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Abstract. We establish a stronger symmetry between the numbers of northeast and southeast chains in the context of
01-fillings of moon polyominoes. Let M be a moon polyomino. Consider all the 01-fillings of M in which every
row has at most one 1. We introduce four mixed statistics with respect to a bipartition of rows or columns of M.
More precisely, let S be a subset of rows of M. For any filling M , the top-mixed (resp. bottom-mixed) statistic
α(S;M) (resp. β(S;M)) is the sum of the number of northeast chains whose top (resp. bottom) cell is in S, together
with the number of southeast chains whose top (resp. bottom) cell is in the complement of S. Similarly, we define
the left-mixed and right-mixed statistics γ(T ;M) and δ(T ;M), where T is a subset of the columns. Let λ(A;M)
be any of these four statistics α(S;M), β(S;M), γ(T ;M) and δ(T ;M). We show that the joint distribution of the
pair (λ(A;M), λ(M/A;M)) is symmetric and independent of the subsets S, T . In particular, the pair of statistics
(λ(A;M), λ(M/A;M)) is equidistributed with (se(M),ne(M)), where se(M) and ne(M) are the numbers of
southeast chains and northeast chains of M , respectively.

Résumé. Nous établissons une symétrie plus forte entre les nombres de chaı̂nes nord-est et sud-est dans le cadre
des remplissages 01 des polyominos lune. Soit M un polyomino lune. Considérez tous les remplissages 01 de M
dans lesquels chaque rangée contient au plus un 1. Nous présentons quatre statistiques mixtes sur les bipartitions des
rangées et des colonnes de M. Plus précisément, soit S un sous-ensemble de rangées de M. Pour tout remplissage
M , la statistique mixte du dessus (resp. du dessous) α(S;M) (resp. β(S;M)) est la somme du nombre de chaı̂nes
nord-est dont le dessus (resp. le dessous) est dans S, et du nombre de chaı̂nes sud-est dont la cellule supérieure
(resp. inférieure) est dans le complément de S. De même, nous définissons les statistiques mixtes à gauche et à droite
γ(T ;M) et δ(T ;M), où T est un sous-ensemble des colonnes. Soit λ(A;M) une des quatre statistiques α(S;M),
β(S;M), γ(T ;M) et δ(T ;M). Nous montrons que la distribution commune des paires (λ(A;M), λ(M/A;M)) est
symétrique et indépendante des sous-ensembles S, T . En particulier, la paire de statistiques (λ(A;M), λ(M/A;M))
est équidistribuée avec (se(M),ne(M)), où se(M) et ne(M) sont les nombres de chaı̂nes sud-est et nord-est de M
respectivement.
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1 Introduction
Recently it is observed that the numbers of crossings and nestings have a symmetric distribution over
many families of combinatorial objects, such as matchings and set partitions. Recall that a matching
of [2n] = {1, 2, . . . , 2n} is a partition of the set [2n] with the property that each block has exactly
two elements. It can be represented as a graph with vertices 1, 2, . . . , 2n drawn on a horizontal line in
increasing order, where two vertices i and j are connected by an edge if and only if {i, j} is a block.
We say that two edges (i1, j1) and (i2, j2) form a crossing if i1 < i2 < j1 < j2; they form a nesting if
i1 < i2 < j2 < j1. The symmetry of the joint distribution of crossings and nestings follows from the
bijections of de Sainte-Catherine, who also found the generating functions for the number of crossings
and the number of nestings. Klazar [12] further studied the distribution of crossings and nestings over the
set of matchings obtained from a given matching by successfully adding edges.

The symmetry between crossings and nestings was extended by Kasraoui and Zeng [11] to set parti-
tions, and by Chen, Wu and Yan [3] to linked set partitions. Poznanović and Yan [15] determined the
distribution of crossings and nestings over the set of partitions which are identical to a given partition π
when restricted to the last n elements.

