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Republic

Abstract. Motivated by the concept of partial words, we introduce an analogous concept of partial permutations. A
partial permutation of length n with k holes is a sequence of symbols π = π1π2 · · ·πn in which each of the symbols
from the set {1, 2, . . . , n− k} appears exactly once, while the remaining k symbols of π are “holes”.

We introduce pattern-avoidance in partial permutations and prove that most of the previous results on Wilf equivalence
of permutation patterns can be extended to partial permutations with an arbitrary number of holes. We also show
that Baxter permutations of a given length k correspond to a Wilf-type equivalence class with respect to partial
permutations with (k − 2) holes. Lastly, we enumerate the partial permutations of length n with k holes avoiding a
given pattern of length at most four, for each n ≥ k ≥ 1.

Résumé. Nous introduisons un concept de permutations partielles. Une permutation partielle de longueur n avec k
trous est une suite finie de symboles π = π1π2 · · ·πn dans laquelle chaque nombre de l’ensemble {1, 2, . . . , n− k}
apparaı̂t précisement une fois, tandis que les k autres symboles de π sont des “trous”.

Nous introduisons l’étude des permutations partielles à motifs exclus et nous montrons que la plupart des résultats
sur l’équivalence de Wilf peuvent être généralisés aux permutations partielles avec un nombre arbitraire de trous.
De plus, nous montrons que les permutations de Baxter d’une longueur donnée k forment une classe d’équivalence
du type Wilf par rapport aux permutations partielles avec (k − 2) trous. Enfin, nous présentons l’énumeration des
permutations partielles de longueur n avec k trous qui évitent un motif de longueur ` ≤ 4, pour chaque n ≥ k ≥ 1.
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1 Introduction
Let A be a nonempty set, which we call an alphabet. A word over A is a finite sequence of elements
of A, and the length of the word is the number of elements in the sequence. Assume that � is a special
symbol not belonging to A. The symbol � will be called a hole. A partial word over A is a word over the
alphabet A ∪ {�}. In the study of partial words, the holes are usually treated as gaps that may be filled by
an arbitrary letter of A. The length of a partial word is the number of its symbols, including the holes.

The study of partial words was initiated by Berstel and Boasson [BB99]. Partial words appear in
comparing genes [Leu05]; alignment of two sequences can be viewed as a construction of two partial
words that are compatible in the sense defined in [BB99]. Combinatorial aspects of partial words that have
been studied include periods in partial words [BB99, SK01], avoidability/unavoidability of sets of partial
words [BBSGR09, BSBK+09], squares in partial words [HHK08], and overlap-freeness [HHKS09]. For
more see the book by Blanchet-Sadri [BS08].

Let V be a set of symbols not containing �. A partial permutation of V is a partial word π such
that each symbol of V appears in π exactly once, and all the remaining symbols of π are holes. Let Skn
denote the set of all partial permutations of the set [n− k] = {1, 2, . . . , n− k} that have exactly k holes.
For example, S13 contains the six partial permutations 12�, 1�2, 21�, 2�1, �12, and �21. Obviously, all
elements of Skn have length n, and |Skn| =

(
n
k

)
(n − k)! = n!/k!. Note that S0n is the familiar symmetric

group Sn. For a set H ⊂ [n] of size k, we let SHn denote the set of partial permutations π1 · · ·πn ∈ Skn
such that πi = � if and only if i ∈ H . We remark that our notion of partial permutations is somewhat
reminiscent of the notion of insertion encoding of permutations, introduced by Albert et al. [ALR05].
However, the interpretation of holes in the two settings is different.

In this paper, we extend the classical notion of pattern-avoiding permutations to the more general setting
of partial permutations. Let us first recall some definitions related to pattern avoidance on permutations.
Let V = {v1, . . . , vn} with v1 < · · · < vn be any finite subset of N. The standardization of a permutation
π on V is the permutation st(π) on [n] obtained from π by replacing the letter vi with the letter i. As
an example, st(19452) = 15342. Given p ∈ Sk and π ∈ Sn, an occurrence of p in π is a subword
ω = πi(1) · · ·πi(k) of π such that st(ω) = p; in this context p is called a pattern. If there are no
occurrences of p in π we also say that π avoids p. Two patterns p and q are called Wilf-equivalent if for
each n, the number of p-avoiding permutations in Sn is equal to the number of q-avoiding permutations
in Sn.

