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Bruhat order, rationally smooth Schubert
varieties, and hyperplane arrangements

Suho Oh1†and Hwanchul Yoo
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139

Abstract. We link Schubert varieties in the generalized flag manifolds with hyperplane arrangements. For an element
of a Weyl group, we construct a certain graphical hyperplane arrangement. We show that the generating function for
regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only
if the Schubert variety is rationally smooth.

Résumé. Nous relions des variétés de Schubert dans le variété flag généralisée avec des arrangements des hyperplans.
Pour un élément dún groupe de Weyl, nous construisons un certain arrangement graphique des hyperplans. Nous
montrons que la fonction génératrice pour les régions de cet arrangement coincide avec le polynome de Poincaré de
la variété de Schubert correspondante si et seulement si la variété de Schubert est rationnellement lisse.
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1 Introduction
For an element of a Weyl group w ∈ W , let Pw(q) :=

∑
u≤w q

`(u), where the sum is over all elements
u ∈ W below w in the (strong) Bruhat order. Geometrically, the polynomial Pw(q) is the Poincaré
polynomial of the Schubert variety Xw = BwB/B in the flag manifold G/B.

The inversion hyperplane arrangement Aw is defined as the collection of hyperplanes corresponding
to all inversions of w. Let Rw(q) :=

∑
r q

d(r0,r) be the generating function that counts regions r of the
arrangement Aw according to the distance d(r0, r) from the fixed initial region r0.

The main result of the paper is the claim that Pw(q) = Rw(q) if and only if the Schubert variety Xw is
rationally smooth. We have previously given an elementary combinatorial proof for Type A case of this
problem in Oh et al. (2008).

According to the criterion of Peterson and Carrell (1994), the Schubert variety Xw is rationally smooth
if and only if the Poincaré polynomial Pw(q) is palindromic, that is Pw(q) = q`(w) Pw(q−1). If w is
not rationally smooth then the polynomial Pw(q) is not palindromic, but the polynomial Rw(q) is always
palindromic. So Pw(q) 6= Rw(q) in this case. Hence it is enough to show that Pw(q) = Rw(q) when w is
rationally smooth. Our proof is purely combinatorial, combining basics of Weyl groups with a result from
Billey and Postnikov (2005).
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2 Rational smoothness of Schubert varieties and Inversion hy-
perplane arrangement

In this section we will explain how rational smoothness can be expressed by conditions on the lower
Bruhat interval. We will also define the Inversion hyperplane arrangement. In this paper, unless stated
otherwise, we refer to the strong Bruhat order.

Let G be a semisimple simply-connected complex Lie group, B a Borel subgroup and h the corre-
sponding Cartan subalgebra. Let W be the corresponding Weyl group, ∆ ⊂ h∗ be the set of roots and
Π ⊂ ∆ be the set of simple roots. The choice of simple roots determines the set of positive roots. We will
write α > 0 for α ∈ ∆ being a positive root. Following the conventions of Björner and Brenti (2005),
let S be the set of simple reflections and T := {wsw−1 : s ∈ S,w ∈ W} be the set of reflections. Set
Π = {α1, · · · , αn}, S = {s1, · · · , sn} and index them properly so that si and αi corresponds to the same
node of the Dynkin diagram for 1 ≤ i ≤ n. Then there is a bijection between T and ∆ by matching
wsiw

−1 with w(αi). Then wsiw−1 is exactly the reflection that reflects by the hyperplane corresponding
to the root w(αi).

We have the following definitions as in Björner and Brenti (2005):

TL(w) := {t ∈ T : `(tw) < `(w)},

TR(w) := {t ∈ T : `(wt) < `(w)},

DL(w) := TL(w) ∩ S,

DR(w) := TR(w) ∩ S.

They are called the left(right) associated reflections of w and left(right) descent set of w. In this paper, we
concentrate on lower Bruhat intervals in W , [id, w] := {u ∈ Sn | u ≤ w}. They are related to Schubert
varieties Xw = BwB/B inside the generalized flag manifold G/B. The Poincaré polynomial of the
Schubert variety Xw is the rank generating function for the interval [id, w], e.g., see Billey et al. (2000):

Pw(q) =
∑
u≤w

q`(u).

