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A unification of permutation patterns related
to Schubert varieties

Henning A. Úlfarsson†

Mathematics Institute, School of Computer Science, Reykjavik University, Reykjavı́k, Iceland

Abstract. We prove new connections between permutation patterns and singularities of Schubert varieties, by giving
a new characterization of factorial and Gorenstein varieties in terms of so called bivincular patterns. These are
generalizations of classical patterns where conditions are placed on the location of an occurrence in a permutation, as
well as on the values in the occurrence. This clarifies what happens when the requirement of smoothness is weakened
to factoriality and further to Gorensteinness, extending work of Bousquet-Mélou and Butler (2007), and Woo and
Yong (2006). We also prove results that translate some known patterns in the literature into bivincular patterns.

Résumé. Nous démontrons de nouveaux liens entre les motifs de permutation et les singularités des variétés de
Schubert, par la méthode de donner une nouvelle caractérisation des variétés factorielles et de Gorenstein par rapport
à les motifs bivinculaires. Ces motifs sont généralisations des motifs classiques où des conditions se posent sur la
position d’une occurrence dans une permutation, aussi bien que sur les valeurs qui se présentent dans l’occurrence.
Ceci éclaircit les phénomènes où la condition de nonsingularité s’affaiblit á factorialité et même à Gorensteinité, et
augmente les travaux de Bousquet-Mélou et Butler (2007), et de Woo et Yong (2006). Nous démontrons également
des résultats qui traduisent quelques motifs connus en la littérature en motifs bivinculaires.
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1 Introduction
We prove new connections between permutation patterns and singularities of Schubert varieties Xπ in
the complete flag variety Flags(Cn), by giving a new characterization of factorial and Gorenstein va-
rieties in terms of which bivincular patterns the permutation π avoids. Bivincular patterns, defined by
Bousquet-Mélou et al. (2010), are generalizations of classical patterns where conditions are placed on the
location of an occurrence in a permutation, as well as on the values in the occurrence. This clarifies what
happens when the requirement of smoothness is weakened to factoriality and further to Gorensteinness,
extending work of Bousquet-Mélou and Butler (2007), and Woo and Yong (2006). We also prove results
that translate some known patterns in the literature into bivincular patterns. In particular we will give a
characterization of the Baxter permutations.

In section 2 we recall the definitions of classical, vincular (also called generalized patterns, Babson-
Steingrı́msson patterns or dashed patterns), bivincular and barred patterns. We will also recall Bruhat
embeddings of patterns, as defined by Woo and Yong (2006).
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In section 3 we will show how these different types of patterns and their avoidances are related to each
other. We will then use patterns that come up in the connections between permutations and Schubert
varieties as motivation. In particular, recall the theorem of Ryan (1987), Wolper (1989) and Lakshmibai
and Sandhya (1990) that the Schubert variety Xπ is non-singular (or smooth) if and only if π avoids the
patterns 1324 and 2143. Saying that the variety Xπ is non-singular means that every local ring is regular.
A weakening of this condition is the requirement that every local ring only be a unique factorization
domain; a variety satisfying this is a factorial variety.

Bousquet-Mélou and Butler (2007) proved a conjecture stated by Yong and Woo (Bousquet-Mélou
et al., 2005, Personal communication) that factorial Schubert varieties are those that correspond to per-
mutations avoiding 1324 and bar-avoiding 21354. In the terminology of Woo and Yong (2006) the bar-
avoidance of the latter pattern corresponds to avoiding 2143 with Bruhat condition (1 ↔ 4), or equiva-
lently, interval avoiding [2413, 2143] in the terminology of Woo and Yong (2008). However, as remarked
by Steingrı́msson (2007), bar-avoiding 21354 is equivalent to avoiding the vincular pattern 2143 . If we
summarize this in terms of vincular patterns a striking thing becomes apparent; see the lines corresponding
to smoothness and factoriality in Table 1, and Theorem 3.1.

Xπ is The permutation π avoids the patterns
smooth 2143 and 1324
factorial 2143 and 1324

Gorenstein
1
3
2
1
3
5
4
2
5
4 , 12

2
4
3
1
4
5
5
3 ; and satisfies a condition on

descents involving two infinite families of bivincular patterns

Tab. 1: Connections between singularity properties and bivincular patterns. See Theorem 3.1 for the second line and
see Theorem 3.13 for the third line.