Many classical results on enumerative combinatorics can be put in the larger context of counting sub-
matrices in fillings of certain polyominoes. For example, words and permutations can be represented as
01-fillings of rectangular boards, and general graphs can be represented as N-fillings of arbitrary Ferrers
shapes, as studied by [13, 6, 7]. Other polyominoes studied include stack polyominoes [9], and moon
polyominoes [16, 10]. It is well-known that crossings and nestings in matchings and set partitions cor-
respond to northeast chains and southeast chains of length 2 in a filling of polyominoes. The symmetry
between crossings and nestings has been extended by Kasraoui [10] to 01-fillings of moon polyominoes
where either every row has at most one 1, or every column has at most one 1. In both cases, the joint dis-
tribution of the numbers of northeast and southeast chains can be expressed as a product of p, q-Gaussian
coefficients. Other known statistics on fillings of moon polyominoes are the length of the longest north-
east/southeast chains [2, 13, 16], and the major index [4].

The main objective of this paper is to present a stronger symmetry between the numbers of northeast
and southeast chains in the context of 01-fillings of moon polyominoes. Given a bipartition of the rows (or
columns) of a moon polyomino, we define four statistics by considering mixed sets of northeast and south-
east chains according to the bipartition. Let M be a 01-filling of a moon polyominoM with n rows and
m columns. These statistics are the top-mixed and the bottom-mixed statistics α(S;M), β(S;M) with
respect to a row-bipartition (S, S̄), and the left-mixed and the right-mixed statistics γ(T ;M), δ(T ;M)
with respect to a column-bipartition (T, T̄ ). We show that for any of these four statistics λ(A;M),
namely, α(S;M), β(S;M) for S ⊆ [n] and γ(T ;M), δ(T ;M) for T ⊆ [m], the joint distribution of
the pair (λ(A;M), λ(Ā;M)) is symmetric and independent of the subsets S, T . Consequently, we have
the equidistribution ∑

M

pλ(A;M)qλ(Ā;M) =
∑
M

pse(M)qne(M),

where M ranges over all 01-fillings ofM with the property that either every row has at most one 1, or
every column has at most one 1, and se(M) and ne(M) are the numbers of southeast and northeast chains
of M , respectively.

The paper is organized as follows. Section 2 contains necessary notation and the statements of the main
results. We present the proofs in Section 3, and show by bijections in Section 4 that these new statistics
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are invariant under a permutation of columns or rows on moon polyominoes.

2 Notation and the Main Results
A polyomino is a finite subset of Z2, where every element of Z2 is represented by a square cell. The
polyomino is convex if its intersection with any column or row is connected. It is intersection-free if every
two columns are comparable, i.e., the row-coordinates of one column form a subset of those of the other
column. Equivalently, it is intersection-free if every two rows are comparable. A moon polyomino is a
convex and intersection-free polyomino.

Given a moon polyominoM, we assign 0 or 1 to each cell ofM so that there is at most one 1 in each
row. Throughout this paper we will simply use the term filling to denote such 01-fillings. We say that
a cell is empty if it is assigned 0, and it is a 1-cell otherwise. Assume M has n rows and m columns.
We label the rows R1, . . . , Rn from top to bottom, and the columns C1, . . . , Cm from left to right. Let
e = (ε1, . . . , εn) ∈ {0, 1}n and s = (s1, . . . , sm) ∈ Nm with

∑n
i=1 εi =

∑m
j=1 sj . We denote by

F(M, e, s) the set of fillings M ofM such that the row Ri has exactly εi many 1’s, and the column Cj
has exactly sj many 1’s, for 1 ≤ i ≤ n and 1 ≤ j ≤ m. See Figure 1 for an illustration.

1

1
1

1
1

1

Fig. 1: A filling M with e = (1, 1, 0, 1, 1, 1, 1) and s = (1, 1, 2, 1, 1, 0).

A northeast (resp. southeast) chain in a filling M ofM is a set of two 1-cells such that one of them
is strictly above (resp. below) and to the right of the other and the smallest rectangle containing them is
contained inM. Northeast (resp. southeast) chains will be called NE (resp. SE) chains. The number of
NE (resp. SE) chains of M is denoted by ne(M) (resp. se(M)). It is proved by Kasraoui [10] that ne(M)
and se(M) have a symmetric joint distribution over F(M, e, s).

