈ M we write x = d(y) and y = u(x), where d and u stand for
down and up, respectively.

Definition 2.2 A partial matching M on P is acyclic if there does not exist a cycle

z1 � d(z1) ≺ z2 � d(z2) ≺ · · · ≺ zn � d(zn) ≺ z1,

in P with n ≥ 2, and all zi ∈ P distinct. Given a partial matching, the unmatched elements are called
critical. If there are no critical elements, the acyclic matching is perfect.

We now state the main result from discrete Morse theory. For a simplicial complex ∆, let F(∆) denote
the poset of faces of ∆ ordered by inclusion.

Theorem 2.3 Let ∆ be a simplicial complex. If M is an acyclic matching on F(∆)−{0̂} and ci denotes
the number of critical i-dimensional cells of ∆, then the complex ∆ is homotopy equivalent to a CW
complex ∆c which has ci cells of dimension i.

For us it will be convenient to work with the reduced discrete Morse theory, that is, we include the
empty set.

Corollary 2.4 Let ∆ be a simplicial complex and let M be an acyclic matching on F(∆). Then the
space ∆ is homotopy equivalent to a CW complex ∆c which has c0 + 1 cells of dimension 0 and ci cells
of dimension i for i > 0.

In particular, if the matching from Corollary 2.4 is perfect, then ∆c is contractible. Also, if the matching
has exactly one critical cell then ∆c is a combinatorial d-sphere where d is the dimension of the cell.

Given a set of critical cells of differing dimension, in general it is impossible to conclude that the CW
complex ∆c is homotopy equivalent to a wedge of spheres. See Kozlov [13] for an example. However, in
certain cases, this is possible.

Theorem 2.5 Let M be a Morse matching on F(∆) such that all ci critical cells of dimension i are
maximal. Then

∆ '
∨
i

ci∨
j=1

Si.
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Proof: By the above statement, the complex ∆ without the critical cells is contractible. In particular, the
boundary of each of the critical cells contracts to a point. Since all of the critical cells are maximal, they
can be independently added back into the complex. 2

Kozlov [13] gives a more general sufficient condition on an acyclic Morse matching for the complex to
be homotopy equivalent to a wedge of spheres enumerated by the critical cells.

We are interested in finding an acyclic matching on the face poset of the Frobenius complex. The
Patchwork Theorem [12] gives us a way of constructing one.

Theorem 2.6 Assume that ϕ : P → Q is an order-preserving poset map, and assume that there are
acyclic matchings on the fibers ϕ−1(q) for all q ∈ Q. Then the union of these matchings is itself an
acyclic matching on P .

3 Two generators
With two generators, the associated Frobenius poset can be embedded on a cylinder. By Bezout’s identity
there are two integers p and q such that p · a + q · b = 1. Define a group morphism γ : Z −→ Z2ab × Z
by γ(x) = ((p · a − q · b) · x, x), that is, the first coordinate is modulo 2 · a · b which corresponds to
encircling the cylinder. Observe that γ(a) = ((p · a − q · b) · a, a) = ((p · a + q · b) · a, a) = (a, a) and
γ(b) = ((p ·a−q ·b) ·b, b) = ((−p ·a−q ·b) ·b, b) = (−b, b). Hence the two cover relations x ≺ x+a and
x ≺ x+ b in the Frobenius poset translates to γ(x) + (a, a) = γ(x+ a) and γ(x) + (−b, b) = γ(x+ b).
In other words, to take an a step we make the step (a, a) on the cylinder and a b step corresponds to the
step (−b, b). As an example, see Figure 1 where a = 3 and b = 4.

In general, the Frobenius poset is not a lattice. When Λ is generated by two relatively prime integers
a and b, we have the four relations a <Λ a + b, b <Λ a + b, a <Λ ab, and b <Λ ab. However, since
ab − a − b is the Frobenius number we have a + b 6≤Λ ab, showing that the poset is not a lattice. In
Figure 1, we see that 3 and 4 are both lower bounds for 7 and 12.

Let ck(n) denote the number of chains in the Frobenius interval [0, n]Λ of length k. Using multiplication
of generating functions, we have

∑
n≥k

ck(n) · qn =

∑
n≥1

c1(n) · qn
k

.

