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Valuative invariants for polymatroids
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Abstract. Many important invariants for matroids and polymatroids, such as the Tutte polynomial, the Billera-Jia-
Reiner quasi-symmetric function, and the invariant G introduced by the first author, are valuative. In this paper we
construct the Z-modules of all Z-valued valuative functions for labeled matroids and polymatroids on a fixed ground
set, and their unlabeled counterparts, the Z-modules of valuative invariants. We give explicit bases for these modules
and for their dual modules generated by indicator functions of polytopes, and explicit formulas for their ranks. Our
results confirm a conjecture of the first author that G is universal for valuative invariants.

Résumé. Beaucoup des invariants importants des matroides et polymatroides, tels que le polyndme de Tutte, la fonc-
tion quasi-symmetrique de Billera-Jia-Reiner, et I’invariant G introduit par le premier auteur, sont valuatifs. Dans cet
article nous construisons les Z-modules de fonctions valuatives aux valeurs entieres des matroides et polymatroides
étiquetés définis sur un ensemble fixe, et leurs équivalents pas étiquetés, les Z-modules des invariants valuatifs. Nous
fournissons des bases des ces modules et leurs modules duels, engendrés par fonctions charactéristiques des poly-
topes, et des formules explicites donnants leurs rangs. Nos résultats confirment une conjecture du premier auteur, que
G soit universel pour les invariants valuatifs.
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1 Introduction

Matroids were introduced by Whitney in 1935 (see [22]) as a combinatorial abstraction of linear depen-
dence of vectors in a vector space. Some standard references are [21] and [17]. Polymatroids are multiset
analogs of matroids and appeared in the late 1960s (see [9, [13]]). There are many distinct but equivalent
definitions of matroids and polymatroids, for example in terms of bases, independent sets, flats, polytopes
or rank functions. For polymatroids, the equivalence between the various definitions is given in [13]. We
will stick to the definition in terms of rank functions:

Definition 1.1 Suppose that X is a finite set (the ground set) and vk : 2X — N = {0,1,2,...}, where
2X is the set of subsets of X. Then (X,1k) is called a polymatroid if:

1. tk(0) = 0;

2. rk is weakly increasing: if A C B then rk(A) < rk(B);
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3. rk is submodular: tk(A U B) + k(AN B) < rk(A) +rk(B) forall A, B C X.

If moreover tk({x}) < 1 for every x € X, then (X,1k) is called a matroid.

An isomorphism ¢ : (X,rkx) — (Y,rky) is a bijection ¢ : X — Y such that rky op = rkx. Every
polymatroid is isomorphic to a polymatroid with ground set d = {1,2,...,d} for some nonnegative
integer d. The rank of a polymatroid (X, rk) is rk(X).

Our matroid notations will receive the subscript yp, and our polymatroid notations the subscript py;. We
will write (py\i(d, ) when we want to refer to both in parallel.

Let Spyn(d, ) be the set of all (poly)matroids with ground set d of rank r, A function f on S(py\(d, )
is a (poly)matroid invariant if f((d,rk)) = f((d,rk’)) whenever (d, rk) and (d, k") are isomorphic. Let
S(SI?)HM(d, r) be the set of isomorphism classes in S(py\i(d, 7). Invariant functions on S(pyn(d, r) corre-
spond to functions on Sfl}f)nM(d, 7). Let Zpym(d, r) and fo,’?lM(d, r) be the Z-modules freely generated
by the symbols (rk) for rk in S(py\i(d,) and S?ly,;“M(d, r) respectively. For an abelian group A, every
function f : S((;;V)ﬁ)(d, r) — A extends uniquely to a group homomorphism Z g;%ﬁ)(d, r) — A.

