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Schubert complexes and degeneracy loci

Steven V Sam †

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract. The classical Thom–Porteous formula expresses the homology class of the degeneracy locus of a generic
map between two vector bundles as an alternating sum of Schur polynomials. A proof of this formula was given by
Pragacz by expressing this alternating sum as the Euler characteristic of a Schur complex, which gives an explanation
for the signs. Fulton later generalized this formula to the situation of flags of vector bundles by using alternating sums
of Schubert polynomials. Building on the Schubert functors of Kraśkiewicz and Pragacz, we introduce Schubert
complexes and show that Fulton’s alternating sum can be realized as the Euler characteristic of this complex, thereby
providing a conceptual proof for why an alternating sum appears.

Résumé. La formule classique de Thom–Porteous exprime la classe d’homologie du locus de la dégénérescence
d’une fonction générique entre deux fibrés vectoriels comme une somme alternée des polynômes de Schur. Un
preuve de cette formule a été donnée par Pragacz en exprimant ce alternant somme comme la caractéristique d’Euler
d’un complexe de Schur, ce qui donne une explication pour les signes. Fulton puis généralisée cette formule à la
situation des drapeaux de fibrés vectoriels à l’aide alternant des sommes de polynômes de Schubert. S’appuyant sur
le Schubert foncteurs de Kraśkiewicz et Pragacz, nous introduisons les complexes de Schubert et montrent que la
somme alternée de Fulton peuvent être réalisées en tant que Euler caractéristique de ce complexe, fournissant ainsi
une preuve conceptuelle pour lesquelles une somme alternée apparaı̂t.

Keywords: Schubert polynomials, Schubert complexes, degeneracy loci, balanced labelings, Thom–Porteous for-
mula

1 Introduction
Let X be a smooth variety, and let ϕ : E → F be a map of vector bundles over X , with ranks e and f
respectively. Given a number k ≤ min(e, f), let Dk(ϕ) be the degeneracy locus of points x where the
rank of ϕ restricted to the fiber of x is at most k. Then codimDk(ϕ) ≤ (e− k)(f − k), and in the case of
equality, the Thom–Porteous formula gives an expression for the homology class of Dk(ϕ) in the Chow
groups of X in terms of the Chern classes of E and F using super Schur polynomials. Also in the case of
equality, the Schur complex associated with the rectangular partition (f − k)× (e− k) [ABW] of ϕ is a
linear locally free resolution for a coherent sheaf whose support is Dk(ϕ). Interpreted appropriately, the
Euler characteristic of this complex recovers the Thom–Porteous formula. Hence the complex provides a
“linear approximation” of the syzygies of Dk(ϕ).

The situation was generalized by Fulton as follows. We provide the additional data of a flag of subbun-
dles E• for E and a flag of quotient bundles F• for F , and we can define degeneracy loci for an array of
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numbers which specifies the ranks of maps Ep → Fq . In particular, the rank functions which give rise to
irreducible degeneracy loci are indexed by permutations in a natural way. Under the right codimension as-
sumptions, one can express its homology class as a substitution of a double Schubert polynomial with the
Chern classes of the quotients Ei/Ei−1 and the kernels ker(Fj → Fj−1). The motivation for this work
was to complete the analogy of this situation with the previous one by constructing “Schubert complexes”
which would be acyclic whenever the degeneracy loci has the right codimension.

Building on the constructions for Schubert functors by Kraśkiewicz and Pragacz of [KP], we construct
these complexes over an arbitrary (commutative) ring R from the data of two free R-modules M0, M1,
with given flags of submodules, respectively, quotient modules, and a map ∂ : M0 → M1. We show that
they are generically acyclic (in the sense of [BE]) and that in general they are acyclic when a certain ideal
defined in terms of minors of ∂ has the right depth, i.e., they are “depth-sensitive.” This allows us to
extend the construction to an arbitrary variety (or more generally, an arbitrary scheme). We will stick to
the language of varieties, however the results can be generalized as necessary. Again, the complexes are
linear and provide a “linear approximation” to the syzygies of Fulton’s degeneracy loci. We remark here
that as a special case of Fulton’s degeneracy loci, one gets Schubert varieties inside of arbitrary partial
flag varieties.

Our main result is that in the situation of Fulton’s theorem, the complex is acyclic and the Euler charac-
teristic provides the formula in the same sense as above. A majority of the hard work goes into proving that
our constructed complexes are acyclic under the appropriate depth assumption. Our proof uses techniques
from commutative algebra, algebraic geometry, and combinatorics, and will appear in the full version of
this paper. In the present article, we offer a short sketch of the proof.