Theorem 2.1

∑
M∈F(M,e,s)

pne(M)qse(M) =
∑

M∈F(M,e,s)

pse(M)qne(M) =

m∏
i=1

[
hi
si

]
p,q

.

Let R be the set of rows of the moon polyomino M. For S ⊆ [n], let R(S) =
⋃
i∈S Ri. We say

a 1-cell is an S-cell if it lies in R(S). An NE chain is called a top S-NE chain if its northeast 1-cell is
an S-cell. Similarly, an SE chain is called a top S-SE chain if its northwest 1-cell is an S-cell. In other
words, an NE/SE chain is a top S-NE/SE chain if the upper 1-cell of the chain is in R(S). Similarly, an
NE/SE chain is a bottom S-NE/SE chain if the lower 1-cell of the chain is inR(S).
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Let S̄ = [n] \ S be the complement of S. Given a filling M ∈ F(M, e, s), we define the top-mixed
statistic α(S;M) and the bottom-mixed statistic β(S;M) with respect to S as

α(S;M) = #{top S-NE chain of M}+ #{top S̄-SE chain of M},

β(S;M) = #{bottom S-NE chain of M}+ #{bottom S̄-SE chain of M}.

See Example 2.3 for some of these statistics on the filling M in Figure 1.
Let F tS(p, q) and F bS(p, q) be the bi-variate generating functions for the pairs (α(S;M), α(S̄;M)) and

(β(S;M), β(S̄;M)) respectively, namely,

F tS(p, q) =
∑

M∈F(M,e,s)

pα(S;M)qα(S̄;M) and F bS(p, q) =
∑

M∈F(M,e,s)

pβ(S;M)qβ(S̄;M).

Note that
(α(∅;M), α([n];M)) = (β(∅;M), β([n];M)) = (se(M),ne(M)).

Our first result is the following property.

Theorem 2.2 F tS(p, q) = F tS′(p, q) for any two subsets S, S′ of [n]. In other words, the bi-variate
generating function F tS(p, q) does not depend on S. Consequently,

F tS(p, q) = F t∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M)

is a symmetric function. The same statement holds for F bS(p, q).

We can also define the mixed statistics with respect to a subset of columns. Let C be the set of columns
of M. For T ⊆ [m], let C(T ) =

⋃
j∈T Cj . An NE chain is called a left T -NE chain if the southwest

1-cell of the chain lies in C(T ). Similarly, an SE chain is called a left T -SE chain if the northwest 1-cell
of the chain lies in C(T ). In other words, an NE/SE chain is a left T -NE/SE chain if its left 1-cell is in
C(T ). Similarly, an NE/SE chain is a right T -NE/SE chain if its right 1-cell is in C(T ).

Let T̄ = [m] \ T be the complement of T . For any filling M of F(M, e, s), we define the left-mixed
statistic γ(T ;M) and the right-mixed statistic δ(T ;M) with respect to T as

γ(T ;M) = #{left T -NE chain of M}+ #{left T̄ -SE chain of M},

δ(T ;M) = #{right T -NE chain of M}+ #{right T̄ -SE chain of M}.

Example 2.3 Let M be the filling in Figure 1, where ne(M) = 6 and se(M) = 1. Let S = {2, 4}, i.e.,
R(S) contains the second and the fourth rows. Then

α(S;M) = 5, α(S̄;M) = 2, β(S;M) = 1, β(S̄;M) = 6.

Let T = {1, 3}, i.e., C(T ) contains the first and the third columns. Then

γ(T ;M) = 4, γ(T̄ ;M) = 3, δ(T ;M) = 2, δ(T̄ ;M) = 5.
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Let GlT (p, q) and GrT (p, q) be the bi-variate generating functions of the pairs (γ(T ;M), γ(T̄ ;M)) and
(δ(T ;M), δ(T̄ ;M)) respectively, namely,

GlT (p, q) =
∑

M∈F(M,e,s)

pγ(T ;M)qγ(T̄ ;M) and GrT (p, q) =
∑

M∈F(M,e,s)

pδ(T ;M)qδ(T̄ ;M).

Again note that

(γ(∅;M), γ([m];M)) = (δ(∅;M), δ([m];M)) = (se(M),ne(M)).