By taking the alternating sum over k and using Philip Hall’s expression for the Möbius function, we have∑
n≥0

µ(n) · qn =
1

1 +
∑
n≥1 c1(n) · qn

, (2)

where µ(n) denotes the Möbius function of the interval [0, n]Λ. Now assuming that Λ is generated by two
relatively prime positive integers a and b, we have that

1 +
∑
n≥1

c1(n) · qn =
1− qab

(1− qa) · (1− qb)
;
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see [1, Exercise VIII.1.5]. Hence the Möbius function is given by∑
n≥0

µ(n) · qn =
(1− qa) · (1− qb)

1− qab

= 1− qa − qb + qa+b + qab − qab+a − qab+b + qab+a+b + · · · .

Note that the coefficients are all ±1 or 0. We will consider this fact in a topological setting. Recall that
the order complex ∆(P ) of a bounded poset P is the collection of chains in P , that is,

∆(P ) = {{x1, x2, . . . , xk} : 0̂ < x1 < x2 < · · · < xk < 1̂}

ordered by inclusion. Also, the reduced Euler characteristic of the order complex ∆(P ) is given by the
Möbius function of P . We call the order complex of the face poset of a Frobenius interval the Frobenius
complex. We wish to study the homotopy type of the Frobenius complex. Since the reduced Euler char-
acteristic of the Frobenius complex takes on the values +1, −1, or 0, we are lead to the following main
theorem.

Theorem 3.1 Let the sub-semigroup Λ be generated by two relatively prime positive integers a and b
with 1 < a < b. The order complex of the associated Frobenius interval [0, n]Λ, for n ≥ 1, is homotopy
equivalent to either a sphere or contractible, according to

∆([0, n]Λ) '


S2n/ab−2 if n ≡ 0 mod a · b,

S2(n−a)/ab−1 if n ≡ a mod a · b,
S2(n−b)/ab−1 if n ≡ b mod a · b,
S2(n−a−b)/ab if n ≡ a+ b mod a · b,

point otherwise.

Observe that if n does not belong to the sub-semigroup Λ then we consider the order complex ∆([0, n]Λ)
to be the empty set which we view as contractible. This is distinct from the case when n equals a or b,
that is, when the order complex ∆([0, n]Λ) only contains the empty set. In this case, we view this as a
sphere of dimension −1.

In the case where the two generators are 2 and 3, the semigroup is N − {1} and the order complex
∆([0, n]Λ) consists of all subsets of the interval [2, n − 2] that do not contain two consecutive integers.
This is known as the complex of sparse subsets. Its homotopy type was first determined by Kozlov [11].
See also [7] where it appears as the independence complex of a path. Billera and Myers [4] showed this
complex is non-pure shellable.

As a corollary to Theorem 1.1, we obtain

Corollary 3.2 Let a and b be relatively prime integers such that 1 < a < b. Let R denote the ring
k[y, z]/(yb − za). Then the multigraded Poincaré series

PRk (t, q) =
∑
n∈Λ

∑
i≥0

dimk

(
TorRi (k, k)n

)
tiqn

is given by the rational function
1 + tqa + tqb + t2qa+b

1− t2qab
.
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Proof: Let Λ the semigroup generated by a and b. Observe that the ring R is isomorphic to the semigroup
ring k[Λ]. By combining Theorems 1.1 and 3.1 the multigraded Poincaré series is given by

PRk (t, q) = 1 + tqa + tqb + t2qa+b + t2qab + t3qab+a + t3qab+b + t4qab+a+b + · · · ,

which is the sought after rational generating function. 2

We now turn our attention to the proof of Theorem 3.1. Let Λ be generated by two relatively prime
positive integers a and b with 1 < a < b. Consider the Frobenius interval [0, n]Λ. Define the three sets
B`, C` and D` as follows:

B` = {`ab+ 2b, `ab+ 3b, . . . , `ab+ (a− 1)b},
C` = {b, ab, ab+ b, 2ab, 2ab+ b, 3ab, . . . , (`− 1)ab+ b, `ab},
D` = C` ∪ {`ab+ b}.