Using the work of Fomin, Greene, Reiner, and Shimozono [FGRS], we can also construct explicit
bases for the terms of the Schubert complex in the case that M0 and M1 are free. This basis naturally
extends their notion of “balanced labelings” and their generating function gives an alternative expression
for double Schubert polynomials. Furthermore, the complex naturally affords a representation of the
Lie superalgebra of upper triangular matrices (with respect to the given flags) in Hom(M0,M1), and its
supercharacter is the double Schubert polynomial.

The article is structured as follows. In Section 2 we recall some facts about double Schubert polyno-
mials and balanced labelings. We introduce balanced super labelings and explain their relationship with
the double Schubert polynomials. In Section 3 we extend the construction for Schubert functors to the
Z/2-graded setting and describe a basis for them naturally indexed by the balanced super labelings. In
Section 4 we construct the Schubert complex from this Z/2-graded Schubert functor. We mention the rel-
evant facts and sketch the idea of a proof that these complexes are generically acyclic, and that in general
the acyclicity of the complex is controlled by depth of a Schubert determinantal ideal. We also give some
examples of Schubert complexes. Finally, in Section 5, we relate the acyclicity of the Schubert complexes
to a degeneracy locus formula of Fulton.

2 Double Schubert polynomials.
2.1 Preliminaries.
Let Σn be the permutation group on the set {1, . . . , n}. Let si denote the transposition which switches i
and i+ 1. Then Σn is generated by {s1, . . . , sn−1}, and for w ∈ Σn, we define the length of w to be the
least number of `(w) such thatw = si1 · · · si`(w)

. Such a minimal expression is a reduced decomposition
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for w. We can also write `(w) = #{i < j | w(i) > w(j)}. There is a unique word w0 with maximal
length, which is the permutation defined by w0(i) = n+ 1− i.

We will use two partial orders on Σn. The weak Bruhat order, denoted by u ≤W w, holds if some
reduced decomposition of u is the suffix of some reduced decomposition of w. We denote the strong
Bruhat order by u ≤ w, which holds if some reduced decomposition of w contains a subword that is a
reduced decomposition of u. It follows from the definition that u ≤ w if and only if u−1 ≤ w−1. For
a permutation w, let rw(p, q) = {i ≤ p | w(i) ≤ q} be its rank function. Then u ≤ w if and only if
ru(p, q) ≥ rw(p, q) for all p and q (the inequality on rank functions is reversed).

Given a polynomial (with arbitrary coefficient ring) in the variables {xi}i≥1, let ∂i be the divided
difference operator

(∂iP )(x1, x2, . . . ) =
P (. . . , xi−1, xi, xi+1, . . . )− P (. . . , xi−1, xi+1, xi, . . . )

xi − xi+1
. (2.1)

The operators ∂i satisfy the braid relations: ∂i∂j = ∂j∂i when |i− j| > 1 and ∂i∂i+1∂i = ∂i+1∂i∂i+1.
For the long word w0 ∈ Σn, set Sw0

(x, y) =
∏
i+j≤n(xi − yj). In general, if `(wsi) = `(w)− 1, we

set Swsi(x, y) = ∂iSw(x, y), where we interpret Sw(x, y) as a polynomial in the variables {xi}i≥1 with
coefficients in the ring Z[y1, y2, . . . ]. These polynomials are the double Schubert polynomials, and are
well-defined thanks to the braid relations. They also enjoy the following stability property: if we embed
Σn into Σn+1 by identifying permutations of Σn with permutations of Σn+1 which fix n + 1, then the
polynomial Sw(x, y) is the same whether we regard w as an element of Σn or Σn+1.

Define the single Schubert polynomials by Sw(x) = Sw(x, 0). We will use the identity [Man,
Proposition 2.4.7]

Sw(x, y) =
∑
u≤Ww

Su(x)Suw−1(−y). (2.2)

2.2 Balanced super labelings.
For the rest of this article, we fix a totally ordered alphabet · · · < 3′ < 2′ < 1′ < 1 < 2 < 3 < · · · .