Let π ∈ Skn be a partial permutation and let i(1) < · · · < i(n − k) be the indices of the non-hole
elements of π. A permutation σ ∈ Sn is an extension of π if

st(σi(1) · · ·σi(n−k)) = πi(1) · · ·πi(n−k).

For example, the partial permutation 2�1 has three extensions, namely 312, 321 and 231. In general, the
number of extensions of π ∈ Skn is

(
n
k

)
k! = n!/(n− k)!.

We are now ready to define pattern avoidance on partial permutations. We say that π ∈ Skn avoids the
pattern p ∈ S` if each extension of π avoids p. For example, π = 32�154 avoids 1234, but π does not
avoid 123: the permutation 325164 is an extension of π and it contains two occurrences of 123. Let Skn(p)
be the set of all the partial permutations in Skn that avoid p, and let skn(p) = |Skn(p)|. Similarly, if H ⊆ [n]
is a set of indices, then SHn (p) is the set of p-avoiding permutations in SHn , and sHn (p) is its cardinality.

We say that two patterns p and q are k-Wilf-equivalent if skn(p) = skn(q) for all n. Notice that 0-Wilf
equivalence coincides with the standard notion of Wilf equivalence. We also say that two patterns p and
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q are ?-Wilf-equivalent if p and q are k-Wilf-equivalent for all k ≥ 0. Two patterns p and q are strongly
k-Wilf-equivalent if sHn (p) = sHn (q) for each n and for each k-element subset H ⊆ [n]. Finally, p and q
are strongly ?-Wilf-equivalent if they are strongly k-Wilf-equivalent for all k ≥ 0.

We note that although strong k-Wilf equivalence implies k-Wilf-equivalence, and strong ?-Wilf equiva-
lence implies ?-Wilf equivalence, the converse implications are not true. Consider for example the patterns
p = 1342 and q = 2431. A partial permutation avoids p if and only if its reverse avoids q, and thus p and q
are ?-Wilf-equivalent. However, p and q are not strongly 1-Wilf-equivalent, and hence not strongly ?-Wilf
equivalent either. To see this, we fix H = {2} and easily check that sH5 (p) = 13 while sH5 (q) = 14.

Our Results
The main goal of this paper is to establish criteria for k-Wilf equivalence and ?-Wilf equivalence of
permutation patterns. We are able to show that most pairs of Wilf-equivalent patterns that were discovered
so far are in fact ?-Wilf-equivalent. The only exception is the pair of patterns p = 2413 and q = 1342.
Although these patterns are known to be Wilf-equivalent [Sta94], they are neither 1-Wilf-equivalent nor
2-Wilf equivalent (see Section 6).

Many of our arguments rely on a close relationship between partial permutations and partial 01-fillings
of Ferrers diagrams. These fillings are introduced in Section 2, where we also establish the link between
partial fillings and partial permutations.

Our first main result is Theorem 5 in Section 3, which states that a permutation pattern of the form
123 · · · `X is strongly ?-Wilf-equivalent to the pattern `(` − 1) · · · 321X , where X = x`+1x`+2 · · ·xm
is any permutation of {` + 1, . . . ,m}. This theorem is a strengthening of a result of Backelin, West and
Xin [BWX07], who show that patterns of this form are Wilf-equivalent. Our proof is based on a different
argument than the original proof of Backelin, West and Xin. The main ingredient of our proof is an
involution on a set of fillings of Ferrers diagrams, discovered by Krattenthaler [Kra06]. We adapt this
involution to partial fillings and use it to obtain a bijective proof of our result.

Our next main result is Theorem 6 in Section 4, which states that for any permutation X of the set
{4, 5, . . . , k}, the two patterns 312X and 231X are strongly ?-Wilf-equivalent. This is also a refinement
of an earlier result involving Wilf equivalence, due to Stankova and West [SW02]. As in the previous
case, the refined version requires a different proof than the weaker version.