We see that requiring 1 and 4 to be adjacent in the first pattern (and thus turning it into a vincular
pattern) corresponds to weakening smoothness to factoriality.

A further weakening is to only require that the local rings of Xπ be Gorenstein local rings, in which
case we say that Xπ is a Gorenstein variety. Woo and Yong (2006) showed that Xπ is Gorenstein if and
only if it avoids two patterns with two Bruhat restrictions each, as well as satisfying a certain condition
on descents. We will translate their results into avoidance of bivincular patterns; see Theorem 3.13 in
subsection 3.2 and the line corresponding to Gorensteinness in Table 1. Essentially the two bivincular
patterns that are shown there are certain upgrades of the pattern 2143 while the avoidance of the pattern
1324 is weakened to avoidance of two infinite families of bivincular patterns.

In section 3 we will also prove a proposition that leads to a characterization of the Baxter permutations
in terms of vincular patterns, see Example 3.5.

2 Three Types of Pattern Avoidance
Here we recall definitions of different types of patterns. We will use one-line notation for all permutations,
e.g., write π = 312 for the permutation in S3 that satisfies π(1) = 3, π(2) = 1 and π(3) = 2.

The three types correspond to:

• Bivincular patterns, subsuming vincular patterns and classical patterns.
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• Barred patterns.

• Bruhat restricted patterns.

2.1 Bivincular Patterns
We denote the symmetric group on n letters by Sn, whose elements are permutations. We write permu-
tations as words π = a1a2 · · · an, where the letters are distinct and come from the set {1, 2, . . . , n}. A
pattern p is also a permutation, but we are interested in when a pattern is contained in a permutation π as
described below.

An occurrence (or embedding) of a pattern p in a permutation π is classically defined as a subsequence
in π, of the same length as p, whose letters are in the same relative order (with respect to size) as those in
p. For example, the pattern 123 corresponds to a increasing subsequence of three letters in a permutation.
If we use the notation 1π to denote the first, 2π for the second and 3π for the third letter in an occurrence,
then we are simply requiring that 1π < 2π < 3π . If a permutation has no occurrence of a pattern p we say
that π avoids p.

Example 2.1 The permutation 32415 contains two occurrences of the pattern 123 corresponding to the
sub-words 345 and 245. It avoids the pattern 132.

In a vincular pattern (also called a generalized pattern, Babson-Steingrı́msson pattern or dashed pat-
tern), two adjacent letters may or may not be underlined. If they are underlined it means that the corre-
sponding letters in the permutation π must be adjacent.

Example 2.2 The permutation 32415 contains one occurrence of the pattern 123 corresponding to the
sub-word 245. It avoids the pattern 123. The permutation π = 324615 has one occurrence of the pattern
2143, namely the sub-word 3265, but no occurrence of 2143 , since 2 and 6 are not adjacent in π.

These types of patterns have been studied sporadically for a very long time but were not defined in full
generality until Babson and Steingrı́msson (2000).

This notion was generalized further in Bousquet-Mélou et al. (2010): In a bivincular pattern we are
also allowed to put restrictions on the values that occur in an embedding of a pattern. We use two-line
notation to describe these patterns. If there is a line over the letters i, i+1 in the top row, it means that the
corresponding letters in an occurrence must be adjacent in values. This is best described by an example:

Example 2.3 An occurrence of the pattern 1
1
2
2
3
3 in a permutation π is an increasing subsequence of three

letters, such that the second one is larger than the first by exactly 1, or more simply 2π = 1π + 1. The
permutation 32415 contains one occurrence of this bivincular pattern corresponding to the sub-word 345.

This is also an occurrence of 1
1
2
2
3
3 . The permutation avoids the bivincular pattern 1

1
2
2
3
3 .