For a permutation w, define its diagram D(w) = {(i, w(j)) | i < j, w(i) > w(j)}. Let T be a
labeling of D(w). The hook of a box b ∈ D(w) is the set of boxes in the same column below it, and the
set of boxes in the same row to the right of it (including itself). A hook is balanced (with respect to T ) if it
satisfies the following property: when the entries are rearranged so that they are weakly increasing going
from the top right end to the bottom left end, the label in the corner stays the same. A labeling is balanced
if all of the hooks are balanced. Call a labeling T of D(w) with entries in our alphabet a balanced super
labeling (BSL) if it is balanced, column-strict (no repetitions in any column) with respect to the unmarked
alphabet, row-strict with respect to the marked alphabet, and satisfies j′ ≤ T (i, j) ≤ i for all i and j (this
last condition will be referred to as the flag conditions).

Given a BSL T of D(w), let fT (i), respectively fT (i′), be the number of occurrences of i, respectively
i′. Define a monomial

m(T ) = x
fT (1)
1 · · ·xfT (n−1)

n−1 (−y1)fT (1′) · · · (−yn−1)fT ((n−1)′). (2.3)

Using [FGRS, Lemma 4.7, Theorem 4.8], we can prove the following.
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Theorem 2.4 For every permutation w,

Sw(x, y) =
∑
T

m(T ),

where the sum is over all BSL T of D(w).

Remark 2.5 Given a labeling T of D(w), let T ∗ denote the labeling of D(w−1) obtained by transposing
T and performing the swap i ↔ i′. The operation T 7→ T ∗ gives a concrete realization of the symmetry
Sw(−y,−x) = Sw−1(x, y) [Man, Corollary 2.4.2].

Example 2.6 We list the BSL for the permutation w = 321.

1 1
2

1 1

1′
1 2′

2
1′ 2′

1
1 1′

2
1′ 1

1′
1′ 2′

2
1′ 2′

1′

In this case, S321(x, y) = (x1 − y1)(x1 − y2)(x2 − y1).

3 Double Schubert functors.
3.1 Super linear algebra preliminaries.
Let V = V0 ⊕ V1 be a free super module over a commutative ring R with V0 = 〈e1, . . . , en〉 and
V1 = 〈e′1, . . . , e′m〉, and let gl(m|n) = gl(V ) be the Lie superalgebra of endomorphisms of V . Let
b(m|n) ⊂ gl(m|n) be the standard Borel subalgebra of upper triangular matrices with respect to the
ordered basis 〈e′m, . . . , e′1, e1, . . . , en〉. In the case m = n, we will write b(n) = b(n|n), and if it
is clear from context, we will drop the n and simply write b. Also, let b(n)0 = gl(V )0 ∩ b(n) be
the even degree elements in b(n), and again, we will usually denote this by simply b0. We also write
h(n) ⊂ b(n) for the Cartan subalgebra of diagonal matrices (this is a Lie algebra concentrated in degree
0). Let ε′n, . . . , ε

′
1, ε1, . . . , εn be the dual basis vectors to the standard basis of h(n). For notation, write

(an, . . . , a1|b1, . . . , bn) for
∑n
i=1(aiε

′
i+biεi). The even and odd roots of b(n) are Φ0 = {ε′j−ε′i, εi−εj |

1 ≤ i < j ≤ n} and Φ1 = {ε′i − εj | 1 ≤ i, j ≤ n}, respectively. The even and odd simple roots are
∆0 = {ε′i+1 − ε′i, εi − εi+1 | i = 1, . . . , n− 1} and ∆1 = {ε′1 − ε1}.

Given a highest weight representation W of b(n), we have a weight decomposition W =
⊕

λWλ as a
representation of h(n). Let Λ be the highest weight of W . Then every weight λ appearing in the weight
decomposition can be written in the form Λ −

∑
nαα where α ranges over the simple roots of b(n) and

nα ∈ Z≥0. For such a λ, set ω(λ) = (−1)
∑
nα degα. Then we define the character and supercharacter

of W as

chW =
∑
λ

(dimWλ)eλ, schW =
∑
λ

ω(λ)(dimWλ)eλ. (3.1)

We recall the Z/2-graded analogues of the symmetric and exterior powers. Let F = F0 ⊕ F1 be a free
R-supermodule. Let D denote the divided power functor. Then

∧i
F and DiF are Z-graded modules

with terms given by

(

i∧
F )d =

i−d∧
F0 ⊗ SymdF1, (DiF )d = Di−dF0 ⊗

d∧
F1. (3.2)
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We can define a coassociative Z-graded comultiplication ∆: Di+jF → DiF ⊗ DjF as follows. On
degree d, pick 0 ≤ a ≤ i and 0 ≤ b ≤ j such that a+ b = d. Then we have the composition ∆a,b

(Di+jF )d = Di+j−a−bF0 ⊗
a+b∧

F1

∆⊗∆−−−→ Di−aF0 ⊗Dj−bF0 ⊗
a∧
F1 ⊗

b∧
F1

∼= Di−aF0 ⊗
a∧
F1 ⊗Dj−bF0 ⊗

b∧
F1 = (DiF )a ⊗ (DjF )b,

(3.3)

where ∆ is the usual symmetrization map, and we define ∆ on the degree d part to be
∑
a+b=d ∆a,b.