In Section 5, we study the k-Wilf equivalence of patterns whose length is small in terms of k. It is not
hard to see that all patterns of length ` are k-Wilf equivalent whenever ` ≤ k + 1, because skn(p) = 0
for every such pattern p. Thus, the shortest patterns that exhibit nontrivial behaviour are the patterns of
length k+2. For these patterns, we show that k-Wilf equivalence yields a new characterization of Baxter
permutations: a pattern p of length k + 2 is a Baxter permutation if and only if skn(p) =

(
n
k

)
. For any

non-Baxter permutation q of length k + 2, skn(q) is strictly smaller than
(
n
k

)
and is in fact a polynomial

in n of degree at most k − 1.
In Section 6, we focus on explicit enumeration of skn(p) for small patterns p. We obtain explicit closed-

form formulas for skn(p) for every p of length at most four and every k ≥ 1.
In view of the space constraints, most of the proofs have been omitted from this extended abstract.

An example: monotone patterns
Before we present our main results, let us illustrate the concept of pattern-avoiding partial permutations
on the example of partial permutations avoiding the monotone pattern 12 · · · `. Let π ∈ Skn, and let
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π′ ∈ Sn−k be the permutation obtained from π by deleting all �’s. Note that π avoids the pattern 12 · · · `
if and only if π′ avoids 12 · · · (`− k). Thus,

skn(12 · · · `) =
(
n

k

)
s0n(12 · · · (`− k)), (1)

where
(
n
k

)
counts the possibilities of placing k �’s. For instance, if ` = k + 3 then skn(12 · · · `) =(

n
k

)
s0n(123), and it is well known that s0n(123) = Cn, the n-th Catalan number. We remark that for

general `, Regev [Reg81] found an asymptotic formula for s0n(12 · · · `), which can be used to obtain a
(rather complicated) asymptotic formula for skn(12 · · · `) as n tends to infinity.

2 Partial fillings
In this section, we introduce the necessary definitions related to partial fillings of Ferrers diagrams. These
notions will later be useful in our proofs of ?-Wilf equivalence of patterns.

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) be a non-increasing sequence of k nonnegative integers. A Ferrers
diagram with shape λ is a bottom-justified array D of cells arranged into k columns, such that the j-th
column from the left has exactly λj cells. Note that our definition of Ferrers diagram is slightly more
general than usual, in that we allow columns with no cells. If each column of D has at least one cell,
then we call D a proper Ferrers diagram. Every row of a Ferrers diagram D has nonzero length (while
we allow columns of zero height). If all the columns of D have zero height—in other words, D has no
rows—then D is called degenerate.

For the sake of consistency, we assume throughout this paper that the rows of each diagram and each
matrix are numbered from bottom to top, with the bottom row having number 1. Similarly, the columns
are numbered from left to right, with column 1 being the leftmost column.

By cell (i, j) of a Ferrers diagram D we mean the cell of D that is the intersection of i-th row and j-th
column of the diagram. We assume that the cell (i, j) is a unit square whose corners are lattice points with
coordinates (i − 1, j − 1), (i, j − 1), (i − 1, j) and (i, j). The point (0, 0) is the bottom-left corner of
the whole diagram. We say a diagram D contains a lattice point (i, j) if either j = 0 and the first column
of D has height at least i, or j > 0 and the j-th column of D has height at least i. A point (i, j) of the
diagram D is a boundary point if the cell (i + 1, j + 1) does not belong to D (see Figure 1). Note that a
Ferrers diagram with r rows and c columns has r + c+ 1 boundary points.

Fig. 1: A Ferrers diagram with shape (3, 3, 2, 2, 0, 0, 0). The black dots represent the points. The black dots in
squares are the boundary points.

A 01-filling of a Ferrers diagram assigns to each cell the value 0 or 1. A 01-filling is transversal if each
row and each column has exactly one 1-cell. A 01-filling is sparse if each column and each row has at



Pattern avoidance in partial permutations 629

most one 1-cell. A permutation p = p1p2 · · · p` ∈ S` can be represented by a permutation matrix which is
a 01-matrix of size `×`, whose cell (i, j) is equal to 1 if and only if pj = i. If there is no risk of confusion,
we abuse terminology by identifying a permutation pattern p with the corresponding permutation matrix.
Note that a permutation matrix is a transversal filling of a diagram with square shape.

Let P be a permutation matrix of size n× n, and let F be a sparse filling of a Ferrers diagram. We say
that F contains P if F has a (not necessarily contiguous) square subdiagram of size n× n which induces
in F a subfilling equal to P . This notion of containment generalizes usual permutation containment.

