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Abstract. In 2004, Condon and coauthors gave a hierarchical classification of exact RNA structure prediction algo-
rithms according to the generality of structure classes that they handle. We complete this classification by adding two
recent prediction algorithms. More importantly, we precisely quantify the hierarchy by giving closed or asymptotic
formulas for the theoretical number of structures of given size n in all the classes but one. This allows to assess the
tradeoff between the expressiveness and the computational complexity of RNA structure prediction algorithms.

Résumé. En 2004, Condon et ses coauteurs ont défini une classification des algorithmes exacts de prédiction de struc-
ture d’ARN, selon le degré de généralité des classes de structures qu’ils sont capables de prédire. Nous complétons
cette classification en y ajoutant deux algorithmes récents. Chose plus importante, nous quantifions la hiérarchie des
algorithmes, en donnant des formules closes ou asymptotiques pour le nombre théorique de structures de taille donnée
n dans chacune des classes, sauf une. Ceci fournit un moyen d’évaluer, pour chaque algorithme, le compromis entre
son degré de généralité et sa complexité.
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1 Introduction
In bioinformatics, the RNA structure prediction problem consists, given a RNA sequence, in finding a
conformation that the molecule is likely to take in the cell. In [3], Condon and coauthors classified RNA
structure prediction algorithms according to the inclusion relations between their classes of structures.
The class of structures of a given algorithm is the set of structures that can be, in theory, returned by
the algorithm. Condon et al. focused only on exact algorithms, that is algorithms that guarantee to
give an optimal solution to the structure prediction problem, stated as an optimisation problem. They
considered the class of pseudoknot-free structures [13, 25] (PKF) , and the following classes for pseudo-
knotted structures: Lyngsø and Pedersen (L&P) [11], Dirks and Pierce (D&P) [4], Akutsu and Uemura
(A&U) [1, 20], and Rivas and Eddy (R&E) [16]. They notably proved the following inclusion relations:
PKF ⊂ L&P ⊂ D&P ⊂ A&U ⊂ R&E. Since then, two other exact prediction algorithms have
been developed, involving new classes: Reeder and Giegerich (R&G) [15] and Cao and Chen (C&C) [2]
algorithms.
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In this paper, we aim to quantify the tradeoff between the computational complexity and the expres-
siveness of all these algorithms. For this purpose, we compare them from the double point of view of their
computational complexity and the cardinality of their class of structures, for a given size n. And we give
closed or asymptotic formulas for the theoretical number of structures of given size n except for the class
R&E. More precisely, we establish that, except for the L&P class whose asymptotic formula is simpler,
the number of structures of size n is, asymptotically, α

2
√
π n3/2ω

n , where α and ω are two constants which
depend of the class. Additionally, we place the two new classes, R&G and C&C, in Condon et al’s hi-
erarchy. The following table summarizes our results. We indicate by “*” the classes that had not been
enumerated before. The class “All” denotes the whole set of pseudoknotted structures. The row “Compl”
gives the complexity of each algorithm.

Class asympt. α ω Compl. Remark
PKF α

2
√
π n3/2ω

n 2 4 O(n3) Catalan numbers

L&P * 1
2ω

n - 4 O(n5) Closed formula
C&C * α

2
√
π n3/2ω

n 1,6651 5,857 O(n6)

R&G * α
2
√
π n3/2ω

n 0,1651 6,576 O(n4)

D&P * α
2
√
π n3/2ω

n 0,7535 7,315 O(n5)

A&U * α
2
√
π n3/2ω

n 0,6575 7,547 O(n5)

R&E open - - O(n6)

All
√

2 · 2n ·
(
n
e

)n
- - NPC Involutions with no fixed points

A number of works have been done on combinatorial enumeration of RNA structures without pseudo-
knots, see e.g. [24, 21, 7, 12, 10] or, more recently, with pseudoknots, as in [22, 17, 8, 9] for instance.
Our purpose is different, as our classes of structures are not defined per se, but correspond to given exact
prediction algorithms.