Similarly, we can define an associative Z-graded multiplication m :
∧i

F ⊗
∧j

F →
∧i+j

F as fol-
lows. For degrees a and b, we have

(

i∧
F )a ⊗ (

j∧
F )b =

i−a∧
F0 ⊗ SymaF1 ⊗

j−b∧
F0 ⊗ SymbF1

∼=
i−a∧

F0 ⊗
j−b∧

F0 ⊗ SymaF1 ⊗ SymbF1

m⊗m−−−−→
i+j−a−b∧

F0 ⊗ Syma+bF1 = (

i+j∧
F )a+b,

(3.4)

where m is the usual exterior multiplication.

3.2 Constructions.
Define a flag of Z/2-graded submodules

V • : V −n ⊂ · · · ⊂ V −1 ⊂ V 1 ⊂ · · · ⊂ V n (3.5)

such that V −1 consists of all of the odd elements of V n. We will say that the flag is split if each term and
each quotient is a free module. Fix a permutation w ∈ Σn. Let rk = rk(w), respectively cj = cj(w),
be the number of boxes in the kth row, respectively jth column, of D(w). Define χk,j to be 1 if (k, j) ∈
D(w) and 0 otherwise. Consider the map

n−1⊗
k=1

DrkV k
⊗∆−−→

n−1⊗
k=1

n−1⊗
j=1

Dχk,jV k ∼=
n−1⊗
j=1

n−1⊗
k=1

Dχk,jV k

⊗m−−→
n−1⊗
j=1

cj∧
V w

−1(j) ⊗π−−→
n−1⊗
j=1

cj∧
(V w

−1(j)/V −j−1),

(3.6)

where ⊗∆ denotes the product of symmetrization operations, ⊗m denotes the product of exterior multi-
plications, and ⊗π denotes the product of projection maps. Then its image Sw(V •) is the Z/2-graded
Schubert functor, or double Schubert functor. By convention, the empty tensor product is R, so that if
w is the identity permutation, then Sw(V •) = R with the trivial action of b(n).
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This definition is clearly functorial: given an even map of flags f : V • → W •, i.e., f(V k) ⊂ W k for
−n ≤ k ≤ n, we have an induced map f : Sw(V •)→ Sw(W •).

We will focus on the case when V −i = 〈e′n, e′n−1, · · · , e′i〉 and V i = V −1 + 〈e1, e2, . . . , ei〉, so that
Sw = Sw(V •) is a b(n)-module.

Remark 3.7 One could dually define the double Schubert functor as the image of (dual) exterior powers
mapping to symmetric powers. The dual exterior powers are as in our definition, except that divided
powers replace symmetric powers. However, we have chosen this definition to be consistent with [KP].
This will be especially convenient in Section 4.1.

Here is a combinatorial description of the map (3.6). The elements of
⊗n−1

k=1 DrkV k can be thought of
as labelings of D = D(w) such that in row k, only the labels n′, (n− 1)′, . . . , 1′, 1, . . . , k are used, such
that there is at most one use of i′ in a given row, and such that the entries in each row are ordered in the
usual way (i.e., n′ < (n − 1)′ < · · · < 1′ < 1 < · · · < k). Let ΣD be the permutation group of D. We
say that σ ∈ ΣD is row-preserving if each box and its image under σ are in the same row. Denote the
set of row-preserving permutations as Row(D). Let T be a labeling of D that is row-strict with respect
to the marked letters. Let Row(D)T be the subgroup of Row(D) that leaves T fixed, and let Row(D)T

be the set of cosets Row(D)/Row(D)T . Given σ ∈ Row(D)T , and considering the boxes as ordered
from left to right, let α(T, σ)k be the number of inversions of σ among the marked letters in the kth
row, and define α(T, σ) =

∑n−1
k=1 α(T, σ)k. Note that this number is independent of the representative

chosen since T is row strict with respect to the marked letters. Then the comultiplication sends T to∑
σ∈Row(D)T (−1)α(T,σ)σT where σT is the result of permuting the labels of T according to σ.
For the multiplication map, we can interpret the columns as being alternating in the unmarked letters

and symmetric in the marked letters. We write m(T ) for the image of T under this equivalence relation.
Therefore, the map (3.6) can be defined as

T 7→
∑

σ∈Row(D)T

(−1)α(T,α)m(σT ). (3.8)

3.3 A basis and a filtration.
Theorem 3.9 Assume that the flag V • is split. The images of the BSLs under (3.6) form a basis over R
for Sw. By convention, the empty diagram has exactly one labeling.