Our second result shows that the generating function GlT (p, q) possesses a similar property as F tS(p, q).

Theorem 2.4 GlT (p, q) = GlT ′(p, q) for any two subsets T, T ′ of [m]. In other words, the bi-variate
generating function GlT (p, q) does not depend on T . Consequently,

GlT (p, q) = Gl∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M)

is a symmetric function. The same statement holds for GrT (p, q).

We notice that the set F(M, e, s) appeared as N r(T,m, A) in Kasraoui [10], where m is the column
sum vector, and A is the set of empty rows, i.e., A = {i : εi = 0}. Kasraoui also considered the set
N c(T,n, B) of fillings whose row sum is an arbitrary N-vector n under the condition that there is at most
one 1 in each column and where B is the set of empty columns. By a rotation of moon polyominoes, it is
easily seen that Theorem 2.2 and Theorem 2.4 also hold for the set N c(T,n, B), as well as for the set of
fillings such that there is at most one 1 in each row and in each column.

As an interesting example, we explain how Theorems 2.2 and 2.4 specialize to permutations and words,
which are in bijections with fillings of squares or rectangles. More precisely, a word w = w1w2 · · ·wn
on [m] can be represented as a filling M on an n ×m rectangleM in which the cell in row n + 1 − i
and column j is assigned the integer 1 if and only if wi = j. In the word w1w2 · · ·wn, a pair (wi, wj) is
an inversion if i < j and wi > wj ; we say that it is a co-inversion if i < j and wi < wj , see also [14].
Denote by inv(w) the number of inversions of w, and by coinv(w) the number of co-inversions of w.

For S ⊆ [n] and T ⊆ [m], we have

α(S;w) = #{(wi, wj) : n+ 1− j ∈ S and (wi, wj) is a co-inversion}
+#{(wi, wj) : n+ 1− j 6∈ S and (wi, wj) is an inversion},

β(S;w) = #{(wi, wj) : n+ 1− i ∈ S and (wi, wj) is a co-inversion}

+#{(wi, wj) : n+ 1− i 6∈ S and (wi, wj) is an inversion}.
γ(T,w) = #{(wi, wj) : wi ∈ T and (wi, wj) is a co-inversion}

+#{(wi, wj) : wj 6∈ T and (wi, wj) is an inversion},
δ(T,w) = #{(wi, wj) : wj ∈ T and (wi, wj) is a co-inversion}

+#{(wi, wj) : wi 6∈ T and (wi, wj) is an inversion}.

Let W = {1s1 , 2s2 , . . . ,msm} be a multiset with s1 + · · ·+ sm = n, and R(W ) be the set of permu-
tations, also called rearrangements, of the elements in W . Let λ(A;w) denote any of the four statistics
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α(S;w), β(S;w), γ(T ;w), δ(T ;w). Theorems 2.2 and 2.4 imply that the bi-variate generating function
for (λ(A;w), λ(Ā;w)) is symmetric and∑

w∈R(W )

pλ(A;w)qλ(Ā;w) =
∑

w∈R(W )

pinv(w)qcoinv(w) =

[
n

s1, . . . , sm

]
p,q

, (1)

where
[

n
s1,...,sm

]
p,q

is the p, q-Gaussian coefficient with the p, q-integer [r]p,q given by [r]p,q = pr−1 +

pr−2q + · · ·+ pqr−2 + qr−1.

3 Proof of the Main Results
It is sufficient to prove our results for α(S;M) and γ(T ;M) only, since conclusions for β(S;M) and
δ(T ;M) can be obtained by reflecting the moon polyomino with respect to a horizontal line or a vertical
line.

In Subsection 3.1, we recall Kasraoui’s bijection Ψ from F(M, e, s) to sequences of compositions
[10]. Kasraoui’s construction is stated for the set N c(T,n, B). We shall modify the description to fit our
notation. This bijection will be used in the proof of Lemma 3.2 which states that the pair of the top-mixed
statistics (α({1};M), α({1};M)) is equidistributed with (se(M),ne(M)). Theorem 2.2 follows from an
iteration of Lemma 3.2. In Subsection 3.3 we prove Theorem 2.4. Again the crucial step is the observation
that (γ({1};M), γ({1};M)) has the same distribution as (se(M),ne(M)).