We now extend the notion of partial permutations to partial fillings of diagrams. Let D be a Ferrers
diagram with k columns. LetH be a subset of columns ofD. Let φ be a function that assigns to every cell
of D one of the three symbols 0, 1 and �, such that every cell in a column belonging to H is filled with �,
while every cell in a column not belonging toH is filled with 0 or 1. The pair F = (φ,H), will be referred
to as a partial 01-filling (or a partial filling) of the diagram D. See Figure 2. The columns from the set
H will be called the �-columns of F , while the remaining columns will be called the standard columns.
Observe that if the diagram D has columns of height zero, then φ itself is not sufficient to determine the
filling F , because it does not allow us to determine whether the zero-height columns are �-columns or
standard columns. For our purposes, it is necessary to distinguish between partial fillings that differ only
by the status of their zero-height columns.

1

0

0 1

0

⋄
⋄
⋄

⋄
⋄

1 2 3 4 5 6 7

Fig. 2: A partial filling with �-columns 1, 4 and 6.

We say that a partial 01-filling is transversal if every row and every standard column has exactly one
1-cell, and we say that a partial 01-filling is sparse if every row and every standard column has at most
one 1-cell. A partial 01-matrix is a partial filling of a (possibly degenerate) rectangular diagram .

There is a natural correspondence between partial permutations and transversal partial 01-matrices. Let
π ∈ Skn be a partial permutation. A partial permutation matrix representing π is a partial 01-matrix P
with n− k rows and n columns, with the following properties:

• If the j-th symbol of π is �, then the j-th column of P is a �-column.

• If the j-th symbol of π is a number i, then the j-th column is a standard column. Also, the cell in
column j and row i is filled with 1, and the remaining cells in column j are filled with 0’s.

To define pattern-avoidance for partial fillings, we first introduce the concept of substitution into a �-
column, which is analogous to substituting a number for a � in a partial permutation. The idea is to insert
a new row with a 1-cell in the �-column; this increases the height of the diagram by one. Let us now
describe the substitution formally.

Let F be a partial filling of a Ferrers diagram with m columns. Assume that the j-th column of F is
a �-column. Let h be the height of the j-th column. A substitution into the j-th column is an operation
consisting of the following steps:



630 Anders Claesson and Vı́t Jelı́nek and Eva Jelı́nková and Sergey Kitaev

1. Choose a number i, with 1 ≤ i ≤ h+ 1.

2. Insert a new row into the diagram, between rows i − 1 and i. The newly inserted row must not be
longer than the (i− 1)-th row, and it must not be shorter than the i-th row, so that the new diagram
is still a Ferrers diagram. If i = 1, we also assume that the length of the new row is at most m, so
that the number of columns does not increase during the substitution.

3. Fill all the cells in column j with the symbol 0, except for the cell in the newly inserted row, which
is filled with 1. Remove column j from the set of �-columns.

4. Fill all the remaining cells of the new row with 0 if they belong to a standard column, and with � if
they belong to a �-column.

Figure 3 illustrates an example of substitution.

1

0

0 1

0

⋄
⋄
⋄

⋄
⋄

1 2 3 4 5 6 7

1

0

0 1

0 ⋄
⋄

1 2 3 4 5 6 7

0

0

0

1 0 0 new row

Fig. 3: A substitution into the first column of a partial filling, involving an insertion of a new row between the second
and third rows of the original partial filling.

Note that a substitution into a partial filling increases the number of rows by 1. A substitution into
a transversal (resp. sparse) partial filling produces a new transversal (resp. sparse) partial filling. A
partial filling F with k �-columns can be transformed into a (non-partial) filling F ′ by a sequence of k
substitutions; we then say that F ′ is an extension of F .

Let P be a permutation matrix. We say that a partial filling F of a Ferrers diagram avoids P if every
extension of F avoids P . Note that a partial permutation π ∈ Sn

k avoids a permutation p, if and only if
the partial permutation matrix representing π avoids the permutation matrix representing p.

We say that two permutation matrices P andQ are shape-?-Wilf-equivalent, if for every Ferrers diagram
D there is a bijection between P -avoiding and Q-avoiding partial transversal fillings of D that preserves
the set of �-columns. Observe that if two permutations are shape-?-Wilf-equivalent, then they are also
strongly ?-Wilf-equivalent, because a partial permutation is a special case of a partial transversal filling
of a Ferrers diagram.