Corollary 3.10 Identify xi = −eεi and yi = −eε′i for 1 ≤ i ≤ n. Then

ch Sw = Sw(−x, y), sch Sw = Sw(x, y).

Corollary 3.11 Choose an ordering of the set of permutations below w in the weak Bruhat order: 1 =
v1 ≺ v2 ≺ · · · ≺ vN = w such that vi ≺ vi+1 implies that `(vi) ≤ `(vi+1). Then there exists a
b-equivariant filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ FN = Sw

such that
Fi/Fi−1

∼= S ′vi ⊗S ′′
wv−1

i

as b0-modules.
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Our proof does not establish how one can write the image of an arbitrary labeling as a linear combination
of the images of the BSLs. Such a straightening algorithm is preferred, but we have not been successful
in finding one, so we leave this task as an open problem.

Problem 3.12 Find an algorithm for writing the image of an arbitrary labeling of D(w) as a linear
combination of the images of the BSLs of D(w).

4 Schubert complexes.
Now we can use the above machinery to define Schubert complexes. We start with the data of two flags
F •0 : 0 = F 0

0 ⊂ F 1
0 ⊂ · · · ⊂ Fn0 = F0 and F •1 : 0 = F−n−1

1 ⊂ F−n1 ⊂ F−n+1
1 ⊂ · · · ⊂ F−1

1 = F1, and
a map ∂ : F0 → F1 between them. Given the flag for F0, we pick an ordered basis {e1, . . . , en} for it such
that ei ∈ F i0 \F i−1

0 . Similarly, we pick an ordered basis {e′1, . . . , e′n} for F1 such that e′i ∈ F
−i
1 \F

−i−1
1 .

Given these bases, we can represent ∂ as a matrix. This matrix representation will be relevant for the
definition of certain ideals later.

Equivalently, we can give F •1 as a quotient flag F1 = Gn � Gn−1 � · · · � G1 � G0 = 0, so that
the correspondence is given by F−i1 = ker(Gn � Gi−1). Note that F−i1 /F−i−1

1 = ker(Gi � Gi−1).
We assume that each quotient has rank 1. Then we form a flagged supermodule F with even part F0 and
odd part F1. The formation of symmetric and exterior products commutes with the differential ∂, so we
can form the Schubert complex Sw(F ) for a permutation w ∈ Σn.

Proposition 4.1 The ith term of Sw(F ) has a natural filtration whose associated graded is⊕
v≤Ww
`(v)=i

Sv(F0)⊗Swv−1(F1).

Proof: This is a consequence of Corollary 3.11. 2

4.1 The Kraśkiewicz–Pragacz filtration.
In order to prove properties of Sw, we will construct a filtration of subcomplexes, which is based on the
filtration of the single Schubert functors introduced by Kraśkiewicz and Pragacz [KP].

Let w ∈ Σn be a nonidentity permutation. Consider the set of pairs (α, β) such that α < β and
w(α) > w(β). Choose (α, β) to be maximal with respect to the lexicographic ordering. Let k1 <
· · · < kk be the numbers such that kt < α and w(kt) < w(β), and such that kt < i < α implies
that w(i) /∈ {w(kt), w(kt) + 1, . . . , w(β)}. Then we have the following identity of double Schubert
polynomials

Sw = Sv · (xα − yw(β)) +

k∑
t=1

Sψt , (4.2)

where v = wtα,β and ψt = wtα,βtkt,α. Here ti,j denotes the transposition which switches i and j. See,
for example, [Man, Exercise 2.7.3]. The formula in (4.2) will be called a maximal transition for w.
Define the index of a permutation u to be the number

∑
(k − 1)#{j > k | u(k) > u(j)}. Note that the

index of ψt is smaller than the index of w.
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Theorem 4.3 Let V • be a split flag as in (3.5). Given a permutation w ∈ Σn, let (4.2) be the maximal
transition for w. Then there exists a functorial b-equivariant filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk ⊂ F ′ ⊂ F = Sw(V •)

such that F/F ′ ∼= Sv(V
•) ⊗ V α/V α−1, F ′/Fk ∼= Sv(V

•) ⊗ V −w(β)/V −w(β)+1, and Ft/Ft−1
∼=

Sψt(V
•) for t = 1, . . . , k.