The paper is organised as follows. In Section 2, we give some notation and definitions. In Section 3,
we present a bijection between the L&P class and a class of planar maps, leading to a closed formula for
the L&P class. In Section 4, we establish that each of the classes D&P, A&U, R&G, C&C, and L&P
can be encoded by a context-free language. For each of them, we derive an equation for the generating
function, leading to an asymptotic formula for the number of structures of size n. In Section 5, we
conclude by giving some remarks on the expressiveness of the structure prediction algorithms compared
to their complexity.

2 Definitions and notation.
A RNA secondary structure (possibly with pseudoknots) is given by a sequence of integers (1, 2, . . . , n)
and a list of pairs (i, j), called basepairs or arcs, where i < j and each number in {1, 2, . . . , n} appears
exactly in one pair. Such a structure can be represented as in Figure 1, where each basepair (i, j) is
represented by an edge between i and j. In real RNA structures there are unpaired bases, but we do not
consider them.

Definition 1 (Crossing arcs) Let (i, j) and (k, l) two arcs such that i < k. We say that (i, j) and (k, l)
are crossing if i < k < j < l.
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Definition 2 (Crossing graph) The crossing graph of an RNA structure is a graph G defined as follows:
the vertices of G are the arcs of the structure, and two vertices of G are connected by an edge if and only
if their two corresponding arcs are crossing.

Definition 3 (Pseudoknot) A pseudoknot is a set of arcs that is not a singleton and that corresponds to
a maximal connected component in the crossing graph.

Definition 4 (Simple pseudoknot [1]) A pseudoknot P is simple if there exist two numbers j1 and j2,
with j1 < j2, such that: (i) each arc (i, j) in P satisfies either i < j1 < j ≤ j2 or j1 ≤ i < j2 < j, (ii)
and if two arcs (i, j) and (i′, j′) satisfy i < i′ < j1 or j1 ≤ i < i′, then j > j′.

The first property ensures that, for each arc of P , one of its ends exactly is between j1 and j2. And the
arcs are divided in two sets: those having their other end smaller than j1, and those having their other end
greater than j2. We call these two sets, respectively, the left part and the right part of the pseudoknot.
The second property of the definition ensures that two arcs in the same set cannot intersect each other.
Figure 1 shows a simple pseudoknot.

part

Central part

Left

part

Right

Fig. 1: A pseudoknot given by the sequence (1, 2, . . . , 12) and the arcs (1, 9), (2, 7), (3, 5), (4, 12), (6, 11), (8, 10).
This pseudoknot is simple, with j1 = 4 and j2 = 9.

Definition 5 (H-type Pseudoknot) A H-type pseudoknot is a simple pseudoknot having the following
additional property: each arc in one of the two above sets crosses all the arcs of the other set.

3 A bijection between the L&P structures and a class of planar maps.
The Lyngsø-Pedersen (L&P) class is the simplest class of pseudoknotted structures. According to [11]
and [3], a structure is in the L&P class if and only if it contains either no pseudoknot or a unique H-type
pseudoknot, and this pseudoknot is not embedded under any arc. Between any two consecutive ends of the
arcs of the pseudoknots, there can be a nested structure. Theorem 1, and its straightforward Corollary 1,
give the closed formula and the asymptotic formula for the number of such structures, respectively.

Theorem 1 The number of L&P structures with n arcs is:

LP (n) =
1

2
· 4n −

(
2n+ 1

n

)
+

(
2n− 1

n− 1

)
+

1

n+ 1

(
2n

n

)
.
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Corollary 1

LP (n) ∼ 1

2
· 4n.

Proof of Theorem 1:
The proof is bijective: we establish a bijection between the set of L&P structures of any size n and the

set of rooted isthmusless planar maps with n edges and one or two vertices. The first two terms of the
formula count the number of such maps with two vertices [18, 23], while the last term, a Catalan number,
counts the number of such maps with one vertex [19]. Hence the theorem.