Due to the space limit, in this extended abstract we would just describe the main ideas and the con-
struction of the bijections, and leave out the detailed proofs. A complete version of the present paper is
available in [5].

3.1 Kasraoui’s bijection Ψ

Assume the columns ofM are C1, . . . , Cm from left to right. Let |Ci| be the length of the column Ci.
Assume that k is the smallest index such that |Ck| ≥ |Ci| for all i. Define the left part ofM, denoted
L(M), to be the union ∪1≤i≤k−1Ci, and the right part ofM, denotedR(M), to be the union ∪k≤i≤mCi.
Note that the columns of maximal length inM belong to R(M).

We order the columns C1, . . . , Cm by a total order ≺ as follows: Ci ≺ Cj if and only if

• |Ci| < |Cj | or

• |Ci| = |Cj |, Ci ∈ L(M) and Cj ∈ R(M), or

• |Ci| = |Cj |, Ci, Cj ∈ L(M) and Ci is on the left of Cj , or

• |Ci| = |Cj |, Ci, Cj ∈ R(M) and Ci is on the right of Cj .

For every column Ci ∈ L(M), we define the rectangleM(Ci) to be the largest rectangle that contains
Ci as the leftmost column. For Ci ∈ R(M), the rectangleM(Ci) is taken to be the largest rectangle that
contains Ci as the rightmost column and does not contain any column Cj ∈ L(M) such that Cj ≺ Ci.

Given M ∈ F(M, e, s), we define a coloring of M by the following steps.
The coloring of the filling M

1. Color the cells of empty rows;
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2. For each Ci ∈ L(M), color the cells which are contained in the rectangleM(Ci) and on the right
of any 1-cell in Ci.

3. For each Ci ∈ R(M), color the cells which are contained in the rectangleM(Ci) and on the left
of any 1-cell in Ci.

ForM ∈ F(M, e, s), let ai be the number of empty rows (i.e., {Ri : εi = 0}) that intersect the column
Ci. Suppose that Ci1 ≺ Ci2 ≺ · · · ≺ Cim . For j = 1, . . . ,m, we define

hij = |Cij | − aij − (si1 + si2 + · · ·+ sij−1
). (2)

For positive integers n and k, denote by Ck(n) the set of compositions of n into k nonnegative parts, that
is, Ck(n) = {(λ1, λ2, . . . , λk) ∈ Nk :

∑k
i=1 λi = n}. The bijection Ψ is constructed as follows.

The bijection Ψ : F(M, e, s) −→ Cs1+1(h1 − s1)× Cs2+1(h2 − s2)× · · · × Csm+1(hm − sm).
For eachM ∈ F(M, e, s) with the coloring, Ψ(M) is a sequence of compositions (c(1), c(2), . . . , c(m)),

where

• c(i) = (0) if si = 0. Otherwise

• c(i) = (c
(i)
1 , c

(i)
2 , . . . , c

(i)
si+1) where

– c
(i)
1 is the number of uncolored cells above the first 1-cell in the column Ci;

– c
(i)
k is the number of uncolored cells between the (k− 1)-st and the k-th 1-cells in the column
Ci, for 2 ≤ k ≤ si;

– c
(i)
si+1 is the number of uncolored cells below the last 1-cell in the column Ci.

The statistics ne(M) and se(M) can be written in terms of the compositions.

Theorem 3.1 Let M ∈ F(M, e, s) and c = Ψ(M) = (c(1), c(2), . . . , c(m)). Then

ne(M) =
∑

Ci∈L(M)

si∑
k=1

(c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k ) +

∑
Cj∈R(M)

sj∑
k=1

(hj − sj − c(j)1 − c
(j)
2 − · · · − c

(j)
k ),

se(M) =
∑

Ci∈L(M)

si∑
k=1

(hi − si − c(i)1 − c
(i)
2 − · · · − c

(i)
k ) +

∑
Cj∈R(M)

sj∑
k=1

(c
(j)
1 + c

(j)
2 + · · ·+ c

(j)
k ).