We will also use the notation of Bousquet-Mélou et al. (2010) to write bivincular patterns: A bivincular
pattern consists of a triple (p,X, Y ) where p is a permutation in Sk and X,Y are subsets of J0, kK. An
occurrence of this bivincular pattern in a permutation π = π1 · · ·πn in Sn is a subsequence πi1 · · ·πik
such that the letters in the subsequence are in the same relative order as the letters of p and

• for all x in X , ix+1 = ix + 1; and

• for all y in Y , jy+1 = jy + 1, where {πi1 , . . . , πik} = {j1, . . . , jk} and j1 < j2 < · · · < jk.
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By convention we put i0 = 0 = j0 and ik+1 = n+ 1 = jk+1.

Example 2.4 We can translate all of the patterns we have discussed above into this notation:

123 = (123,∅,∅), 132 = (132,∅,∅), 123 = (123, {1},∅),

123 = (123, {2},∅), 2143 = (2143,∅,∅), 2143 = (2143, {2},∅),

1
1
2
2
3
3 = (123,∅, {1}), 1

1
2
2
3
3 = (123,∅, {1, 2}), 1

1
2
2
3
3 = (123, {2}, {1, 2}).

We have not considered the case when 0 or k are elements of X or Y , as we will not need those cases.
We just remark that if 0 ∈ X then an occurrence of (p,X, Y ) must start at the beginning of a permutation
π, in other words, πi1 = π1. The other cases are similar.

The bivincular patterns behave well with respect to the operations reverse, complement and inverse:
Given a bivincular pattern (p,X, Y ) we define

(p,X, Y )r = (pr, k −X,Y ), (p,X, Y )c = (pc, X, k − Y ), (p,X, Y )i = (pi, Y,X),

where pr is the usual reverse of the permutation of p, pc is the usual complement of the permutation of p,
and pi is the usual inverse of the permutation of p. Here k −M = {k −m |m ∈M}.

We get a very simple but useful lemma:

Lemma 2.5 Let a denote one of the operations above (or their compositions). Then a permutation π
avoids the bivincular pattern p if and only if the permutation πa avoids the bivincular pattern pa. 2

2.2 Barred Patterns
We will only consider a single pattern of this type, but the general definition is easily inferred from this
special case. We say that a permutation π avoids the barred pattern 21354 if π avoids the pattern 2143
(corresponding to the unbarred elements) except where that pattern is a part of the pattern 21354. This
notation for barred patterns was introduced by West (1990). It turns out that avoiding this barred pattern
is equivalent to avoiding 2143 , see section 3.

Example 2.6 The permutation π = 425761 avoids the barred pattern 21354 since the unique occurrence
of 2143, as the sub-word 4276, is contained in the sub-word 42576 which is an occurrence of 21354.

2.3 Bruhat Restricted Patterns
Here we recall the definition of Bruhat restricted patterns from Woo and Yong (2006). First we need the
Bruhat order on permutations in Sn, defined as follows: Given integers i < j in J1, nK and a permutation
π ∈ Sn we define w(i ↔ j) as the permutation that we get from π by swapping π(i) and π(j). For
example 24153(1 ↔ 4) = 54123. We then say that π(i ↔ j) covers π if π(i) < π(j) and for every k
with i < k < j we have either π(k) < π(i) or π(k) > π(j). We then define the Bruhat order as the
transitive closure of the above covering relation. This definition should be compared to the construction
of the graph Gπ in subsection 3.1. We see that in our example above that 24153(1 ↔ 4) does not cover
24153 since we have π(2) = 4. Now, given a pattern p with a set of transpositions T = {(i` ↔ j`)}
we say that a permutation π contains (p, T ), or that π contains the Bruhat restricted pattern p, if T is
understood from the context, if there is an embedding of p in π such that if any of the transpositions in T
are carried out on the embedding the resulting permutation covers π.
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We should note that Bruhat restricted patterns were further generalized to intervals of patterns in Woo
and Yong (2008). We will not consider this generalization here.

In the next section we will show how these three types of patterns are related to one another.

3 Connections between the Three Types
3.1 Factorial Schubert Varieties and Forest-like Permutations
Bousquet-Mélou and Butler (2007) defined and studied forest-like permutations. Here we recall their
definition: Given a permutation π in Sn, construct a graph Gπ on the vertex set {1, 2, . . . , n} by joining i
and j if

1. i < j and π(i) < π(j); and

2. there is no k such that i < k < j and π(i) < π(k) < π(j).