The notion of shape-?-Wilf-equivalence is motivated by the following proposition, which extends an
analogous result of Babson and West [BW00] for shape-Wilf-equivalence of non-partial permutations.

Proposition 1 Let P and Q be shape-?-Wilf-equivalent permutations, let X be an arbitrary permutation.
Then the two permutations ( 0 X

P 0 ) and
(

0 X
Q 0

)
are strongly ?-Wilf-equivalent.

Due to space constraints, the proof of Proposition 1 is omitted in this extended abstract.
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3 Strong ?-Wilf-equivalence of 12 · · · `X and `(`− 1) · · · 1X
We will use Proposition 1 as the main tool to prove strong ?-Wilf equivalence. To apply the proposition,
we need to find pairs of shape-?-Wilf-equivalent patterns. A family of such pairs is provided by the next
proposition, which extends previous results of Backelin, West and Xin [BWX07].

Proposition 2 Let I` = 12 · · · ` be the identity permutation of order `, and let J` = `(`− 1) · · · 21 be the
anti-identity permutation of order `. The permutations I` and J` are shape-?-Wilf-equivalent.

Before sketching the proof of this proposition, we introduce some notation and terminology. Let F
be a partial filling with r rows and c columns. Let i and j be numbers such that the point (i, j) is in F .
Let F (≤i,≤j) denote the submatrix of F whose bottom-left corner is the point (0, 0) and whose top-
right corner is the point (i, j); in other words, F (≤i,≤j) is the intersection of the bottom i rows with
the leftmost j columns of F . We assume that F (≤i,≤0) is the empty matrix, while F (≤0,≤j) is the
degenerate matrix with no rows but with j columns of zero height.

Let F be a sparse partial filling of a Ferrers diagram, and let (i, j) be a boundary point of F . Let h(F, j)
denote the number of �-columns among the first j columns of F . Let I(F, i, j) denote the largest integer
` such that the partial matrix F (≤ i,≤ j) contains I`. Similarly, let J(F, i, j) denote the largest ` such
that F (≤ i,≤j) contains J`.

We let F0 denote the (non-partial) sparse filling obtained by replacing all the symbols � in F by zeros.
Let us state without proof the following simple observation.

Observation 3 Let F be a sparse partial filling.

1. F contains a permutation matrix P if and only if F has a boundary point (i, j) such that F (≤ i,≤
j) contains P .

2. For any boundary point (i, j), we have I(F, i, j) = h(F, j)+I(F0, i, j) and J(F, i, j) = h(F, j)+
J(F0, i, j).

The key to the proof of Proposition 2 is the following theorem, which follows directly from the powerful
results of Krattenthaler [Kra06] obtained using the theory of growth diagrams.

Theorem 4 (Krattenthaler [Kra06]) Let D be a Ferrers diagram. There is a bijective mapping κ from
the set of all (non-partial) sparse fillings of D onto itself, with the following properties.

1. For any boundary point (i, j) of D, and for any sparse filling F , we have I(F, i, j) = J(κ(F ), i, j)
and J(F, i, j) = I(κ(F ), i, j).

2. The mapping κ preserves the number of 1-cells in each row and column. In other words, if a row
(or column) of a sparse filling F has no 1-cell, then the same row (or column) of κ(F ) has no 1-cell
either.

In Krattenthaler’s paper, the results are stated in terms of proper Ferrers diagrams. However, the bi-
jection obviously extends to Ferrers diagrams with zero-height columns as well. This is because adding
zero-height columns to a (non-partial) filling does not affect pattern containment.

From the previous theorem, we easily obtain the proof of the main proposition in this section.

Proof of Proposition 2: Let D be a Ferrers diagram. Let F be an I`-avoiding transversal partial filling
of D. Let F0 be the sparse filling obtained by replacing all the � characters of F by zeros. Define
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G0 = κ(F0), where κ is the bijection from Theorem 4. Note that all the �-columns of F are filled with
zeros both in F0 and G0. Let G be the sparse partial filling obtained from G0 by replacing zeros with � in
all such columns. Then G is a sparse partial filling with the same set of �-columns as F .