To a (poly)matroid (d, rk) one can associate its base polytope Q(rk) in R (see Definition [2.2). For
d > 1, the dimension of this polytope is < d — 1. The indicator function of a polytope II C R is denoted
by [II] : RY — Z. Let Ppyn(d,7) be the Z-module generated by all [Q(rk)] with (d, k) € S(pym(d, 7).
We also define an analogue Pl?(’;\n/[) (d,r) by a certain pushout (see Section @)

Definition 1.2 Suppose that A is an abelian group. A function f : Spyw(d,r) — A is strongly valuative
if there exists a group homomorphism f: Preym(d, ) — A such that for all (d, vk) € Spym(d, ),

£((d,1k)) = FIQ(K))).

Many interesting functions on matroids are valuative. Among these is the Tutte polynomial, one of
the most important matroid invariants [3, [7]]. Other valuative functions on matroids include the quasi-
symmetric function F for matroids of Billera, Jia and Reiner introduced in [3]], and the first author’s
quasi-symmetric function G introduced in [8]]. Speyer’s invariant defined in [[19] using K -theory is strictly
speaking not valuative, but its composition with a certain automorphism of Z.3" (d, r) is valuative. Val-
uative invariants and additive invariants can be useful for deciding whether a given matroid polytope has
a decomposition into smaller matroid polytopes (see the discussion in [3 Section 7]). Matroid polytope
decompositions appeared in the work of Lafforgue ([[14}[15]) on compactifications of a fine Schubert cell
in the Grassmannian associated to a matroid.

It follows from Deﬁnitionthat the dual Pipyni(d, )Y = Homgz(Ppym(d, r),Z) is the space of all

Z-valued valuative functions on Spyni(d, 7). Likewise P(SFy,;i/[ (d,r)V is the space of all Z-valued valuative

invariants. Let pE?’)r&) (d, r) be the rank of P((;“gl\“/}) (d,r).
We will give explicit bases for each of the spaces Ppy\i(d,r) and P(Sg;?v[(d, r) and their duals (see
Theorems Corollaries [5.3] [6.2). From these we obtain the following formulas:

Theorem 1.3

1

@ R = () and 3 R =

0<r<d
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In particular, the following theorem, which is a corollary of Corollary proves a conjecture of the
first author in [8]]:

Theorem 1.4 The invariant G is universal for all valuative (poly)matroid invariants, i.e., the coefficients
of G span the vector space of all valuative (poly)matroid invariants with values in Q.

Definition 1.5 Suppose that d > 0. A valuative function f : Sepy\i(d,r) — A is said to be additive, if
f((d,rk)) = 0 whenever the dimension of Q(rk) is < d — 1.

In Sections 8| and [9| we construct bigraded modules 7{pyy; and T(Sli')mM such that Tpyni(d, )Y is the

space of all additive functions on S(py\(d, r) and T(Sg,';rfv[(d, )V is the space of all additive invariants. Let

tpym(d, ) be the rank of T{pya(d,r) and t75),,(d, ) be the rank of T(S}_',I)nM (d,r). Then we have the

(P)YM
following formulas:
Theorem 1.6
a. H (1—gdry)ta @ =1 gy,
0<r<d
sym l—z—-y
b. 1—adynyten(dr) — —_ 27
g( ) T

tm(d, ) gy T—y
C. Zng Ty :log W .
r,d
d—1

ot ifd>1 tem(d,7) 4 . e’(1—y)
d. tpm(d,r) —{ 0 ifd—0, and ZdTa: y" = log (W)

2 Polymatroids and their polytopes

By a polyhedron we will mean a finite intersection of closed half-spaces. A polytope is a bounded polyhe-
dron. It is convenient to have a polyhedral analogue of polymatroid polytopes, so we make the following
definition.

Definition 2.1 A function 2X — 7 U {oo} is called a megamatroid if it has the following properties:

1. 1k(0) = 0;
2. 1k(X) € Z;
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3. rkissubmodular: iftk(A),1k(B) € Z, thentk(AUB),1k(ANB) € Z and rk(AUB)+rk(ANB) <
rk(A) + rk(B).