Summing over the sequences of compositions yields the symmetric generating function of ne(M) and
se(M), c.f. Theorem 2.1.

3.2 Proof of Theorem 2.2
To prove Theorem 2.2 for the top-mixed statistic α(S;M), we first consider the special case when R(S)
contains the first row only.

Lemma 3.2 For S = {1}, we have

F t{1}(p, q) = F t∅(p, q) =
∑

M∈F(M,e,s)

pse(M)qne(M).
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Proof: We assume that the first row is nonempty. Otherwise the identity is obvious. Given a filling M ∈
F(M, e, s), assume that the unique 1-cell of the first row lies in the column Ct. Let the upper polyomino
Mu be the union of the rows that intersect Ct, and the lower polyominoMd be the complement ofMu,
i.e.,Md =M\Mu. We aim to construct a bijection φα : F(M, e, s) → F(M, e, s) such that for any
filling M ,

(α({1};M), α({1};M)) = (se(φα(M)),ne(φα(M))),

and φα(M) is identical to M onMd (which depends on M ).
LetMu = M∩Mu andMd = M∩Md. Let s′i be the number of 1-cells ofM in the columnCi∩Mu,

and s′ = (s′1, . . . , s
′
m). Let e′ = (ε1, . . . , εr), where r is the number of rows inMu. We shall define φα

on F(Mu, e
′, s′) first.

LetC ′i = Ci∩Mu. Suppose that inM the columns intersecting with the first row areCa, . . . , Ct, . . . , Cb
from left to right. Then Ct = C ′t, and inMu the columns C ′a, . . . , C

′
t, . . . , C

′
b intersect the first row. As-

sume that among them the ones with the same length as C ′t are C ′u, . . . , C
′
t, . . . , C

′
v from left to right.

Clearly, the columns C ′u, . . . , C
′
t, . . . , C

′
v are those with maximal length and belong to R(Mu). Note

that in Mu, the number of top {1}-NE chains is
∑
a≤i<t s

′
i, while the number of top {1}-SE chains is∑

t<i≤b s
′
i. Let h′i be given as in Eq. (2) for F(Mu, e

′, s′). Let c = Ψ(Mu) = (c(1), c(2), . . . , c(m)).
Then we can compute that

α({1};Mu) =
∑
a≤i<u

s′i + (h′t − s′t) +
∑

C′i∈L(Mu)

s′i∑
k=1

(h′i − s′i − c
(i)
1 − c

(i)
2 − · · · − c

(i)
k )

+
∑

C′j∈R(Mu)

s′j∑
k=1

(c
(j)
1 + c

(j)
2 + · · ·+ c

(j)
k )−

∑
t<i≤b

s′i. (3)

and

α({1};Mu) =
∑
t<i≤b

s′i +
∑

C′i∈L(Mu)

s′i∑
k=1

(c
(i)
1 + c

(i)
2 + · · ·+ c

(i)
k )

+
∑

C′j∈R(Mu)

s′j∑
k=1

(h′j − s′j − c
(j)
1 − c

(j)
2 − · · · − c

(j)
k )−

∑
a≤i<u

s′i − (h′t − s′t). (4)

The fact that the 1-cell of the first row lies in the column C ′t implies that c(t)1 = 0, and c(i)1 > 0 for
a ≤ i < u or t < i ≤ b. We define the filling φα(Mu) by setting φα(Mu) = Ψ−1(c̃), where c̃ is obtained
from c as follows:

c̃(i) = (c
(i)
1 − 1, c

(i)
2 , . . . , c

(i)
si , c

(i)
si+1 + 1), if a ≤ i < u or t < i ≤ b, and s′i 6= 0,

c̃(t) = (c
(t)
2 , c

(t)
3 , . . . , c

(t)
st+1, c

(t)
1 ), if i = t,

c̃(i) = c(i), for any other i.

Comparing the formulas (3) and (4) with Theorem 3.1 for c̃, one easily verifies that

(α({1};Mu), α({1};Mu)) = (se(φα(Mu)),ne(φα(Mu))).
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Now φα(M) is obtained from M by replacing Mu with φα(Mu). 2

Proposition 3.3 Assume S = {r1, r2, . . . , rs} ⊆ [n] with r1 < r2 < · · · < rs. Let S′ = {r1, r2, . . . , rs−1}.
Then F tS(p, q) = F tS′(p, q).