Corollary 4.4 Let ∂ : F0 → F1 be a map. With the notation as in Theorem 4.3, there is a functorial
b-equivariant filtration of complexes

0 = C0 ⊂ C1 ⊂ · · · ⊂ Ck ⊂ C ′ ⊂ C = Sw(∂)

such that C/C ′ ∼= Sv(∂)[−1] ⊗ Fα0 /Fα−1
0 , C ′/Ck ∼= Sv(∂) ⊗ F−w(β)

1 /F
−w(β)+1
1 , and Ct/Ct−1

∼=
Sψt(∂) for t = 1, . . . , k.

Proof: The filtration of Theorem 4.3 respects the differentials since everything is defined in terms of mul-
tilinear operations. The grading shift of C/C ′ follows from the fact that the F0 terms have homological
degree 1. 2

4.2 Generic acyclicity of Schubert complexes.
Given a matrix ∂ and a permutationw, let Iw(∂) be the ideal generated by the (rw(p, q)+1)×(rw(p, q)+1)
minors of the upper left p × q submatrix of ∂. It is clear that Iv ⊆ Iw if and only if v ≤ w. In the case
that ∂ is a generic matrix of variables over some coefficient ring R, let X(w) be the variety defined by
Iw(∂) ⊂ R[∂i,j ]. We refer to the ideals Iw(∂) as Schubert determinantal ideals, and the varieties X(w)
as matrix Schubert varieties. These ideals are prime and have codimension `(w) [MS, Chapter 15].

Our main result is the following.

Theorem 4.5 Let A = K[∂i,j ] be a polynomial ring over a field K, and let ∂ : F0 → F1 be a generic
map of variables between two free A-modules.

(a) The Schubert complex Sw(∂) is acyclic, and resolves a Cohen–Macaulay module M of codimension
`(w) supported in Iw−1(∂) ⊆ A.

(b) The restriction of M to X(w−1) is a line bundle outside of a certain codimension 2 subset.

(c) The Schubert complex defined over the integers is acyclic.

Proof: (Sketch). From Corollary 4.4, we get a short exact sequence

0→ H1(C)→ H0(Sv(∂))⊗ Fα0 /Fα−1
0

δ−→ H0(C ′)→ H0(C)→ 0, (4.6)

so we have to show that δ is injective, and that the support of H0(C) = M is P = Iw−1(∂).
The short exact sequence

0→ Ck → C ′ → Sv(∂)⊗ 〈e′w(β)〉 → 0
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induces the sequence

0→ H0(Ck)→ H0(C ′)→ H0(Sv(∂))⊗ 〈e′w(β)〉 → 0.

By induction on the filtration in Corollary 4.4, the support of H0(Ck) is in the union of the X(ψ−1
t ), and

hence does not contain X(w−1). So localizing at P , we get an isomorphism

H0(C ′)P ∼= H0(Sv(∂))P ⊗ 〈e′w(β)〉.

So we can restrict this isomorphism to X(w−1). Localizing (4.6) at P and then restricting X(w−1), we
get a surjection

H0(Sv(∂))P ⊗ 〈e′w(β)〉 → H0(C)P → 0.

By induction, the first term has length 1 over the generic point of X(w−1), so the length of H0(C)P is
either 0 or 1.

The idea for using this partial information is to carry our situation to the complete flag variety and to use
its K-theory to show that length(H0(C)P )− length(H1(C)P ) = 1. Some more analysis of the K-theory
gives us the other statements which allow us to complete the induction step. 2

Corollary 4.7 Let X be an equidimensional Cohen–Macaulay variety, and let ∂ : E → F be a map of
vector bundles on X . Let E1 ⊂ · · · ⊂ En = E and F−n ⊂ · · · ⊂ F−1 = F be split flags of subbundles.
Let w ∈ Σn be a permutation, and define the degeneracy locus

Dw(∂) = {x ∈ X | rank(∂x : Ep(x)→ F/F−q−1(x)) ≤ rw(p, q)},

where the ideal sheaf of Dw(∂) is locally generated by the minors given by the rank conditions. Suppose
that Dw(∂) has codimension `(w).