We see that for any boundary point (i, j) of the diagram D, h(F, j) = h(G, j). By the properties
of κ, we further obtain I(F0, i, j) = J(G0, i, j). In view of Observation 3, this implies that G is a J`-
avoiding filling. It is clear that this construction can be inverted, thus giving the required bijection between
I`-avoiding and J`-avoiding transversal partial fillings of D. 2

Combining Proposition 1 with Proposition 2, we get directly the main result of this section.

Theorem 5 For any ` ≤ m, and for any permutation X of {` + 1, . . . ,m}, the permutation pattern
123 · · · (`− 1)`X is strongly ?-Wilf-equivalent to the pattern `(`− 1) · · · 21X .

Notice that Theorem 5 implies, among other things, that all the patterns of size three are strongly
?-Wilf-equivalent.

4 Strong ?-Wilf-equivalence of 312X and 231X
We will now focus on the two patterns 312 and 231. The main result of this section is the following
theorem.

Theorem 6 The patterns 312 and 231 are shape-?-Wilf-equivalent. By Proposition 1, this implies that
for any permutation X of the set {4, 5, . . . ,m}, the two permutations 312X and 231X are strongly ?-
Wilf-equivalent.

Theorem 6 generalizes a result of Stankova and West [SW02], who have shown that 312 and 231 are
shape-Wilf equivalent. The original proof of Stankova and West [SW02] is rather complicated, and does
not seem to admit a straightforward generalization to the setting of shape-?-Wilf-equivalence. Our proof
of Theorem 6 is different from the argument of Stankova and West, and it is based on a bijection of
Jelı́nek [Jel07], obtained in the context of pattern-avoiding ordered matchings.

Due to space limitations, we omit the whole very long proof from this extended abstract.

5 The k-Wilf-equivalence of patterns of length k + 2
We will now consider the structure of pattern-avoiding partial permutations in which the number of �’s is
close to the length of the forbidden pattern.

Let us begin by an easy observation.

Observation 7 Assume that p is a pattern of length `. Any partial permutation with at least ` occurrences
of � contains p. Almost as obviously, a partial permutation with ` − 1 occurrences of � and of length at
least `, contains p as well. In particular, for every k ≥ ` − 1, we have skn(p) = 0, and hence all the
patterns of length ` are k-Wilf-equivalent.

In the rest of this section, we will deal with k-Wilf-equivalence of patterns of length ` = k + 2.
As we will see, an important part in k-Wilf-equivalence is played by Baxter permutations, which are

defined as follows.

Definition 8 A permutation p ∈ S` is called a Baxter permutation, if there is no four-tuple of indices
a < b < c < d ∈ [`] such that
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• c = b+ 1, and

• the subpermutation pa, pb, pc, pd is order-isomorphic to 2413 or to 3142.

In the terminology of Babson and Steingrı́msson [BS00], Baxter permutations are exactly the permutations
avoiding simultaneously the two patterns 2-41-3 and 3-14-2.

Baxter permutations have been introduced by G. Baxter [Bax64] in 1964. They were originally encoun-
tered in the context of common fixed points of commuting continuous functions [Bax64, Boy81]. Later,
it has been discovered that Baxter permutations are also closely related to other combinatorial structures,
such as plane bipolar orientations [BBMF08], noncrossing triples of lattice paths [FFNO08], and standard
Young tableaux [DG96]. An explicit formula for the number of Baxter permutations has been found by
Chung et al. [CGJK78], with several later refinements [Mal79, Vie81, DG98].

It is not hard to see that for any pattern of length ` = k+2, and for any n from the set {k, k+1, k+2},
we always have skn(p) =

(
n
k

)
. Thus, for these small values of n, all patterns have the same behavior.

However, for all larger values of n, the Baxter patterns are separated from the rest, as the next proposition
and theorem show. We omit the proofs of these results.

Proposition 9 Let p be a permutation pattern of size `, and let k = ` − 2. The following statements are
equivalent.

1. The pattern p is a Baxter permutation.

2. For each n ≥ k and each k-element subset H ⊆ [n], sHn (p) = 1.

3. For n = k + 3 and each k-element subset H ⊆ [n], sHn (p) = 1.

4. There exists n ≥ k + 3 such that for each k-element subset H ⊆ [n], sHn (p) = 1.

Theorem 10 Let p ∈ S` be a permutation pattern. Let k = ` − 2. If p is a Baxter permutation then
skn(p) =

(
n
k

)
for each n ≥ k. If p is not a Baxter permutation, then skn(p) <

(
n
k

)
whenever n ≥ k + 3.