Obviously, every matroid is a polymatroid, and every polymatroid is a megamatroid. The rank of a
megamatroid (X, rk) is the integer rk(X). We will use notations for megamatroids analogous to our
notations for (poly)matroids but with the subscript yp;. We will use the subscript . and say “*«matroid”
when we want to refer to megamatroids or polymatroids or matroids in parallel.

Definition 2.2 For a megamatroid (d, rk), we define its base polyhedron Q(rk) as the set of all (y1, . . . ,ya) €
R? such that y; + y2 + -+ 4+ ya = tk(X) and 3", y yi < vk(A) forall A C X.

If rk is a polymatroid then Q(rk) is a polytope, called the base polytope of rk. In fact Q(rk) is always
nonempty. The base polytope of a polymatroid (d, rk) of rank r is contained in the simplex

Apai(d,m) = {(y1, - ya) ERY Y1, sya >0, y1 + 42+ +ya =71}

and the base polytope of a matroid (d, rk) of rank r is contained in the hypersimplex

AM(d7r>:{(y17'~'7yd)€Rd‘Ogyh"wydgla y1+y2++yd:7"}

The next theorem generalises a theorem of Gelfand-Goresky-MacPherson-Serganova [[10] on matroids.

Theorem 2.3 A convex polyhedron contained in yy + - - - + yq = r equals Q(M) for some megamatroid
M if and only if for every face I of 11, the linear hull 1hull(F) is of the form z + W where z € 7% and
W is spanned by vectors of the form e; — e;.

Polymatroid polyhedra are, up to translation, the lattice polytopes among the generalized permutohedra
of [18]] or the submodular rank tests of [16].

3 The valuative property

There are essentially two definitions of the valuative property in the literature, which we will refer to as
the strong valuative and the weak valuative properties. The equivalence of these definitions is shown in
[[12] and [20] when valuations are defined on sets of polyhedra closed under intersection. We show their
equivalence for megamatroid polytopes, which are not such a set.

Definition 3.1 A megamatroid polyhedron decomposition is a decomposition II = 1I; UIla U --- U Il
such that 11,114, . . ., I}, are megamatroid polyhedra, and 11; N 11; is empty or contained in a proper face
of I1; and of 11; for all i # j.

A megamatroid polyhedron decomposition II = II; U - - - U1l is a (poly)matroid polytope decomposition
if I, 114, . . ., I} are (poly)matroid polytopes.

For a megamatroid polyhedron decomposition IT = IT; UTI; U - - - U IIj, we define IT; =
IC{1,2,...,k}, and IIy = II. Define

ver 10y if

mya(IGI, . ) = Y (=D)!my € Zyn(d,r),
I1C{1,2,...,k}

where m; = (rk’) if rk” is the megamatroid with Q(rk’) = IT;, and m; = 0if IT; = 0).
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Definition 3.2 A homomorphism of abelian groups f : Z.\v(d,r) — A is called weakly valuative if for
every megamatroid polyhedron decomposition 11 = 11; U Il U - - - U I, we have

f(mval(H;Hla . ,Hk)) = 0.

For a polyhedron IT in R?, let [II] denote its indicator function. Define Py(d, ) as the Z-module
generated by all [Q(rk)], where rk lies in Syiv(d, 7). There is a natural Z-module homomorphism

W : Z*M(d7 7‘) — P*M(d, ’/‘)

such that U, ((rk)) = [Q(rk)] for all tk € S, (d, 7).

Definition 3.3 A homomorphzsm of groups f : Z.v(d, 7") — A is strongly valuative if there exists a
group homomorphism f Pou(d,r) = A such that f = f o U
The map ¥, has the weak valuative property, which shows that the strong valuative property implies the

weak valuative property. In fact the two valuative properties are equivalent, and in view of this we may
speak of the valuative property.

Theorem 3.4 A homomorphism f : Z.\(d,r) — A of abelian groups is weakly valuative if and only if
it is strongly valuative.