A planar map is a proper embedding of a connected planar graph. It is said isthmusless if the deletion
of any edge does not split the graph. A rooted planar map is a planar map where a vertex and an edge
adjacent to it are distinguished. Any planar map with n edges can be represented by two permutations
σ and τ on {+1,−1,+2,−2, . . . ,+(n − 1),−(n − 1),+n,−n}, in the following way: The edges of
the map are numbered from 1 to n. Then, for any edge i, one labels its extremities with +i and −i,
respectively. By convention, the root edge is labelled with +1 and −1, in such a way that −1 labels the
extremity adjacent to the root vertex. Now, the two permutations are as follows:

- the permutation σ is an involution without fixed points that represents the edges of the map. Each
cycle of σ is of size two and contains both ends of one edge: σ = (+1,−1), (+2,−2), . . . , (+n,−n).

- the permutation τ has as many cycles as vertices in the map. Each cycle is given by the sequence of
labellings around the corresponding vertex, clockwise.

Let us consider a L&P structure S with n edges, and let us label the left extremities of its arcs with
+1,+2, . . . ,+n from left to right, and give to each right foot the label −i if the corresponding left foot
has label +i. Let w = [w1, w2, . . . w2n] be the sequence of labels of S, from left to right. From any w we
can now construct two permutations σ and τ that represent an isthmussless rooted planar map with one or
two vertices. Regarding σ, we just set σ = (+1,−1) . . . (+n,−n).

Let us first consider the simple case where there is no crossing in the structure. It is known for a long
time that such nested structures are counted by Catalan numbers. This can be established, for example by
a folkloric bijection with planar maps having one vertex, by setting σ as above, and τ = (w).

Now suppose that there is a pseudoknot in the structure, and let us present a bijection between the set
of such structures and the set of rooted ithmusless planar maps with two vertices. Start from w. Since τ
must have two cycles, we have to split w in two parts that will be the two cycles. Let us define the left
set (resp. the right set) of arcs of the pseudoknot, respectively, as the set of arcs whose left (resp. right)
extremities are in the left (resp. right) part of the pseudoknot, where left and right parts are defined as in
Section 2. There are two cases:

Case 1. There is only one arc in the right set. In this case, let ` be the position of the first right extremity
of an arc in the left set. We cut w between positions ` − 1 and `. Each part corresponds to a cycle of τ :
τ = (w1, . . . , w`−1)(w`, . . . , w2n). See Figure 2 for an illustration.

Case 2. There are at least two arcs in the right set. We cut w just before the first right extremity of an
arc in the right set. See Figure 3.

Let us show that, in both cases, the resulting map is planar and isthmusless. At first, remark that if the
map is not planar or has an isthmus, necessarily it comes from arcs that are involved in the pseudoknot.
Indeed, by construction, non crossing arcs in the structure give non crossing loops in the map. So, with-
out loss of generality, we can consider only structures where all the arcs are involved in the pseudoknot.
Consider such a structure with n arcs. In the case 1, we have w = [+1,+2, . . . ,+(n − 1),+n,−(n −



Counting RNA pseudoknotted structures (extended abstract) 1041

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���1

−1
2

3
−3
4

5

−5

67

−7

−4

8
−8

−2 9

−9

10
−10

−6

1 −6−1 2 3 −3 4 5 −5 6 7 −7 −48 −8−2 9 −9 10 −10

Fig. 2: Top, a L&P structure corresponding to case 1. Bottom, the corresponding planar map. Arcs not involved in
the pseudoknot are drawn in dotted lines.
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Fig. 3: Top, a L&P structure corresponding to case 2. Bottom, the corresponding planar map. Arcs not involved in
the pseudoknot are drawn in dotted lines.

1),−(n − 2), . . . ,−1,−n], hence τ = (+1,+2, . . . ,+n)(−(n − 1),−(n − 2), . . . ,−1,−n). Clearly,
this gives a planar map, since the two cycles of τ are in opposite order. And there is no isthmus be-
cause all edges go from one vertex to the other. In the case 2, we have w = [+1,+2, . . . ,+(` −
1),+`,+(`+1), . . . ,+n,−(`−1), . . . ,−2,−1,−n,−(n−1), . . . ,−`], hence τ = (+1,+2, . . . ,+(`−
1),+`,+(` + 1), . . . ,+n,−(` − 1), . . . ,−2,−1)(−n,−(n − 1), . . . ,−`). Again, this gives a planar
map: edges 1, 2, . . . , ` − 1 are nested loops, and edges `, . . . , n go from one vertex to the other, without
any crossing. And there is no isthmus because the number of edges going from one vertex to the other,
n− `+ 1, is greater or equal to 2.