Moreover, all the Baxter permutations are strongly k-Wilf equivalent.

We remark that by a slightly more careful analysis of the arguments leading to Proposition 9 and
Theorem 10, we could give a stronger upper bound for skn(p) when p is not a Baxter permutation. In
particular, it is not hard to show that in that case, skn(p) is eventually equal to a polynomial in n of degree
at most k − 1, with coefficients depending on k.

6 Short patterns
In the rest of this paper, we focus on explicit formulas for skn(p), where p is a pattern of length `. We
may assume that k < `− 1, and ` > 2, since for any other values of (k, `) the enumeration is trivial (see
Observation 7). We also restrict ourselves to k ≥ 1, since the case k = 0, which corresponds to classical
pattern-avoidance in permutations, has already been extensively studied [B0́4].

For a pattern p of length three, the situation is very simple. Theorem 10 implies that s1n(p) = n, since
all permutations of length three are Baxter permutations.

Let us now deal with patterns of length four. In Figure 4, we depict the k-Wilf equivalence classes,
where the four rows, top to bottom, correspond to the four values k = 0, 1, 2, 3. Since all the k-Wilf
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equivalences are closed under complements and reversals (but not inversions), we represent the 24 patterns
of length four by eight representatives, one from each symmetry class. For instance, {1342, 1423} in the
second row represents the union of {1342, 2431, 3124, 4213} and {1423, 2314, 3241, 4132}.

{1342, 1423}

{1234, 1243, 1324, 1342, 1423, 1432, 2143, 2413}

{2413}

{1342, 1423, 2413} {1324}

{1234, 1243, 1324, 1432, 2143}

{1234, 1243, 1324, 1342, 1423, 1432, 2143}

{1234, 1243, 1432, 2143}

{2413}

k = 0

k = 1

k = 2

k = 3

Fig. 4: The k-Wilf-equivalence classes of permutations of size 4.

All patterns p of length four except 2413 and 3142 are Baxter permutations, and hence they satisfy
s2n(p) =

(
n
2

)
by Theorem 10. It is possible to show that s2n(2413) = s2n(3142) = 3n − 6. We omit the

details of this routine argument in this extended abstract.
In the rest of the paper, we deal with 1-Wilf equivalence of patterns of length four, and with the enu-

meration of the corresponding avoidance classes. Theorem 5 and symmetry arguments imply that all
the patterns 1234, 1243, 1432 and 2143 are strongly ?-Wilf-equivalent, and Theorem 6 with appropriate
symmetry arguments shows that 1342 and 1423 are strongly ?-Wilf-equivalent as well. The only case
not covered by these general theorems is the 1-Wilf equivalence of 1324 and 1234, which is handled
separately by the next proposition.

Proposition 11 The patterns 1234 and 1324 are strongly 1-Wilf-equivalent.

The proof of Proposition 11 is omitted.
Let us now state the formulas for s1n(p), where p has length four. The proofs are omitted.

Theorem 12 The number of partial permutations of length n ≥ 1 with a single hole, avoiding a pattern
of length four, is given by these formulas:

• s1n(1234) = s1n(1243) = s1n(1324) = s1n(1432) = s1n(2143) =
(
2n−2
n−1

)
,

• s1n(1342) = s1n(1423) =
(
2n−2
n−1

)
−
(
2n−2
n−5

)
, and

• s1n(2413) = 2
n+1

(
2n
n

)
− 2n−1.

7 Directions of further research
We have shown that classical Wilf equivalence may be regarded as a special case in a hierarchy of k-Wilf
equivalence relations, and that many properties previously established in the context of Wilf equivalence
can be generalized to all the k-Wilf equivalences. In many situations, understanding the k-Wilf equiva-
lence class of a given pattern p becomes easier as k increases. In particular, the k-Wilf equivalence class
of the permutation p = 12 · · · (k + 1)(k + 2) contains exactly the Baxter permutations of length k + 2.
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What can we say about the k-Wilf equivalence class of the permutation 12 · · · (k + 3)? For k = 0
and k = 1 this class contains exactly the layered permutations of length k + 3. Computer enumeration
suggests that the same is true for larger values of k as well, but we have no proof.
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