Note that C0 = ∅, D0 = {b}, and C`+1 = D` ∪ {(`+ 1)ab}.
Let Q be the infinite chain {a < a+ b < ab+ a < ab+ a+ b < 2ab+ a < · · · } adjoined with a new

maximal element 1̂Q, that is,

Q = {m ∈ N : m ≡ a, a+ b mod ab} ∪ {1̂Q}.

We now define a map ϕ from the face poset of the order complex ∆([0, n]Λ) to the poset Q. We will
later show that ϕ is an order-preserving poset map with natural matchings on the fibers. Let ϕ be defined
by

ϕ(x) =



`ab+ a if `ab+ a <Λ n,
C` ⊆ x,
Bt ∩ x = ∅ for 0 ≤ t ≤ `,
and `ab+ b 6∈ x;

`ab+ a+ b if `ab+ a+ b <Λ n,
D` ⊆ x,
Bt ∩ x = ∅ for 0 ≤ t ≤ `,
and `ab+ ab 6∈ x;

1̂Q otherwise.

In order to make acyclic pairings on the fibers of ϕ, it will be useful to have a description of the chains
that are mapped to the maximal element 1̂Q and their structure. Let Γ denote this collection of chains in
the Frobenius poset, that is, Γ = ϕ−1(1̂Q).

Lemma 3.3 The collection Γ consists of the chains x that satisfy one of the following four conditions:

1. There exists a non-negative integer λ such that Cλ ⊆ x, λab+ b 6∈ x, Bλ ∩ x 6= ∅, and Bt ∩ x = ∅
for 0 ≤ t ≤ λ− 1.

2. There exists a non-negative integer λ such that Dλ ⊆ x, Bλ ∩ x 6= ∅, and Bt ∩ x = ∅ for
0 ≤ t ≤ λ− 1.

3. There exists a non-negative integer λ such that x = Cλ and λab+ a 6<Λ n.
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4. There exists a non-negative integer λ such that x = Dλ and λab+ a+ b 6<Λ n.

We will refer to the condition met by a chain as its type and the associated λ as its parameter. The
structure of Γ is given in the following lemma.

Lemma 3.4 The following four conditions hold for the collection Γ.

(i) Let x be a chain of type 1 with parameter λ in Γ. Then x ∪ {λab+ b} is a chain in Γ of type 2 with
the same parameter λ.

(ii) Let y be a chain of type 2 with parameter λ in Γ. Then y − {λab+ b} is a chain in Γ of type 1 with
the same parameter λ.

(iii) Let x be a chain of type 1 with parameter λ and y be a chain of type 2 with parameter µ such that
x ≺ y. Then λ ≥ µ holds with equality if and only if y = x ∪ {λab+ b}.

(iv) If z is an element of type 4, then z does not cover any element of type 1 or 2.

We now turn our attention to the map ϕ.

Lemma 3.5 The map ϕ : F(∆([0, n]Λ)) −→ Q is an order-preserving poset map.

Lemma 3.6 For m <Q 1̂Q, the collection {(x, x ∪ {m}) : m 6∈ x ∈ ϕ−1(m)} is a perfect acyclic
matching on the fiber ϕ−1(m).

Thus we have reduced the problem to finding an acyclic matching on the fiber Γ = ϕ−1(1̂Q).

Lemma 3.7 The collection {(x, x ∪ {λab + b}) : x is a chain of type 1 with parameter λ} is an acyclic
matching on Γ where the critical cells are the chains of type 3 and 4.

Proof: We have seen from parts (i) and (ii) of Lemma 3.4 that to every element x of type 1 there exists
a corresponding element y of type 2 with the same parameter and vice-versa. In other words, this is a
perfect matching on chains of type 1 and 2. Chains of type 3 and 4 are left unmatched.

We must now show that this matching is acyclic, that is, a directed cycle of the form described in
Definition 2.2 cannot exist. Let z1 be a chain of type 2 with parameter λ. Then d(z1) = z1 − {λab + b}
is an element of type 1 with the same λ. Part (iii) of Lemma 3.4 tells us that any z2 different from z1 will
have a smaller parameter. Therefore, we cannot return to z1 using our matching. Hence the matching is
acyclic. 2

Lemma 3.8 Let n = kab + r for 0 ≤ r < ab. If r = 0, a, b, or a + b, then the matching given in
Lemma 3.7 has exactly one critical cell. If r = jb for 2 ≤ j ≤ a − 1, there are exactly two unmatched
chains of Γ. Otherwise, there are no critical cells in Γ. More precisely, the critical cells of Γ are given by