4 Decompositions into cones

A chain of length k£ =: length(X)indis X : ) C X; C --- C Xy—1 C Xy = d (here C denotes proper
inclusion). If d > 0 then every chain has length > 1, but for d = 0 there is exactly one chain, namely () =
0, and this chain has length 0. For a chain X of length k and a k-tuple r = (r1,72, . ..,7%) € (ZU{o0})k,
we define a megamatroid polyhedron

Ryvm (X, r) = {(y1,---,yd e R’ ‘ Zyz =, Vi Yy < rj}
i€X;

We will always use the conventions rg = 0, Xy = ). Note that the polytopes Ry (X, r) are full-
dimensional cones in {ZZ:1 Yy, =1}
The next theorem is an analogue of the Brianchon-Gram Theorem [4, [11] for megamatroid polytopes.

Theorem 4.1 For any megamatroid tk : 2¢ — 7, U {co} we have

[Q(k)] = > (~1) MO Ry (X, (tk(X1), - ., tk(Xi)))].

X

Example 4.2 Consider the case where d = 3 and r = 3, and 1k is defined by rk({1}) = rk({2}) =
rk({3}) = 2, rk({1,2}) = rk({2,3}) =rk{(1,3}) = 3, rk({1, 2, 3}) = 4. The right of Figure|[l|depicts
the decomposition using the Brianchon-Gram theorem of a polytope Q. (rk), which is defined by a certain
perturbation of the inequalities defining Q(rk). Note how the summands in the decomposition correspond
to the faces of Qc(rk). In the limit where the perturbation approaches 0, Q. (rk) tends to Q(rk) and we
obtain the left of Figure[l} This is exactly the decomposition in Theoremd.1| In this decomposition, the
summands do not correspond bijectively to the faces of Q(rk).
The dashed triangle is the triangle defined by y1,y2,ys > 0, y1 + y2 + y3 = 4.
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Fig. 1: At left, a decomposition of Q(rk) as in Theorem .1} At right, a decomposition of a polytope Q. (rk).

5 Valuations

Suppose that d > 1. Let pym(d, r) be the set of all pairs (X, r) such that X is a chain of length k
(1 <k <dandr = (r,r,...,7,) is an integer vector with 7, = r. We define Ripyy(X,r) =
Ry (X, 1) N Apym(d, 7). If Ripynm(X, 1) is nonempty, then it is a (poly)matroid base polytope. Define
ppMm(d, ) C pvm(d, r) as the set of all pairs (X, r) with0 < ry < --- <, = r. Let pm(d, r) denote
the set of all pairs (X, r) € pym(d, ) such that r = (rq, ..., ) for some k (1 < k < d),
0<r<re<---<rg=r

and

0< |X1|—7’1 < |X2| —rg < -0 <K |Xk71|_7'k71 < |Xk‘ —rp=d-—r.
For d = 0, we define pym (0,7) = ppm(0,7) = pum(0,7) = 0 for 7 # 0 and pym (0,0) = ppm(0,0) =
Theorem 5.1 The group P.ni(d, r) is freely generated by the basis {[Ra(X,1)] | (X, 1) € pau(d, )}

Note that the basis of this theorem is a generating set by Theorem [4.1]

Suppose that X is a chain of length k and r = (r1,..., %) is an integer vector with r;, = r. Define a
homomorphism sx , : Zym(d, r) — Z by

o401k = {

Proposition 5.2 The homomorphism sx , is valuative.

1 ifI‘k(Xj)Z’I“ijI'j:LQ,...,]{i,
0 otherwise.