Now let us present the converse transformation. Consider an isthmusless rooted planar map with two
vertices, given by σ = (+1,−1), (+2,−2), . . . , (+n,−n) and τ having two cycles. We aim to construct
the sequence w that represents the corresponding pseudoknotted structure. Let us consider the cycle of τ
which contains 1, and write it in such a way that it begins with 1. Let us call u this sequence of labels.
This gives the first part of the sequence w. We are now searching for the second part of w, that is the
sequence v such that uv = w. For that purpose, consider the set of isolated labels, that is the labels in u
that have not their opposite label in u. We have the two following cases:

Case 1. There is no pair (+i,−i) in u such that the isolated labels are located between +i and −i. Let
+j the penultimate isolated label in u. Write the second cycle of τ in such a way that it begins with −j.
This gives v, and there is exactly one edge in the second part of the pseudoknot.
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Case 2. There is a pair of labels (+i,−i) in u such that all isolated labels are located between +i and
−i. Let +j the last isolated label in u. Write the second cycle of τ in such a way that it begins with −j.
This gives v. In this case, there are at least two edges in the second part of the pseudoknot. 2

4 Asymptotic enumeration of pseudoknotted structures.
4.1 A context-free encoding for simple and H-type pseudoknots
As will be seen farther, all the classes that are involved in exact prediction algorithms but one involve
either H-type pseudoknots or simple pseudoknots. The only exception is the R&E class. Here we define
a transformation that allow to encode any class of pseudoknotted structures where all pseudoknots are
simple by a context-free language.

Let us first recall some definitions. Let L be a language on a given alphabet A, and w = w1w2 . . . wn a
word of L, where the wi’s are the letters of w. A word v is a subword of w if v = wi1wi2 . . . wik , where
1 ≤ i1 < i2 < . . . < ik ≤ n. The projection of w onto an alphabet A′ ∈ A is the subword w′ obtained
by erasing in w all letters that do not belong to A′. The projection of L onto A′ is the set of projections of
the words of L onto A′. Finally, let us recall that the Dyck language on any two-letter alphabet {d, d̄} is
the language of balanced parentheses strings, where d and d̄ stand, respectively, for opening and closing
parentheses. Now we can state twe two following straightforward lemmas:

Lemma 1 Any class of pseudoknotted structures where all pseudoknots are simple can be encoded by the
words of a language L on the alphabet {d, d̄, x, x̄, y, ȳ} where (i) d and d̄ encode, respectively, the left
and right ends of arcs that are not involved in pseudoknots; (ii) x and x̄ encode, respectively, the left and
right ends of arcs that are involved in the left parts of pseudoknots; (iii) y and ȳ encode, respectively, the
left and right ends of arcs that are involved in the right parts of pseudoknots. Additionally, the projection
of the language to the alphabet {d, d̄} (resp. {x, x̄}, {y, ȳ}) is a sublanguage of the Dyck language on
the same alphabet.

Lemma 2 Let S be a pseudoknotted structure, and w be the word on {d, d̄, x, x̄, y, ȳ} that encodes S.
Then every simple pseudoknot in S is encoded by a subword v ofw, such that v = xn ym1 x̄n1 ym2 x̄n2 . . .
ymk x̄nk ȳm , where n1 + n2 + . . .+ nk = n and m1 +m2 + . . .+mk = m.

Remark that a H-type pseudoknots is a simple pseudoknot where k = 1. Thus every H-type pseudoknot
in S is encoded by a subword v = xn ym x̄n ȳm. Finally, the following Proposition gives a way to encode
any pseudoknotted structure where all pseudoknots are simple by a subset of the Dyck language with three
kinds of pairs of parentheses, that is on the alphabet {d, d̄, x, x̄, y, ȳ}.
Proposition 1 Let S be a pseudoknotted structure, and w be the word on {d, d̄, x, x̄, y, ȳ} that encodes
S. Then w can be encoded by a word on the alphabet {d, d̄, x, x̄, y, ȳ} ∪ {p, p̄} where every subword
v = xn ym1 x̄n1 ym2 x̄n2 . . . ymk x̄nk ȳm , corresponding to a H-type pseudoknot is replaced with v′ =
pxn−1 ym1 ȳm1 x̄n1 ym2 ȳm2 x̄n2 . . . ymk ȳmk x̄nk−1p̄.