(a) The Schubert complex Sw(∂) is acyclic, and the support of its cokernel L is Dw(∂).

(b) The degeneracy locus Dw(∂) is Cohen–Macaulay.

(c) The restriction of L to Dw(∂) is a line bundle outside of a certain codimension 2 subset.

4.3 Examples.
Here is a combinatorial description of the differentials in the Schubert complex for a flagged isomorphism.
We will work with just the tensor product complex

⊗n−1
k=1 Drk(w)(F ). Then the basis elements of its terms

are row-strict labelings. The differential sends such a labeling to the signed sum of all possible ways to
change a single unmarked letter to the corresponding marked letter. If T ′ is obtained from T by marking
a letter in the ith row, then the sign on T ′ is (−1)n, where n is the number of unmarked letters of T in the
first i− 1 rows.

Example 4.8 Consider the permutation w = 1423. Then D(w) = {(2, 2), (2, 3)}, and we denote the
generic map by e1 7→ ae′1 + be′2 + ce′3 and e2 7→ de′1 + ee′2 + fe′3 (the images of e3 and e4 are irrelevant,
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and it is also irrelevant to map to e′4) instead of a flagged isomorphism. The cokernel M is Cohen–
Macaulay of codimension 2 over A = K[a, b, c, d, e, f ]:

0→ A3



e b 0
0 e b
d a 0
0 d a
0 f c
f c 0


−−−−−−−−−→ A6


d a −e −b 0 0
0 0 −f −c a d
−f −c 0 0 b e


−−−−−−−−−−−−−−−−−−−−−−−→ A3 →M → 0

Example 4.9 Consider the permutation w = 2413. Then D(w) = {(1, 1), (2, 1), (2, 3)}, and denote
the generic matrix by e1 7→ ae′1 + be′2 + ce′3 and e2 7→ de′1 + ee′2 + fe′3 (the images of e3 and e4 are
irrelevant, and it is also irrelevant to map to e′4). The cokernel M is Cohen–Macaulay of codimension 3
over A = K[a, b, c, d, e, f ]:

0→ A2



−d −a
−e −b
−f −c
0 −d
a 0
0 a


−−−−−−−−−→ A6



0 0 0 a 0 d
e −d 0 b 0 e
f 0 −d c 0 f
a 0 0 0 d a
0 a 0 0 e b
0 0 a 0 f c


−−−−−−−−−−−−−−−−−−−−→ A6

−b a 0 −e d 0
−c 0 a −f 0 d


−−−−−−−−−−−−−−−−−−−−→ A2 →M → 0

5 Degeneracy loci.
5.1 A formula of Fulton.
Suppose we are given a map ∂ : E → F of vector bundles of rank n on a variety X , together with a flag
of subbundles E1 ⊂ E2 ⊂ · · · ⊂ En = E and a flag of quotient bundles F = Fn � Fn−1 � · · ·� F1

such that rankEi = rankFi = i. We assume that the quotient flags Ei/Ei+1 are locally free. For a
permutation w, define

Dw(∂) = {x ∈ X | rank(∂x : Ep(x)→ Fq(x)) ≤ rw(p, q)}.

Then codimDw(∂) ≤ `(w). Define Chern classes xi = −c1(Ei/Ei−1) and yi = −c1(ker(Fi � Fi−1)).

Theorem 5.1 (Fulton) Suppose that X is an equidimensional Cohen–Macaulay variety and Dw(∂) has
codimension `(w). Then the identity

[Dw(∂)] = Sw(x, y) ∩ [X]

holds in the Chow group Adim(Dw(∂))(X).

See [F1, §8] for a more general statement which does not enforce a codimension requirement onDw(∂)
or assume that X is Cohen–Macaulay.

We will only deal with the case when X is smooth. The general case can be reduced to this case
using a “universal construction” (see [F2, Chapter 14]). So suppose that X is smooth. Let A∗(X) =
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k≥0 Ak(X) be the direct sum of its Chow groups, and Gr K(X) be the associated graded of the topo-

logical filtration of its Grothendieck group (see [F2, Example 15.1.5]). Let ϕ : A∗(X)→ Gr K(X) be the
functorial morphism of graded rings which for a subvariety V ⊆ X sends [V ] to [OV ]. If F is a coherent
sheaf whose support has dimension at most k, then we have ϕ(Zk(F)) = [F ] where

Zk(F) =
∑

dimV=k

mV (F)[V ],

and mV (F) is the length of the stalk of F at the generic point of V . In order to state the connection be-
tween the Schubert complex and Fulton’s formula, we will need the following lemma which was observed
in [Pra, Appendix 6].