Theorem 5.3 The group Ppywi(d,r)Y is freely generated by the basis {SLz (X,r) € preyml(d, r)}

If X is not a maximal chain, then sx , is a linear combination of functions of the form sx- ,» where
X' is a maximal chain. The set of such functions sy ,» appeared as the coordinates of the function H
defined in [1}, §6], which was introduced there as a labeled analogue of G.
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6 Valuative invariants

Let Y,n(d, r) be the group generated by all (rk) — (rk oo) where rk : 2¢ — ZU{oc} is a ¥matroid of rank
r and o is a permutation of d. We define Z3"(d,r) = Zym(d,r)/Yiu(d, 7). Let mom = Zom(d, 1) —
Z3X1 (d, ) be the quotient homomorphism. If rkx : 2% — ZU{oco} is any xmatroid, then we can choose
a bijection ¢ : d — X, where d is the cardinality of X. Let r = rkx(X). The image of (rkx o) in
Z31(d,r) does not depend on ¢, and will be denoted by [rkx]. The xmatroids (X,rkx) and (Y, rky)
are isomorphic if and only if [rkx| = [rky]. So we may think of Z}]"(d, r) as the free group generated
by all isomorphism classes of rank r *matroids on sets with d elements.

Let P(Sli,';?/[(d7 r) be the pushout of the diagram

Zpywm(d,r) ML ?%I)HM(da ) . (1)
‘P(P)Ml \RAsy

] \
P(P)M(da r) 'ﬁ(i’:’)l\&) P(g)M(CL r)

Then the dual space P(Sli';t/[(d, 7)Y is exactly the set of all Z-valued valuative (poly)matroid invariants.
Define p};' (d, r) as the set of all pairs (X, 7) € p.m(d,7) such that every X is of the form {1,2,...,}.

Theorem 6.1 The Z-module PX"(d,r) is freely generated by all p,([Reu(X,1)]) with (X, 1) €
o (d, 7).
sym

The matroid polytopes Rni(X,r) with (X, ) € p; (d,r) are the polytopes of Schubert matroids.
Schubert matroids were first described by Crapo [6], and have since arisen in several contexts, prominent
among these being the stratification of the Grassmannian into Schubert cells [2} §2.4].

For (X, r) € pypy(d, 7), define a homomorphism 3"+ Zyi(d, ) — Z by

sym. __
SXor = SoX.r
oX

where the sum is over all chains ¢ X in the orbit of X under the action of the symmetric group.

Theorem 6.2 The Q-vector space P(Sg;r;/[(d, r)Y @z Q of valuations Z(S%',;“M (d,r) = Q has a basis given
by the functions s¥', for (X, r) € p(py\(d, 7).

For a sequence o = (o, . .., aq) of nonnegative integers with |o| = >, a; = r, we define
Uy = SX,r Zaﬁ;nM(d, r) — Z,where X, =ifori =1,2,...,randr = (01,01 +qg, ..., a1+ - +ag).

Corollary 6.3 The Q-vector space Pp); (d, 1) ®7Q of valuations Z3\;' (d,r) — Q has a Q-basis given
by the functions u.,, where o runs over all sequences (o, . . ., aq) of nonnegative integers with |o| = r.

Corollary 6.4 The Q-vector space Py ™ (d, )" ®7Q of valuations Zy;™ (d, ) — Q has a Q-basis given
by all functions u,, where o runs over all sequences (av, . . ., aq) € {0, 1} with |a| = 7.
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002
. 3 3
P )
1014 0011 \
o o - @ e
200 110 020 3 3 6
X: {1,2,3} X: {1,2yc{1,2,3} [ X: {1} c{1,2,3}
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Fig. 2: A polymatroid example of Theorems[5.1]and

Example 6.5 Figures 2] and [3] are examples of both Theorems and 6.1 for matroids in the cases
(d,7) = (3,2) and (d,r) = (4, 2), respectively. At top left are the polyhedra Apyn(d, ), containing all
the (poly)matroid base polytopes. At top right are the polytopes R(X ,r) for (X,r) € p?z,r)nM (d,r), and at
bottom the corresponding pairs (X, r).

The symmetric group ¥.q4 acts on A g by permuting the coordinates. If ¥4 acts on the generators R(X, )
with (X, 1) € ppym(d,r), then we get all R(X,r) with (X,r) € prpym(d,r). In the figure, we have
written under each polytope the cardinality of its X 4-orbit.