Proof: Let X = {Ri : 1 ≤ i < rs} be the set of rows above the row Rrs , and Y be the set of remaining
rows. Given a filling M ∈ F(M, e, s), let T (M) be the set of fillings M ′ ∈ F(M, e, s) that are identical
toM in the rows ofX . Construct a map θrs : T (M)→ T (M) by setting θrs(M) to be the filling obtained
from M by replacing M ∩ Y with φα(M ∩ Y ). Then it is a bijection with the property that

(α(S;M), α(S̄;M)) = (α(S′; θrs(M)), α(S′; θrs(M))). (5)

2

Proof of Theorem 2.2. Assume S = {r1, r2, . . . , rs} ⊆ R with r1 < r2 < · · · < rs. Let Θα =
θr1 ◦ θr2 ◦ · · · ◦ θrs , where θr is defined in the proof of Prop. 3.3. Then Θα is a bijection on F(M, e, s)
with the property that (α(S;M), α(S̄;M)) = (se(Θα(M)),ne(Θα(M))). The symmetry of F tS(p, q)
follows from Theorem 2.1. 2

3.3 Proof of Theorem 2.4
Theorem 2.4 is concerned with the left-mixed statistic γ(T ;M). The idea of the proof is similar to that
of Theorem 2.2: we show that the statement is true when T contains the left-most column only. However,
Kasraoui’s bijection φ does not help here, since the columns and rows play different roles in the fillings.
Instead, we give an algorithm which gradually maps the left-mixed statistics with respect to the first
column to the pair (ne, se).

Lemma 3.4 For T = {1}, we have

Gl{1}(p, q) = Gl∅(p, q) =

m∏
i=1

[
hi
si

]
p,q

.

The proof is built on an involution ρ on the fillings of a rectangular shapeM.
An involution ρ on rectangular shapes.
LetM be an n ×m rectangle, and M a filling ofM. Let C1 be the left-most column of M , in which
the 1-cells are in the l1, . . . , lk rows from top to bottom. Replace C1 by the column Cr1 so that the 1’s in
Cr1 appear in the l1, . . . , lk rows from bottom to top. This is ρ(M). Note that this map does not change
the relative positions of those 1-cells that are not in C1. It is easy to verify that ρ(ρ(M)) = M and
(γ({1};M), γ({1};M)) = (se(ρ(M)),ne(ρ(M))).

Proof: Given a general moon polyomino M, assume that the rows intersecting the first column are
{Ra, . . . , Rb}. LetMc be the union Ra∪ · · ·∪Rb. Clearly, for any M ∈ F(M, e, s), a left {1}-NE (SE)
chain consists of two 1-cells inMc. Let C ′i = Ci ∩Mc be the restriction of the column Ci onMc. Then
C ′1 = C1 and |C ′1| ≥ |C ′2| ≥ · · · ≥ |C ′m|.

Suppose that

|C ′1| = |C ′2| = · · · = |C ′j1 | > |C
′
j1+1| = |C ′j1+2| = · · · = |C ′j2 | > |C

′
j2+1| · · ·

· · · = |C ′jk−1
| > |C ′jk−1+1| = |C ′jk−1+2| = · · · = |C ′jk | = |C

′
m|.
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Let Bi be the greatest rectangle contained in Mc whose right most column is C ′ji (1 ≤ i ≤ k), and
B′i = Bi ∩Bi+1 (1 ≤ i ≤ k − 1).

We define φγ : F(M, e, s) → F(M, e, s) by constructing a sequence of fillings (M,Mk, . . . ,M1)
starting from M .
The map φγ : F(M, e, s)→ F(M, e, s)

Let M ∈ F(M, e, s).

1. The filling Mk is obtained from M by replacing M ∩Bk with ρ(M ∩Bk).

2. For i from k − 1 to 1:

(a) Define a filling Ni on B′i by setting Ni = ρ(Mi+1 ∩B′i). Let the filling M ′i be obtained from
Mi+1 by replacing Mi+1 ∩B′i with Ni.