The permutation π is forest-like if the graph Gπ is a forest. In light of the definition of Bruhat covering
above we see that the vertices i and j are connected in the graph of Gπ if and only if π(i↔ j) covers π.

They then show that a permutation is forest-like if and only if it avoids the classical pattern 1324 and
the barred pattern pbar = 21354. This barred pattern can be described in terms of Bruhat restricted
embeddings and in terms of bivincular patterns, as we now show.

avoiding
21354

avoiding
2143

avoiding
2143, (1↔4)

avoiding
2143, (2↔3)

avoiding
1
2
2
1
3
4
4
3

(3) (1)

(4) (2)

Fig. 1: The barred pattern 21354 gives a connection between two bivincular patterns. The labels on the edges
correspond to the enumerated list below.

1. Bousquet-Mélou and Butler (2007) remark that forest-like permutations π correspond to factorial
Schubert varieties Xπ and avoiding the barred pattern is equivalent to avoiding pBr = 2143 with
Bruhat restriction (1↔ 4). This last part is easily verified.

2. Avoiding pBr = 2143 with Bruhat restriction (1 ↔ 4) is equivalent to avoiding the bivincular

pattern pbi =
1
2
2
1
3
4
4
3 , as we will now show:

Assume π contains the bivincular pattern pbi, so we can find an embedding of it in π such that
3π = 2π + 1. This embedding clearly satisfies the Bruhat restriction.
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Now assume that π has an embedding of pBr. If 3π = 2π+1 we are done. Otherwise 2π+1 is either
to the right of 3π or to the left of 2π (because of the Bruhat restriction). In the first case change 3π
to 2π +1 and we are done. In the second case replace 2π with 2π +1, thus reducing the distance in
values to 3π , then repeat.

This will be generalized in Proposition 3.8.

3. The barred pattern pbar = 21354 has another connection to bivincular patterns: avoiding it is equiv-
alent to avoiding the bivincular pattern qbiv = 2143 , as remarked in the survey by Steingrı́msson
(2007).

4. We can translate this into Bruhat restricted embeddings as well: Avoiding the bivincular pattern
qbi = 2143 is equivalent to avoiding qBr = 2143 with Bruhat restriction (2↔ 3):

Assume π has an embedding of qBr. If 1π and 4π are adjacent then we are done. Otherwise look
at the letter to right of 1π . If this letter is larger than 4w we can replace 4w by it and we are done.
Otherwise this letter must be less than 4w, which implies by the Bruhat restriction, that it must also
be less than 1w. In this case we replace 1w by this letter, and repeat.

Now assume π has an embedding of the bivincular pattern qbi. If 1π and 4π are adjacent we are
done. Otherwise look at the letter to the right of 1π . This letter is either smaller than 1π or larger
than 4π . In the first case, replace 1π with this letter; in the second case, replace 4π with this letter.
Then repeat if necessary.

This will be generalized in Proposition 3.8.

This gives us:

Theorem 3.1 Let π ∈ Sn. The Schubert variety Xπ is factorial if and only if π avoids the patterns 2143
and 1324. 2

From the equivalence of the patterns in Figure 1 we also get that a permutation π avoids the bivincular
pattern

2143 = (2143, {2},∅)

if and only if it avoids
1
2
2
1
3
4
4
3 = (2143,∅, {2}).

We will prove this without going through the barred pattern, and then generalize the proof, but first of all
we should note that these bivincular patterns are inverses of one another, and that will simplify the proof.

Assume π contains 1
2
2
1
3
4
4
3 . If 1π and 4π are adjacent in π we are done. Otherwise consider the element

immediately to the right of 1π . If this element is less than 2π then replace 1π by it and we will have
reduced the distance between 1π and 4π . If this element is larger than 2π it must also be larger than
3π , since 3π = 2π + 1, so replace 4π by it. This will (immediately, or after several steps) produce an
occurrence of 2143 .

Now assume π contains 2143 . Then πi contains the inverse pattern

(2143)i =
1
2
2
1
3
4
4
3 .
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Then by the above, πi contains 2143 , so π = (πi)i contains (2143)i = 1
2
2
1
3
4
4
3 .