In particular , every subword v = xn ym x̄n ȳm corresponding to a simple pseudoknot is replaced with
v′ = pxn−1 ym ȳm x̄n−1p̄.

Proof (sketch): The proof is straightforward, as there is an immediate one-to-one correspondance be-
tween the two kinds of words below. The transformation is illustrated in Figure 4(a) and Figure 4(b),
respectively, for simple pseudoknots and for the particular case of H-type pseudoknots. 2



Counting RNA pseudoknotted structures (extended abstract) 1043

1

2

3

4

5

1

2

3

4
5

6

6

7

7

(a) Simple pseudoknot (b) H-type pseudoknot

Fig. 4: Top: two pseudoknots. Bottom: their encodings by Proposition 1.

4.2 Asymptotic results.
For each of the D&P, A&U, R&G, and C&C classes, we give an asymptotic equivalent for the number of
structures of size n. In each case, the proof is in three steps: (i) We design an unambiguous context-free
grammar which generates the language that encodes the considered structures, according to Proposition 1.
(ii) From the grammar, we deduce an algebraic equation satisfied by the ordinary generating function
(o.g.f.) of the language. (iii) From this equation, we compute an asymptotic formula for the number of
structures of size n. For any class X&Y , we write X&Y (n) for its number of structures having n arcs.

4.2.1 The Akutsu-Uemura class (A&U).
Following [1, 3], the A&U structures are composed of non crossing edges and of any number of simple
pseudoknots (Fig. 1). As these pseudoknot can embed other substructures which can be pseudoknotted in
turn, they are said to be recursive [1].

Theorem 2
A&U(n) =

α1

2
√
π
ω1

nn−3/2(1 +O(1/n)),

where α1 = 0.6575407644..., ω1 = 7.547308334..., are algebraic constants.

Proof: Let LA&U be the language that encodes the A&U class, according to Proposition 1. The following
unambiguous context-free grammar generates LA&U :

S → dSd̄S|P ; P → pSXp̄S|ε ; X → xSXx̄SY |yY SȳS ; Y → ySY ȳS|ε

The two rules in the first line allow to generate non crossing arcs and to put pseudoknots anywhere.
The other rules generate words that correspond to the code for a simple pseudoknot.

Given the grammar, we obtain the set of recursive equations for the o.g.f. of the various sets defined in
the 1-to-1 encoding. Letting the formal symbol z denote an arc, we thus have through a straightforward
translation:

S(z) = zS2(z)+P (z) ; P (z) = zS2(z)X(z)+1 ; X(z) = zS2(z)Y (z)(X(z)+1) ; Y (z) = zS2(z)Y (z)+1
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By iterated bottom-up substitutions, we ultimately get that the o.g.f. S(z) is solution of the algebraic
equation

F (z, S) = z2S4 − 2zS3 + zS2 + S − 1 = 0, (1)

from which we can derive the number of structures of size n.
For this proof we present in some details the main steps of the computations that have to be performed

in order to get the asymptotics for an o.g.f. given by the algebraic implicit equation F (z, S) = 0 satisfied
by the o.g.f. S(z).

Since ∂F/∂z|z=0,S=1 = 1 is defined and ∂F/∂S|z=0,S=1 = 1 is non vanishing, z = 0 is not a singular
point for S; by the implicit function theorem, S(z) exists as a regular function in a circular neighborhood
of z = 0 until ∂F/∂S vanishes. The radius of convergence ρ1 of the o.g.f. S(z) is thus a solution of the
system {F (z, S) = 0, ∂F/∂S(z, S) = 0}. At such a point the local holomorphic solution z = ζ(S) is no
longer invertible, which implies that this point is a singular point for the o.g.f. S(z). The Darboux method
allows to get accurate information and precise asymptotics for the Taylor expansion of S(z).