For convenience, we will say that Pw(q) is the Poincaré polynomial of w. And we will say that w is
rationally smooth if Xw is rationally smooth. Due to Carrell and Peterson, one can check whether the
rational locus of a Schubert variety is smooth or not by studying Pw(q). Let us denote a polynomial
f(q) = a0 + a1 q + · · ·+ ad q

d as palindromic if f(q) = qdf(q−1), i.e., ai = ad−i for i = 0, . . . , d.

Theorem 1 (Carrell-Peterson Carrell (1994), see also (Billey et al., 2000, Sect. 6.2)) For any element of
a Weyl group w ∈W , the Schubert variety Xw is rationally smooth if and only if the Poincaré polynomial
Pw(q) is palindromic.

For each w ∈ W , we will be comparing this polynomial Pw(q) with another polynomial, that comes
from an associated hyperplane arrangement. To assign a hyperplane arrangement to each w ∈W , we first
need the definition of the inversion set of w. The inversion set ∆w of w is defined as the following:

∆w := {α|α ∈ ∆, α > 0, w(α) < 0}.
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For type A case, this gives the usual definition of an inversion set for permutations. Let us define
the arrangement Aw as the collection of hyperplanes α(x) = 0 for all roots α ∈ ∆w. Let r0 be the
fundamental chamber of Aw, the chamber that contains the points satisfying α(x) > 0 for all α ∈ ∆w.
Then we can define a polynomial from this Aw:

Rw(q) :=
∑
r

qd(r0,r),

where the sum is over all chambers of the arrangement Aw and d(r0, r) is the number of hyperplanes
separating r0 and r. Our goal in this paper is to show thatRw(q) = Pw(q) wheneverPw(q) is palindromic.

Remark 2 We have Pw(q) = Pw−1(q) and Rw(q) = Rw−1(q) by definition. Whenever we use this fact,
we will call this the duality of Pw(q) and Rw(q).

Given an arrangementAw and its subarrangementA′, let c be a chamber ofA′. Then a chamber graph
of c with respect to Aw is defined as a directed graph G = (V,E) where

• The vertex set V consists of vertices representing each chambers of Aw contained in c,

• we have an edge directed from vertex representing chamber c1 to a vertex representing chamber c2
if c1 and c2 are adjacent and d(r0, c1) + 1 = d(r0, c2).

We will say that Aw is uniform with respect to A′ if for all chambers of A′, chamber graphs with respect
to Aw are isomorphic. One can easily see that if Au is a subarrangement of Aw and Aw is uniform with
respect to Au, then Rw(q) is divided by Ru(q).

3 Parabolic Decomposition
In this section, we introduce a theorem of Billey and Postnikov (2005) regarding parabolic decomposition
that will serve as a key tool in our proof. Let’s first recall the definition of the parabolic decomposition.
Given a Weyl groupW , fix a subset J of simple roots. DenoteWJ to be the parabolic subgroup generated
by simple reflections of J . Let W J be the set of minimal length coset representatives of WJ\W . Then it
is a well-known fact that everyw ∈W has a unique parabolic decompositionw = uv where u ∈WJ , v ∈
W J and `(w) = `(u) + `(v).

Lemma 3 (van den Hombergh (1974)) For any w ∈ W and subset J of simple roots, WJ has a unique
maximal element below w.

We will denote the maximal element of WJ below w as m(w, J).

Theorem 4 (Billey and Postnikov (2005)) Let J be any subset of simple roots. Assume w ∈ W has
parabolic decomposition w = uv with u ∈WJ and v ∈W J and furthermore, u = m(w, J). Then

Pw(t) = Pu(t)PW
J

v (t)

where PW
J

v =
∑
z∈WJ ,z≤v t

`(z) is the Poincaré polynomial for v in the quotient.

This decomposition is very useful in the sense that it allows us to factor the Poincaré polynomials. We
will say that J = Π \ {α} is leaf-removed if α corresponds to a leaf in the Dynkin diagram of Π.

The following theorem of Billey and Postnikov (2005) tells us that we only need to look at maximal
leaf-removed parabolic subgroups for our purpose.
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Theorem 5 (Billey and Postnikov (2005)) Let w ∈ W be a rationally smooth element. Then there exists
a maximal proper subset J = Π \ {α} of simple roots, such that

1. we have a decomposition of w or w−1 as in Theorem 4,

2. α corresponds to a leaf in the Dynkin diagram of W .