This generalizes to:

Proposition 3.2 Let p be the pattern

· · · 1k · · · = (· · · 1k · · · , {j},∅)

in Sk, where j = pi(1) is the index of 1 in p, so j + 1 is the index of k in p. A permutation π in Sn that
avoids the pattern p must also avoid the bivincular pattern

1
·
2
·
·
·
·
1
·
k
·
·
·
·
k
· = (· · · 1k · · · ,∅, {2, 3, . . . , k − 2}).

Proof: Assume a permutation π contains the latter pattern in the proposition. If 1π and kπ are adjacent
in π we are done. Otherwise consider the element immediately to the right of 1π . If this element is larger
than (k − 1)π we replace kπ by it and are done. Otherwise this element must me less than (k − 1)π and
therefore less than 2π , so we can replace 1π by it, and repeat. 2

By applying the reverse to everything in sight in Proposition 3.2 we get:

Corollary 3.3 Let p be the pattern

· · ·k1 · · · = (· · · k1 · · · , {j},∅)

in Sk, where j = pi(k) is the index of k in p, so j + 1 is the index of 1 in p. A permutation π in Sn that
avoids the pattern p must also avoid the bivincular pattern

1
·
2
·
·
·
·
k
·
1
·
·
·
·
k
· = (· · · k1 · · · ,∅, {2, 3, . . . , k − 2}).

By repeatedly applying the operations of inverse, reverse and complement we can generate six other
corollaries. We will not need them here so we will not write them down.

Example 3.4 Let’s look at some simple applications:

1. Consider the bivincular pattern p1 = 3142 . Proposition 3.2 shows a permutation π that avoids

p1 must also avoid 1
3
2
1
3
4
4
2 . In fact, the converse can be shown to be true, by taking inverses and

applying the proposition. We will say more about the pattern p1 in Example 3.5.

2. Consider the bivincular pattern p2 = 31524 . The proposition shows that a permutation π that

avoids p2 must also avoid 1
3
2
1
3
5
4
2
5
4 . We will say more about the pattern p2 in subsection 3.2.

Example 3.5 The Baxter permutations were originally defined and studied in relation to the “commuting
function conjecture” of Dyer, see Baxter (1964), and were enumerated in Chung et al. (1978). Gire (1993)
showed that these permutations can also be described as those avoiding the barred patterns 41352 and
25135. It was then pointed out by Ouchterlony (2005) that this is equivalent to avoiding the vincular
patterns 3142 and 2413 .
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Similarly to what we did above we can show that the Baxter permutations can also be characterized

as those avoiding the bivincular patterns 1
3
2
1
3
4
4
2 and 1

2
2
4
3
1
4
3 , and this is essentially a translation of the

description in Chung et al. (1978) into bivincular patterns.

Finally, here is an example that shows the converse of Proposition 3.2 is not true.

Example 3.6 The permutation π = 423165 avoids the pattern 1
2
2
3
3
1
4
5
5
4 but contains the pattern 23154 ,

as the sub-word 23165.

3.2 Gorenstein Schubert Varieties in terms of Bivincular Patterns
Woo and Yong (2006) classify those permutations π that correspond to Gorenstein Schubert varieties
Xw. They do this using embeddings of patterns with Bruhat restrictions, which we have described above,
and with a certain condition on the associated Grassmannian permutations of w, which we will describe
presently:

First, a descent in a permutation π is an integer d such that π(d) > π(d+ 1). A Grassmannian permu-
tation is a permutation with a unique descent. Given any permutation π we can associate a Grassmannian
permutation to each of its descents, as follows: Given a particular descent d of π we construct the sub-
word γd(π) by concatenating the right-to-left minima of the segment strictly to the left of d + 1 with the
left-to-right maxima of the segment strictly to the right of d. More intuitively we start with the descent
π(d)π(d + 1) and enlarge it to the left by adding increasing elements without creating another descent
and similarly enlarge it to the right by adding decreasing elements without creating another descent. We
then denote the flattening (or standardization) of γd(π) by γ̃d(π), which is the unique permutation whose
letters are in the same relative order as γd(π).