{Dk−1} if n = kab,
{Ck} if n = kab+ a,
{Ck} if n = kab+ b,
{Dk} if n = kab+ a+ b,
{Ck, Dk} if n = kab+ ib, 2 ≤ i ≤ a− 1,
∅ otherwise.
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Proof: The only elements of Γ that were not matched are those of type 3 and 4 in Lemma 3.3. Thus, we
need to determine the number of type 3 and 4 elements in Γ, that is, the number of integers λ such that
λab <Λ n and λab+a 6<Λ (type 3) and integers λ such that λab+b <Λ n and λab+a+b 6<Λ n (type 4).

Using the Frobenius number, we know that every integer smaller than n− (ab− a− b) = (k− 1)ab+
a + b + r is comparable with n with respect to the order <Λ. We do not need to check `ab + a or
`ab + a + b for 0 ≤ ` < k because this number is always comparable to n (unless r = 0 when we must
check (k − 1)ab+ a+ b). We also do not need to consider `ab+ a or `ab+ a+ b for ` ≥ k + 1 because
we would have `ab+ a, `ab, `ab+ a+ b, and `ab+ b all not contained in [0, n]Λ. Thus, we only need to
check (k − 1)ab+ a+ b (if r = 0), kab+ a, and kab+ a+ b

There are nine cases to consider.

– r 6∈ Λ. Then we have both kab+a 6<Λ n and kab 6<Λ n, and also kab+a+b 6<Λ and kab+b 6<Λ n.
Therefore, there are no critical cells.

Otherwise, r belongs to the semigroup Λ and we can write r = ia + jb, where i and j are unique non-
negative integers.

– (i, j) = (0, 0). We see that kab+a 6<Λ n, but also kab 6<Λ n. Similarly, we have kab+a+b 6<Λ n
and kab+b 6<Λ n. Finally, we check and see that (k−1)ab+a+b 6<Λ n because kab−(k−1)ab+
a+b = ab−a−b 6∈ Λ. Also (k−1)ab+b <Λ n because kab−(k−1)ab+b = ab−b = (a−1)b ∈ Λ.
Thus we have the one critical cell Dk−1.

– (i, j) = (1, 0). We can easily see that kab + a + b 6<Λ n and kab + b 6<Λ n. However, we have
kab+ a 6<Λ n while kab <Λ n. Therefore, we have the one critical cell Ck.

– (i, j) = (0, 1). In this case we again see that kab + a + b 6<Λ n and kab + b 6<Λ n. However, we
still have kab+ a 6<Λ n, while kab <Λ n. Thus we have the one critical cell Ck.

– (i, j) = (1, 1). First we note that kab+ a <Λ n. Thus we only check to see that kab+ a+ b 6<Λ n
and kab+ b <Λ n. This is easily true, so there is one critical cell Dk.

– i = 0, 2 ≤ j ≤ a− 1. Clearly kab+ a 6<Λ n while kab <Λ n. Also, we see that kab+ a+ b 6<Λ n
while kab+ b <Λ n. Thus the unmatched cells are Ck and Dk.

– i ≥ 1, j ≥ 2. Both kab + a and kab + a + b are both comparable with n. Therefore there are no
critical cells.

– i ≥ 2, j = 0. We see that kab + a is comparable with n. Also, both kab + a + b and kab + b are
not comparable with n. Therefore there are no critical cells.

– i ≥ 2, j = 1. Then kab + a and kab + a + b are both comparable with n. Therefore there are no
critical cells.

2

Proof of Theorem 3.1.: By applying the Patchwork Theorem to the function ϕ we see that the homotopy
type of ∆([0, n]Λ) depends only on the fiber ϕ−1(1̂Q) = Γ. Applying Lemmas 3.7 and 3.8, there is only
one critical cell when n ≡ 0, a, b, a + b mod ab and no critical cells in every other case except when
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i = 0 and 2 ≤ j ≤ a − 1. However, we claim in this last case we can add the pair (Ck, Dk) to the
matching on Γ and still be left with an acyclic matching.