Let (z = ρ1, S = σ1) be the point of the Riemann surface of the solution located on the fold issued
from (z = 0, S = 1), which is closest to (z = 0, S = 1) and for which ∂F/∂S = 0. This point is usually
unique and located on the positive real axis, since the o.g.f. is indeed a function of z with all coefficients
being positive. At this point, the local expansion of z with respect to S writes:

z = ρ1 +
1

2

d2z

dS2
(S − σ1)2 +

1

3!

d3z

dS3
(S − σ1)3 + . . . , (2)

since the first derivative, dzdS = −∂F/∂S∂F/∂z vanishes at (z = ρ1, S = σ1) and the second derivative d2z
dS2 =

−∂
2F/∂S2

∂F/∂z does not.
Hence taking the square root of the previous equation we get the Taylor expansion at (z = ρ1, S = σ1):√

1− z/ρ1 = β1(S − σ1) + β2(S − σ1)2 + . . . , (3)

with β1 = −
√

1
2
∂2F/∂S2

∂F/∂z , which can now be inverted locally giving:

S = σ1 −

√
2ρ1∂F/∂z|z=ρ1,S=σ1

∂2F/∂S2|z=ρ1,S=σ1

√
1− z/ρ1 +O(1− z/ρ1). (4)

The expansion can be calculated at any order, so that we obtain for the coefficients A&U(n) an infinite
asymptotic development whose dominant term is given by the first square root in the previous expansion,
since it is well-known that [zn]−

√
1− z/ρ = 1

2
√
π
ρ−nn−3/2(1 +O(1/n)):

[zn]S(z) =

√
2ρ1∂F/∂z|z=ρ1,S=σ1

∂2F/∂S2|z=ρ1,S=σ1

1

2
√
π
ρ−n1 n−3/2(1 +O(1/n)). (5)

We thus get the general form of the solution, as stated in the theorem, with α1 =
√

2ρ1∂F/∂z|z=ρ1,S=σ1

∂2F/∂S2|z=ρ1,S=σ1

and ω1 = 1/ρ1. In order to get the values for the constants in the expansions and for the radius of
convergence, we used Maple. From Equation 1, we compute the partial derivatives ∂F/∂z = 2zS4 −
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2S3+S2 and ∂F/∂S = 4∗z2∗S3−6∗z∗S2+2∗z∗S+1. The system is too complex to be solved formally;
so we lower the degree in S by considering the combinationR = 4F−S∂F/∂S = −2zS3+2zS2+3S−4
which has to vanish at the points where F and ∂F/∂S do. Since R is of degree 1 in z, it is easy to
get an expression for z that we substitute into ∂F/∂S, obtaining that 8S3 − 31S2 + 42S − 20 should
equivalently be zero. Hence we obtain 3 possible algebraic roots, one being real σ1 and the other two
conjugate complex numbers. Only σ1 = 1.403556586... and the associated real value of z for which
F (z, S) = 0 — ρ1 = 0.1324975681... — are of interest. A direct approximate solution using the floating
point solver of Maple confirms this situation and a more involved study or the Riemann surface also yields
ρ1 = 0.1324975681... to be the radius of convergence of the series. Further computations provide all the
constants encountered in the proof and stated in the theorem. 2

4.2.2 The Dirks and Pierce class (D&P).
Structures of D&P class are characterized by the presence of non crossing edges and any number of H-type
pseudoknots [4, 3].

Theorem 3
D&P (n) =

α2

2
√
π
ω2

nn−3/2(1 +O(1/n)),

where α2 = 0.7534777262..., ω2 = 7.3148684640..., are algebraic constants.