Example 3.7 Consider the permutation π = 11|6|12|94153728|10 where we have used the symbol | to
separate two digit numbers from other numbers. For the descent at d = 4 we get γ4(π) = 694578|10 and
γ̃4(π) = 3612457.

Now, given a Grassmannian permutation π in Sn with its unique descent at d we construct its associated
partition λ(π) as the partition inside a bounding box d× (n− d), with d rows and n− d columns, whose
lower border is the lattice path that starts at the lower left corner of the bounding box and whose i-th
step, for i ∈ J1, nK, is vertical if i is weakly to the left of the position d, and horizontal otherwise. We
are interested in the inner corner distance of this partition, i.e., for every inner corner we add its distance
from the left side and the distance from the top of the bounding box. If all these inner corner distances are
the same then the inner corners all lie on the same anti-diagonal.

In Theorem 1 of Woo and Yong (2006) they show that a permutation π ∈ Sn corresponds to a Goren-
stein Schubert variety Xπ if and only if

1. for each descent d of π, λ(γ̃d(π)) has all of its inner corners on the same anti-diagonal; and

2. the permutation π avoids both 31524 and 24153 with Bruhat restrictions {(1 ↔ 5), (2 ↔ 3)} and
{(1↔ 5), (3↔ 4)}, respectively.

Let’s take a closer look at condition 2: Proposition 3.8 below shows that avoiding 31524 with Bruhat
restrictions {(1↔ 5), (2↔ 3)} is equivalent to avoiding the bivincular pattern

1
3
2
1
3
5
4
2
5
4 = (31524, {2}, {3}).
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Similarly, avoiding 24153 with Bruhat restrictions {(1 ↔ 5), (3 ↔ 4)} is equivalent to avoiding the
bivincular pattern

1
2
2
4
3
1
4
5
5
3 = (24153, {3}, {2}).

Proposition 3.8 1. Let p be the pattern
· · · 1k · · ·

in Sk. Let j = pi(1) be the index of 1 in p, so j + 1 is the index of k in p. A permutation π in Sn
avoids p with Bruhat restriction (j ↔ j + 1) if and only if π avoids the vincular pattern

· · · 1k · · · = (· · · 1k · · · , {j},∅).

2. Let ` ∈ J1, k − 1K and p be the pattern

` · · · (`+ 1)

in Sk. A permutation π in Sn avoids p with Bruhat restriction (1 ↔ k) if and only if π avoids the
bivincular pattern

1
`
·
·
·
·
`
·
`
·
+
·
1
·
·
·
·
`
·
+
k
1 = (` · · · (`+ 1),∅, {`}).

Proof: We consider each case separately.

1. Assume π contains the vincular pattern mentioned. Then it clearly also contains an embedding
satisfying the Bruhat restriction.

Conversely assume π contains an embedding satisfying the Bruhat restriction. If 1π and kπ are
adjacent then we are done. Otherwise look at the element immediately to the right of 1π . This
element must be either larger than kπ , in which case we can replace kπ by it and are done, or
smaller, in which case we replace 1π by it, and repeat.

2. Assume π contains the bivincular pattern mentioned. Then it clearly also contains an embedding
satisfying the Bruhat restriction.

Conversely assume π contains an embedding satisfying the Bruhat restriction. If (`+1)π = `π +1
then we are done. Otherwise consider the element `π + 1. It must either be to the right of (`+ 1)π
or to the left of `π . In the first case we can replace (` + 1)π by `π + 1 and be done. In the second
case replace `π with `π + 1 and repeat. 2

As a consequence we get:

Corollary 3.9 A permutation π in Sn avoids

· · · 1k · · · , (j ↔ j + 1),

where j is the index of 1, if and only if the inverse π−1 avoids

j · · · (j + 1), (1↔ k).
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Note that we could have proved the statement of the corollary with out going through bivincular patterns
and then used that to prove part 2 of Proposition 3.8, as part 2 is the inverse statement of the statement in
part 1.