We will call the parabolic decompositions that satisfies the conditions of the above theorem as BP-
decompositions. For Weyl groups of type A,B and D, there is a stronger result by Billey:

Lemma 6 (Billey (1998)) Let W be a Weyl group of type A,B or D. Let w ∈ W be a rationally smooth
element. If w is not the longest element of W , then there exists a BP-decomposition of w or w−1 with
respect to J such that P J(v) is of the form ql + ql−1 + · · ·+ q + 1, where l is the length of v.

If v satisfies the conditions of the above lemma, we will say that v is a chain element of W J . Using
the fact that Dynkin diagrams of type A or D are simply-laced, it is easy to deduce the following result
from the above lemma.

Corollary 7 Let W be a Weyl group of type A or D. If w ∈ W is rationally smooth then there exists a
BP-decomposition of w or w−1 with respect to J = Π \ {α} such that v is the longest element of W I∩J

I

for some I ⊂ Π containing α.

Using computers, we have found a nice property of palindromic intervals in maximal parabolic quotient
groups of type E.

Proposition 8 Let W be a Weyl group of type A,D and E and let J = Π \ {α}, where α corresponds to
a leaf in the Dynkin diagram. Then, v has palindromic lower interval in W J if and only if there exists a
subset I of Π containing α such that v is the longest element in W I∩J

I .

Let’s look at an example. Choose D6 to be our choice of Weyl group and label the simple roots
Π = {α1, · · · , α6} so that the labels match the corresponding nodes in the Dynkin diagram 1. If we set
J = Π \ {α1}, then the list of v ∈W J such that the lower interval in W J being palindromic is:

id, s1, s1s2, s1s2s3, s1s2s3s4, s1s2s3s4s5, s1s2s3s4s6, s1s2s3s4s5s6s4s3s2s1.

Each of them are the longest elements of W I∩J
I , where I is the set of simple reflections appearing in v.

One can see that the set of nodes I is connected inside the Dynkin diagram of D6.

1 2 3

4

5

6

Fig. 1: Dynkin diagram of D6

Now we will study how Rw(q) behaves with respect to the BP-decomposition . Using the notations of
Proposition 8, our first step is to prove that every reflection formed by simple reflections in I ∩ J is in
TR(u). We need the following lemma to prove it:
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Lemma 9 Let w ∈ W be a rationally smooth element and w = uv be a BP-decomposition. Then every
simple reflection in J appearing in the reduced word of v is a right descent of u.

Proof: Multiplying t ∈ TL(w) to w corresponds to deleting one simple reflection in a certain reduced
word of w. If we delete every simple reflection appearing in v but one in J , then the resulting element is
in WJ and is below w. Hence by maximality of u, it is below u. 2

Actually, we can state much more about u in terms of simple reflections of J appearing in v.

Lemma 10 Let w = uv be a BP-decomposition with respect to J . Let I be the subset of Π that appears
in the reduced word of v. Then every reflection formed by simple reflections in I ∩ J is a right inversion
reflection of u. In fact, there is a minimal length decomposition u = u′uI∩J where uI∩J is the longest
element of WI∩J .

Proof: Take the parabolic decomposition of u under the right quotient by WI∩J . Say, u = u′uI∩J .
Then u′ is the minimal length representative of u in W/WI∩J . For any simple reflection s ∈ I ∩ J , the
minimal length representative of us in W/WI∩J is still u′, hence the parabolic decomposition of us is
us = u′(uI∩Js). Since s is a right descent of u by Lemma 9, s is a right descent of uI∩J . Therefore uI∩J
is the longest element in WI∩J . The rest follows from this. 2

The above lemma tells us that for each rationally smooth w ∈ W , we can decompose w or w−1 to
u′uI∩Jv where uv is the BP-decomposition with respect to J , u = u′uI∩J and uI∩J is the longest
element of WI∩J . Recall that we denote by ∆w the inversion set of w ∈ W . For I ⊂ Π, we will denote
∆I the set of roots of WI . We have a decomposition

∆w = ∆u′ t u′∆uI∩Ju
′−1 t u∆vu

−1.