Lemma 5.2 Let D be an irreducible closed subvariety of a smooth variety X . Let C• be a finite complex
of vector bundles on X and let P ∈ AcodimD(X). If

suppC• = X \ {x ∈ X | (C•)|x is an exact complex}

is contained in D, and ϕ(P ∩ [X]) = [C•], then c[D] = P ∩ [X] for some c ∈ Q.

We will use Lemma 5.2 with D = Dw(∂), C• = Sw(∂), and P = Sw(x, y) using the notation from
the beginning of this section. We know that suppC• ⊆ D and that the codimension ofD is `(w) = degP
by Corollary 4.7. So we need to check that ϕ(P ∩ [X]) = [C•].

For a line bundle L corresponding to an irreducible divisor D, we have c1(L) ∩ [X] = [D], and hence

ϕ(c1(L) ∩ [X]) = 1− [L∨]

by the short exact sequence
0→ L (−D)→ OX → OD → 0.

So the same formula holds for allL by linearity, and ϕ(xi) = 1−[Ei/Ei−1] while ϕ(yj) = 1−[ker(Fj �
Fj−1)]. Let a and b be a new set of variables. We have Sw(a, b) =

∑
u≤WwSu(a)Suw−1(−b). Doing

the transformation ai 7→ xi−1 and bj 7→ yj−1, we getϕ(Sw(a, b)) =
∑
u≤Ww(−1)`(u)Su(E)Suw−1(F ).

By Proposition 4.1, this sum is [Sw(∂)] (the change from uw−1 to wu−1 is a consequence of the
fact that F1 in Proposition 4.1 contains only odd elements). So it is enough to show that the substi-
tution ai 7→ ai + 1, bj 7→ bj + 1 leaves the expression Sw(a, b) invariant. This is clearly true for
Sw0(x, y) =

∏
i+j≤n(xi − yj), and holds for an arbitrary permutation because the divided difference

operators (see (2.1)) applied to a substitution invariant function yield a substitution invariant function.
So it remains to show that the constant given by Lemma 5.2 is 1. This follows from Corollary 4.7(c).

5.2 Some remarks.
First we point out that the above can be applied to partial flags, but we have kept to complete flags for
simplicity of notation.

A permutation w ∈ Σn is Grassmannian if it has at most one descent, i.e., there exists r such that
w(1) < w(2) < · · · < w(r) > w(r + 1) < · · · < w(n). Suppose that w is bigrassmannian, which
means that w and w−1 are Grassmannian permutations. This is equivalent to saying that D(w) is a
rectangle. In this case, the double Schubert polynomial Sw(x, y) is a super Schur polynomial for the
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partition D(w). The degeneracy locus Dw(∂) can then be described by a single rank condition between
the map ∂E → F , so the degeneracy locus formula of Fulton specializes to the Thom–Porteous formula
mentioned in the introduction. So in principle, the action of b on Sw(∂) should extend to an action
of a general linear superalgebra, but it is not clear why this should be true without appealing to Schur
polynomials.

We have seen that the modules which are the cokernels of generic Schubert complexes have linear
minimal free resolutions. These modules can then be thought of as a sort of “linear approximation” to the
ideal which defines the matrix Schubert varieties, which in general have rich and complicated minimal
free resolutions.

Acknowledgements
The author thanks Jerzy Weyman for helpful discussions and for pointing out the connection between
Schur complexes and the Thom–Porteous formula which was the starting point for this work.

References
[ABW] Kaan Akin, David A. Buchsbaum, and Jerzy Weyman, Schur functors and Schur complexes, Adv.

in Math. 44 (1982), no. 3, 207–278.

[BE] David A. Buchsbaum and David Eisenbud, Generic free resolutions and a family of generically
perfect ideals, Advances in Math. 18 (1975), no. 3, 245–301.

[Eis] David Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in
Mathematics 150, Springer-Verlag, 1995.

[FGRS] Sergey Fomin, Curtis Greene, Victor Reiner, and Mark Shimozono, Balanced labellings and
Schubert polynomials, Europ. J. Combinatorics 18 (1997), 373–389.

[F1] William Fulton, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J.
65 (1992), no. 3, 381–420.

[F2] ——— , Intersection Theory, second edition, Springer-Verlag, Berlin, 1998.
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