Lemma 3.4 (iv) shows that a chain of type 4 does not cover any chain of type 1. Hence, when adding
the edge (Ck, Dk) to the Morse matching of Γ, it will not create any directed cycles through the chainDk.
Hence the matching is still acyclic and there are no critical cells in this case.

The critical cells for n ≡ 0, a, b, a+ b mod ab can be easily seen to be of dimension 2n/ab−2, 2(n−
a)/ab− 1, 2(n− b)/ab− 1, and 2(n− a− b)/ab, respectively. Therefore, applying the main theorem of
reduced discrete Morse theory, Corollary 2.4, proves the result. 2

4 Generators in an arithmetic sequence
Recall that the q-analogue is defined as follows: [a]qd = 1 + qd + (qd)2 + · · ·+ (qd)a−1.

Theorem 4.1 Let Λ be the sub-semigroup generated by the integers {a, a+ d, a+ 2d, . . . , a+ (a− 1)d}
where a and d are relatively prime. The order complex of the associated Frobenius interval [0, n]Λ is
homotopy equivalent to a wedge of spheres where the ith Betti number satisfies∑

n≥0

β̃iq
n = qa+(i+1)(a+d) · [a]qd · [a− 1]i+1

qd
.

Example 4.2 For the generators {4, 5, 6, 7}, that is a = 4 and d = 1, we have∑
n≥0

β̃1q
n = q14 · [4] · [3]2 = q14 + · · ·+ 3q20 + q21,

∑
n≥0

β̃2q
n = q19 · [4] · [3]3 = q19 + 4q20 + · · ·+ q28,

and no other generating polynomial contains the q20 term. Hence the Frobenius complex ∆([0, 20]Λ) is
homotopy equivalent to a wedge of three circles and four 2-spheres.

The Frobenius number of an arithmetic sequence was given in equation (1). Therefore, for the genera-
tors {a, a+ d, a+ 2d, . . . , a+ (a− 1)d}, we have the Frobenius number(⌊

a− 2

a− 1

⌋
+ 1

)
· a+ (d− 1)(a− 1)− 1 = (a− 1)d.

We will proceed as before and use Discrete Morse theory and the Patchwork theorem. Let A be the set
{a+ d, a+ 2d, . . . , a+ (a− 1)d}.

Definition 4.3 Given n, let R be the chain {1, 2, 3, 4, . . . , n − a} with a maximal element 1̂R adjoined.
That is,

R = {1, 2, 3, . . . , n− a} ∪ {1̂R}.
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If x = {x1, x2, . . . , xk} ∈ ∆([0, n]Λ) and we define x0 = 0, let ψ : F(∆([0, n]Λ)) → R be a map
defined by

ψ(x) =



xi−1 + a, xi − xi−1 6∈ A,
xj − xj−1 ∈ A
for 1 ≤ j ≤ i− 1,

xk + a, n− xk 6∈ {a} ∪A,
xj − xj−1 ∈ A
for 1 ≤ j ≤ k,

1̂R, otherwise.

Lemma 4.4 The element m · d is not contained in Λ for 1 ≤ m ≤ (a− 1).

Proof: Suppose m · d ∈ Λ for 1 ≤ m ≤ (a− 1). Then for 0 ≤ si ≤ (a− 1), we have

m · d = (a+ s1d) + (a+ s2d) + · · ·+ (a+ skd)

= ka+ (s1 + · · ·+ sk)d.

The fact that d and a are relatively prime implies that d divides k. That is, k = ` · d. Therefore,
m = ` · a+ (s1 + · · ·+ sk) which implies that m ≥ a. This is a contradiction. 2

Lemma 4.5 Let xi and xj be elements of a chain x such that xi − xj ∈ {a} ∪A. Then the open interval
(xi, xj)Λ is empty.

The following lemma is an immediate consequence of Lemma 4.5 and the definition of the function ψ.

Lemma 4.6 If x and y are chains such that x ⊆ y and ψ(x) = xi−1 + a then xj = yj for 1 ≤ j ≤ i− 1.
In particular, if ψ(x) = 1̂R then x = y.

We can finally give a few properties of the map ψ.

Lemma 4.7 The map ψ : F(∆([0, n]Λ))→ R is an order preserving poset map.