One can see that ∆uI∩J = ∆I∩J and ∆v ⊆ ∆I \ ∆I∩J . And this tells us that u′∆uI∩Ju
′−1

=
u∆I∩Ju

−1. By duality, let’s assume we have decomposed some rationally smooth w as above. Let
A1,A0,A2 denote the hyperplane arrangement coming from u−1∆u′u,∆I∩J ,∆v . We can study A :=
A1 t A0 t A2 instead of looking at Aw.

Lemma 11 Let c be some chamber insideA1tA0. Let c′ be the chamber ofA0 that contains c. Then the
chamber graph of c with respect to A is isomorphic to the chamber graph of c′ with respect to A0 t A2.

Proof: Let c1 and c2 be two different chambers of A contained in c. They are separated by a hyperplane
in A2. Let c′1(c′2) be the chamber of A0 t A2 that contains c1(c2). c′1 and c′2 are different chambers
since they are separated by the hyperplane that separates c1 and c2. If c1 and c2 are adjacent, then c′1
and c′2 are adjacent. If c′1 and c′2 are adjacent but c1 and c2 are not, that means there is a hyperplane of
A1 that separates c1 and c2. But that contradicts the fact that c1 and c2 are both contained in the same
chamber ofA1tA0. So c1 and c2 are adjacent if and only if c′1 and c′2 are. From the fact that the distance
from the fundamental chamber is equal to the number of hyperplanes that separate the chamber from the
fundamental chamber, we see that the direction of the corresponding edges in the chamber graphs are the
same.

Hence it is enough to show that the number of chambers of A in c equals number of chambers of
A0 t A2 in c′. And this follows from showing that any chamber of A0 t A2 shares a common interior
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point with a chamber of A0 t A1 as long as they are contained in the same chamber of A0. To show
this, we may include additional hyperplanes to A1 and A2. So let A2 be the hyperplane arrangement of
∆I \ ∆I∩J and A1 hyperplane arrangement of ∆ \ ∆I . Now A is just the Coxeter arrangement of W ,
and each chamber of A is indexed by w ∈W .

We have a parabolic decomposition of W by WI∩JW
I∩J
I W I . Fixing a chamber c of A0 corresponds

to fixing an element of WI∩J . In c, fixing a chamber x(y) of A0 t A2(A0 t A1) corresponds to fixing
an element of W I∩J

I (W I ). So given any such chamber x and y, we can find a chamber of A contained in
them. This concludes the argument.

2

Corollary 12 In the above decomposition, if Aw′ is uniform with respect to Au and v is the longest
element of W J

I , then Ru(q) = Pu(q) implies Rw(q) = Pw(q).

Proof: If v is the longest element of W J
I , then w′ := uI∩Jv is the longest element of WI . Then it is

obvious that Aw′ is uniform with respect to Au. Now it follows from above lemma that Rw(q)/Ru(q) =

RuI∩Jv(q)/RuI∩J (q). Since we also know that the right hand side equals PW
J

v (q), Ru(q) = Pu(q)
implies Rw(q) = Pw(q). 2

In the next section, we will use the above lemma and corollary to prove the main theorem for type
A,B,D and E.

4 The main Proof
In this section, we prove the main theorem. Type G case is trivial and omitted, type F case is done with
a computer and is omitted in this extended abstract. For type A,D and E, the proof is very easy using
Proposition 8 and Corollary 12.

Proposition 13 Let W be a Weyl group of type A,D or E. Let w be a rationally smooth element. Then
Rw(q) = Pw(q).

Proof: Decompose w or w−1 as in the remark preceding Lemma 11. By applying Proposition 8, we see
that v is the longest element of W J

I . Now we can apply Corollary 12. So we can replace w with some
rationally smooth u that is contained in some Weyl group of type A,D or E with strictly smaller rank. Now
the result follows from an obvious induction argument. 2

For type B, we will use Lemma 6 and Lemma 11. Let’s denote Π = {α0 = x1, α1 = x2−x1, · · · , αn =
xn+1 − xn}. We will be studying WΠ\{α0} and WΠ\{αn}. In both of them, if in the reduced word of v
there is an adjacent commuting letters, then v is not a chain element. So when J = Π \ {α0}, the chain
elements are

id, s0, s0s1, s0s1s2, · · · , s0s1 . . . sn, s0s1s0.