(b) The filling Mi is obtained from M ′i by replacing M ′i ∩Bi with ρ(M ′i ∩Bi).

3. Set φγ(M) = M1.

Then φγ is a bijection satisfying the equation (γ({1};M), γ({1};M)) = (se(φγ(M)),ne(φγ(M))). 2

Proposition 3.5 Assume T = {c1, c2, . . . , ct} ⊆ [m] with c1 < c2 < · · · < ct. Let T ′ = {c1, c2, . . . , ct−1}.
Then GlT (p, q) = GlT ′(p, q).

The proof is similar to that of Prop. 3.3. Iterating Prop. 3.5 leads to Theorem 2.4.

4 Invariance Properties
The bi-variate generating function of (ne, se) (cf. Theorem 2.1) implies that the mixed statistics are in-
variant under any permutation of rows and/or columns. To be more specific, letM be a moon polyomino.
For any moon polyomino M′ obtained from M by permuting the rows and/or the columns of M, we
have

#{M ∈ F(M, e, s) : λ(A;M) = i, λ(Ā;M) = j}

= #{M ′ ∈ F(M′, e′, s′) : λ(A;M ′) = i, λ(Ā;M ′) = j}

for any nonnegative integers i and j, where e′ (resp. s′) is the sequence obtained from e (resp. s) in
the same ways as the rows (resp. columns) of M′ are obtained from the rows (resp. columns) of M,
and λ(A;M) is any of the four statistics α(S;M), β(S;M), γ(T ;M), and δ(T ;M). In this section we
present bijective proofs of such phenomena.

Let M be a general moon polyomino. Let Nl be the unique left-aligned moon polyomino whose
sequence of row lengths is equal to |R1|, . . . , |Rn| from top to bottom. In other words, Nl is the left-
aligned polyomino obtained by rearranging the columns ofM by length in weakly decreasing order from
left to right. We shall use an algorithm developed in [4] that rearranges the columns ofM to generateNl.
The algorithm α for rearrangingM:

Step 1 SetM′ =M.

Step 2 IfM′ is left aligned, go to Step 4.
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Step 3 IfM′ is not left-aligned, consider the largest rectangle B completely contained inM′ that contains
C1, the leftmost column ofM′. UpdateM′ by settingM′ to be the polyomino obtained by moving
the leftmost column of B to the right end. Go to Step 2.

Step 4 Set Nl =M′.

Based on the algorithm α, Chen et al. constructed a bijection g = gM : F(M, e, s) → F(Nl, e, s′)
such that (se(M),ne(M)) = (se(g(M)),ne(g(M))), see [4, Section 5.3.2].

Combining gM with the bijection Θα constructed in the proof of Theorem 2.2, we are led to the fol-
lowing invariance property.

Theorem 4.1 LetM be a moon polyomino. For any moon polyominoM′ obtained fromM by permuting
the columns ofM, the map

Φα = Θ−1
α ◦ g−1

M′ ◦ gM ◦Θα : F(M, e, s)→ F(M′, e, s′) (6)

is a bijection with the property that

(α(S;M), α(S̄;M)) = (α(S;M ′), α(S̄;M ′)).

Similarly, let Nt be the top aligned polyomino obtained fromM by rotating 90 degrees counterclock-
wise first, followed by applying the algorithm α, and finally rotating 90 degrees clockwise. Such opera-
tions enable us to establish a bijection h = hM from F(M, e, s) to F(Nt, e′, s) that keeps the statistics
(se,ne). The exact description of hM is given in [5]. Combining the bijection Θα with hM, we arrive at
the second invariance property.

Theorem 4.2 LetM be a moon polyomino. For any moon polyominoM′ obtained fromM by permuting
the rows ofM, the map

Λα = Θ−1
α ◦ h−1

M′ ◦ hM ◦Θα : F(M, e, s)→ F(M′, e′, s) (7)

is a bijection with the property that

(α(S;M), α(S̄;M)) = (α(S;M ′), α(S̄;M ′)).

Similar statements hold for the statistics β(S;M), γ(T ;M) and δ(T ;M).
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