Proof (sketch): The following unambiguous grammar generates the language that encodes the D&P
structures, according to Proposition 1:

S → dSd̄S|P ; P → pXSp̄S|ε ; X → xSXx̄S|ySY ȳS ; Y → ySY ȳS|ε

ù From this grammar, we get the following algebraic equation:

F (z, S) = z3S6 − z2S5 + 2zS3 − zS2 − S + 1 = 0 (6)

which is very similar to the equation satisfied by the o.g.f. for the A&U family. We solve it in the same
way, and find out the dominant singularity in z = ρ2 = 0.1367078581..., S = σ2 = 1.439796009..., with
the same local behaviour, implying similar asymptotics for the coefficients. The only problem encountered
in finding this dominant singularity comes from the fact that there exists another singularity closer to the
origin in z = µ = 0.08794976637..., S = τ = 7.169944393..., but which is not on the same fold of the
Riemann surface and which therefore does not have to be taken into consideration. 2

4.2.3 The Reeder ang Giegerich class (R&G).
It corresponds to the structures of Reeder and Giegerich’s algorithm [15]. It has a O(n4) complexity.

Theorem 4
R&G(n) =

α3

2
√
π
ω3

nn−3/2(1 +O(1/n)),

where α3 = 1.165192913..., ω3 = 6.576040092..., are algebraic constants.
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Proof: In [15], the following grammar is given (we removed the unpaired bases):

S → SS|dSd̄|xkSylSx̄kSȳl|ε.

This grammar is not context-free. However, we remark that the pseudoknot defined here is a particular
case of a H-Type pseudoknot. So by applying Proposition 1 again, we define the following context free
grammar :

S → dSd̄S|P ; P → pXp̄S|ε ; X → xXx̄|SyY ȳS ; Y → yY ȳ|S

Computations as above lead to the result. 2

Additionally, the following theorem places this new class into Condon et al.’s classification.

Theorem 5 R&G ⊂ D&P , L&P ∩R&G 6= ∅ and R&G 6⊂ L&P

Proof (sketch): The grammar wich describes the pseudoknots in R&G is less general than the grammar
for H-type pseudoknots. So R&G ⊂ D&P and L&P ∩ R&G 6= ∅. As R&G structures can contain
several pseudoknots, we have L&P ∩R&G 6= L&P . 2

4.2.4 The Cao and Chen class (C&C).
It corresponds to the structures of Cao and Chen’s algorithm [2], whose complexity is O(n6).

Theorem 6
C&C(n) =

α4

2
√
π
ω4

nn−3/2(1 +O(1/n)),

where α4 = 1.665071176..., ω4 = 5.856765093..., are algebraic constants.

Proof (sketch): The following non context-free grammar generates the C&C structures:

S → SS|dSd̄|xkSylx̄kSȳl|ε.

It can be translated into a context-free grammar which is a restriction of the R&G grammar:

S → dSd̄S|P ; P → pXp̄S|ε ; X → xXx̄|SyY ȳS ; Y → yY ȳ|ε

Computations as above lead to the result. 2

Additionally, we easily state that

Theorem 7 C&C ⊂ D&P , L&P ∩ C&C 6= 0, C&C 6⊂ L&P and C&C ⊂ R&G

4.2.5 The Lyngsø and Pedersen class (L&P).
We already gave a closed formula and an asymptotic equivalent for this class in Section 3. It can be shown
that its generating series can also be found in a very simple way by designing a context-free grammar.
This will not be developed in this extended abstract.
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5 Conclusion
We proved that most classes of pseudoknotted structures that can be predicted by exact algorithms (all
but R&E for which the problem remains open) can be encoded by context-free languages. We extended
Condon et al.’s hierarchy by adding two more classes, and we computed closed or asymptotic formulas
for the cardinality of all classes but one.

These results, summarized in Table 1, allow us to quantify the relationship between the complexity of
an algorithm and the generality of the class that it can handle. Notably, from a strict quantitative point of
view, the growth of complexity by a factor n2 between the PKF and L&P classes seems not to be justified
compared to the very small increase in cardinality. The situation is even worse for the C&C class, whose
related algorithm has a stronger complexity than the R&G one, while C&C ⊂ R&G and the ratio of their
cardinalitues is exponential. On the other hand, the linear increasing between PKF andR&G complexities
seems very reasonable compared to the exponential increasing of the cardinalities.

Besides, the fact that most of the classes are encoded by context-free languages gives an easy way to
perform uniform or controlled non uniform random generation of pseudoknotted RNA structures, with
standard methods and tools (see e.g. [6, 5, 14]).
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