And when J = Π \ {αn}, the chain elements are

id, sn, snsn−1, · · · , snsn−1 . . . s1s0, snsn−1 . . . s1s0s1, · · · , snsn−1 . . . s1s0s1 . . . sn−1sn.

Proposition 14 Let W be a Weyl group of type B. Let w be a rationally smooth element. Then Rw(q) =
Pw(q).
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Proof: By Lemma 6, we may assume w or w−1 decomposes to uv where u ∈ WJ , v ∈ W J , J is leaf-
removed and v is a chain-element. Let’s first show that when u is the longest element of WJ , then Aw is
uniform with respect to Au and Rw(q) = Pw(q). Instead of looking at hyperplane arrangement coming
from ∆w = ∆utu∆vu

−1, we can look at the hyperplane arrangement coming from u−1∆wu = ∆ut∆v .
So Au consists of hyperplanes coming from ∆u and Av consists of hyperplanes coming from ∆v .

When J = Π \ {α0}, we have ∆v ⊂ {x1, · · · , xn} and |∆v| = `(v). Choosing a chamber in Au
is equivalent to giving a total ordering on {x1, · · · , xn}. Choosing a chamber in Av is equivalent to
assigning signs to roots of ∆v . Given any total ordering on {x1, · · · , xn}, there is a unique way to assign
t number of +’s and |v| − t number of −’s to ∆v so that it is compatible with the total order on ∆v . This
tells us thatAw is uniform with respect toAu and Rw(q) = Ru(q)(1 + q+ · · ·+ q|v|) = Ru(q)PW

J

v (q).
When J = Π \ {αn}, the proof is pretty much similar and is omitted.

Now let’s return to the general case. Using Lemma 11 and above argument, we can replace w with
some rationally smooth u that is contained in some Weyl group of type A or B with strictly smaller rank.
Then the result follows from an obvious induction argument.

2

5 Further remarks
As in Oh et al. (2008), our proof of the main theorem is based on a recurrence relation. It would be
interesting to give a proof based on a bijection between elements of [id, w] and regions of Aw.

The statement of our main theorem can be extended to Coxeter groups. Although we don’t have Schu-
bert varieties for Coxeter groups, the Poincaré polynomial Pw(q) can still be defined as the rank generating
function of the interval [id, w].

Conjecture 15 Let W be any Coxeter group. Then [id, w] is palindromic if and only if Pw(q) = Rw(q).

Our proof for the Weyl group case relied heavily on Theorem 5 and Proposition 8. Described a bit
roughly, the former helps us to find the recurrence for Pw(q) and the latter helps us to find the recurrence
for Rw(q). So the key would be to extending these two statements. For Proposition 8, it is easy to see that
one direction holds for all Weyl groups. We give a slightly weakened statement that seems to hold for all
Weyl groups.

Conjecture 16 Let W be a Weyl group and let J be a maximal proper subset of the simple roots. Then,
v has palindromic lower interval in W J if and only if the interval is isomorphic to a maximal parabolic
quotient of some Weyl group.

Let’s look at an example for the above conjecture. Choose F4 to be our choice of Weyl group and
label the simple roots Π = {α1, · · · , α4} so that the labels match the corresponding nodes in the Dynkin
diagram 2. If we set J = Π \ {α4}, then the list of v ∈ W J such that the lower interval in W J being
palindromic is:

id, s4, s4s3, s4s3s2, s4s3s2s1, s4s3s2s3, s4s3s2s3s4, s4s3s2s3s1s2s3s4s3s2s3s1s2s3s4.

Those that do not correspond to longest elements of W I∩J
I for some I ⊂ Π are s4s3s2, s4s3s2s3 and

s4s3s2s1. But in these cases, hasse diagram of [id, v] in W J is a chain. So we can say that [id, v] in W J

is isomorphic to a maximal parabolic quotient of a Weyl group of type A in these cases.
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1 2 3 4

Fig. 2: Dynkin diagram of F4

One nice property that Rw(q) has is that it is always palindromic regarthless of the rational smoothness
of w. And this is a property that intersection homology Poncaré polynomial IPw(q) also has.

So it would be interesting to compare these two polynomials.
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