Translating condition 1 of Theorem 1 of Woo and Yong (2006) is a bit more work. The failure of this
condition is easily seen to be equivalent to some partition λ of an associated Grassmannian permutation
γ̃d(π) having an outer corner that is either “too wide” or “too deep”. Precisely, given a Grassmannian
permutation π and an outer corner of λ(π), we say that it is too wide if the distance upward from it to the
next inner corner is smaller than the distance to the left from it to the next inner corner. Conversely we
say that an outer corner is too deep if the distance upward from it to the next inner corner is larger than
the distance to the left from it to the next inner corner. We say that an outer corner is unbalanced if it is
either too wide or too deep. We say that an outer corner is balanced if it is not unbalanced.

If a permutation has an associated Grassmannian permutation with an outer corner that is too wide we
say that the permutation itself is too wide and similarly for too deep. If the permutation is either too wide
or too deep we say that it is unbalanced, otherwise it is balanced. It is time to see some examples.

Example 3.10

1. Consider the permutation π = 14235 with a unique descent at d = 2. It corresponds to the partition
(2) ⊆ 2× 3 and has just one outer corner. This outer corner is too wide.

2. Consider the permutation π = 13425 with a unique descent at d = 3. It corresponds to the partition
(1, 1) ⊆ 3× 2 and has just one outer corner. This outer corner is too deep.

3. Consider the permutation π = 134892567|10 with a unique descent at d = 5. It corresponds to the
partition (4, 4, 1, 1) ⊆ 5 × 5 and has two outer corners. The first outer corner is too deep and the
second is too wide.

4. Consider the permutation π = 13672458 with a unique descent at d = 4. It corresponds to the
partition (3, 3, 1) ⊆ 4× 4 and has two outer corners that are both balanced.

These properties of Grassmannian permutations can be detected with bivincular patterns, as we now
show.

Lemma 3.11 Let π be a Grassmannian permutation.

1. The permutation π is too wide if and only if it contains at least one of the bivincular patterns from
the infinite family

F =

(
1
1
2
4
3
2
4
3
5
5 ,

1
1
2
5
3
6
4
2
5
3
6
4
7
7 ,

1
1
2
6
3
7
4
8
5
2
6
3
7
4
8
5
9
9 , . . .

)
.

The general member of this family is of the form

1
1
2
`
·
+
·
1
·
·
·
·
·
2
·
·
·
·
·
`
k
k ,

where ` = (k − 3)/2.
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2. The permutation π is too deep if and only if it contains at least one of the bivincular patterns from
the infinite family

G =

(
1
1
2
3
3
4
4
2
5
5 ,

1
1
2
4
3
5
4
6
5
2
6
3
7
7 ,

1
1
2
5
3
6
4
7
5
8
6
2
7
3
8
4
9
9 , . . .

)
.

The general member of this family is of the form

1
1
2
`
·
+
·
1
·
·
·
·
·
2
·
·
·
·
·
`
k
k ,

where ` = (k − 1)/2.

Proof: We only consider part 1, as part 2 is proved analogously. Assume that π is a Grassmannian
permutation that is too wide, so it has an outer corner that is too wide. Let ` be the distance from this
outer corner to the next inner corner above. Then the distance from this outer corner to the next inner
corner to the left is at least ` + 1. This allows us to construct an increasing sequence t of length ` in π,
starting at a distance at least two to the right of the descent. We can also choose t so that every element in
it is adjacent both in location and values. Similarly we can construct an increasing sequence s of length `
in π, located strictly to the left of the descent. We can also choose s so that every element in it is adjacent
both in location and values. This produces the required member of the family F .

Conversely, assume π contains a particular member of the family F . Then π clearly has at least one
outer corner that is too wide. 2

It should be noticed that these two infinite families are obtained from one another by reverse comple-
ment.

We have now shown that

Proposition 3.12 A permutation π is balanced if and only if every associated Grassmannian permutation
avoids every bivincular pattern in the two infinite families F and G in Lemma 3.11. 2

This gives us:

Theorem 3.13 Let π ∈ Sn. The Schubert variety Xπ is Gorenstein if and only if

1. π is balanced; and

2. the permutation π avoids the bivincular patterns

1
3
2
1
3
5
4
2
5
4 and 1

2
2
4
3
1
4
5
5
3 .

2

I should note that with the descriptions of factorial and Gorenstein Schubert varieties given above it is
easy to verify that smoothness implies factoriality implies Gorensteinness.
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