Lemma 4.8 For m <R 1̂R, the collection {(x, x ∪ {m}) : m 6∈ x ∈ ψ−1(m)} is a perfect acyclic
matching on the fiber ψ−1(m).

Proof: Suppose ψ(x) = xi−1+a and xi−1+a ∈ x. That is, xi = xi−1+a. It is clear that d(x) = x−{xi}
is a valid chain in the Frobenius complex since we are simply removing an element. We need to check
that ψ(d(x)) = xi−1 + a. We know that d(x)j − d(x)j−1 = xj − xj−1 ∈ A for 1 ≤ j ≤ (i − 1).
Suppose d(x)i − d(x)i−1 = xi+1 − xi−1 ∈ A. Then, by Lemma 4.5, (xi−1, xi+1)Λ would have to be
empty. This contradicts the fact that xi ∈ (xi−1, xi+1)Λ in the chain x. Since d(x)i − d(x)i−1 6∈ A and
d(x)j − d(x)j−1 ∈ A for 1 ≤ j ≤ (i− 1), we have ψ(d(x)) = d(x)i−1 + a = xi−1 + a.

Now suppose that ψ(x) = xi−1 + a and xi−1 + a 6∈ x. It is clear that u(x) = x ∪ {xi−1 + a} would
be mapped to xi−1 + a. Thus, it must be shown that u(x) is a valid chain, that is, xi−1 + a is comparable
to xi. We know that xi − xi−1 6∈ A. Suppose

xi − xi−1 = (a+ s1d) + (a+ s2d) + · · ·+ (a+ skd)
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where s1 ≤ s2 ≤ · · · ≤ sk and k ≥ 2. Then

xi − (xi−1 + a) = (a+ (s1 + s2)d) + (a+ s3d) + · · ·+ (a+ skd).

If s1 +s2 ≤ a−1, then we have written this difference as a sum of generators. Therefore, xi and xi−1 +a
are comparable.

If s1 + s2 > a − 1, then the difference is larger than (a − 1)d, which is the Frobenius number of the
generators. Thus, xi and xi−1 + a are comparable. Therefore, u(x) is a valid chain.

Finally, the matching on the fiber is clearly acyclic since the same element is either added or removed
from a chain. 2

Using the Patchwork theorem, we have an acyclic matching on F(∆([0, n]Λ)) whose only critical cells
are the elements of the fiber ψ−1(1̂R). Note that Lemma 4.6 says that each of these cells are maximal.
Therefore, due to Theorem 2.5, we will have that ∆([0, n]Λ is homotopy equivalent to a wedge of spheres
whose number and dimension corresponds to the number and dimension of the critical cells. Thus, we are
interested in counting the number of chains that are mapped to 1̂R. The following lemma is straightfor-
ward from the definition of the function ψ.

Lemma 4.9 The fiber ψ−1(1̂R) consists of elements x = {x1, x2, . . . , xk} where xi − xi−1 ∈ A for
1 ≤ i ≤ k and n− xk ∈ {a} ∪A.

Proof of Theorem 4.1: We know from Lemma 4.9 that the critical cells are in bijection with compositions
of nwhere the last part belongs to the set {a}∪A and the remaining parts belong to the setA. Furthermore
if such a composition has i + 2 parts, it will contribute to the i-dimensional homology. Hence, fixing i,
we obtain the generating function

∑
n≥0

β̃iq
n =

(
a−1∑
k=0

qa+kd

)
·

(
a−1∑
`=1

qa+`d

)i+1

= qa+(i+1)(a+d) ·

(
a−1∑
k=0

qkd

)
·

(
a−2∑
`=0

q`d

)i+1

= qa+(i+1)(a+d) · [a]qd · [a− 1]i+1
qd

.

2

5 Concluding remarks
The Frobenius poset generated by two relatively prime integers can be embedded on a cylinder. There
are many results (see, for example, [3, 6]) on posets that can be embedded in the plane. Can any of these
results be extended to cylindrical posets?

There are other classes of generators, such as a geometric sequence, that have closed formulas for the
Frobenius number, see [15]. Does the Frobenius complex have a nice topological representation in this
case?

More generally, all computational evidence suggests that the Frobenius complex - even for randomly
selected generators - has a relatively simple topology, that is, it is torsion-free. Is there a set of generators
that creates torsion in the associated Frobenius complex?
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