7 Hopf algebra structures

Define Zoi = @, Z«m(d, ), and in a similar way define Z33;", Py, and P.};". We can view Z)"
as the Z-module freely generated by all isomorphism classes of smatroids. In this section we will only
speak of the megamatroid objects; in every case, there are analogous matroid and polymatroid objects,

which are substructures.
Ifrky : 2¢ — Z U {oo} and 1ky : 2¢ — Z U {oo} then we define rk; Brky : 29+¢ — Z U {oc} by

(I‘kl EBI‘kg)(A) = rkl(Aﬂd) +I‘k2({l ce | d+1€ A})

for any set A C d + e. Note that H is not commutative. We have a multiplication V : Zyiy Q7 Zvm —
Zyim defined by V({rky) ® (rka)) = (rky Hrks), which makes Zynv (d, ) into an associative (noncom-
mutative) ring with 1. The multiplication also respects the bigrading of Zyn(d, 7). The unitn : Z —
Zym(d, r) is given by 1 — (rko) where ko : 20 — Z U {oo} is the unique megamatroid defined by
k() = 0.

Next, we define a comultiplication for Zyp. Suppose that X = {iy,4s,...,%4} is a set of integers with
i1 < - <igandrk : 2% — Z U {oo} is a megamatroid. We define a megamatroid rk: 24 5 Z U {0}
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1100
///\\
1001 .~ _/_______ __s 0101
N A
1\,\’\ Mo
N
1010 % 7707 0110
0011 4 6 12
X: {1,2,3,4) X: {L2JC{L,23,4)] X: {1,2,3} C{L,2,3,4}
r= (2 r= (1,2) r= (1,2
X {1} c{1,2,3,4} | X {1,2} C{1,2,3,4} | X: {1} C{1,2,3} C{1,2,3,4}
r= (0,2) r= (0,2) r= (0,1,2)

Fig. 3: A matroid example of Theorems[5.1]and[6.1]

by rk(A) = tk({ij | 7 € A}). If tk : 2% — Z U {oc} is a megamatroid and B C A C X then we define
tkg/p : 24\B 5 7. U {o0} by tka/g(C) = tk(BUC) —rk(B) forall C C A\ B. We also define
rky :=r1ky /g and kg = rkx/p.

We now define A : Zyiv — Zyvm ®z Zvm by

Ak = >0 (ka)® (k).
ACd; rk(A)<oo

where A runs over all subsets of d for which rk(A) is finite. This comultiplication is coassociative, but
not cocommutative. If rk : 2¢ — Z U {oo} is a megamatroid, then the counit is defined by e((rk)) = 1 (if
d = 0), 0 (otherwise). We omit here the definition of the antipode S.

It is well-known that ZyY™ has the structure of a Hopf algebra over Z. In fact we have that Zp};" has a
Hopf algebra structure, with Zy37™" as a Hopf subalgebra. This structure is defined analogously to the one
on Zyv above, replacing each megamatroid by its isomorphism class: e.g. multiplication is given by the
direct sum of megamatroids, and is now commutative. The map mypy of (T)) is a Hopf algebra morphism.

The space Py inherits a Hopf algebra structure from Zypy. Most of this structure can be defined in

the expected fashion, but the coproduct requires some care. We define A : Py — Pynv ® Puvn by

k _—

A([Rana(X, 1)) = Y [Rana (X, 7)) © [Raa (X7, 1)
=0

Since the Ry (X, 7) with (X, 7) € pym = U, - Pvm(d, ) form a basis of Py, this is sufficient to
linearly extend. From Theoremone can check that (U @ Ui ) @ A = A o Uy
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The Hopf algebra structure on Pypy naturally induces a Hopf algebra structure on Py, such that pyiv
and WYy, are Hopf algebra homomorphisms.

8 Additive valuations

For 0 < e < d we define P.\(d,7,e) C Pov(d,r) as the span of all [II] where IT C R< is a *matroid
polytope of dimension < d — e. We have P.\(0,7,0) = Pum(0,7) and Pav(d,r,1) = Pa(d, r) for
d > 1. These subgroups form a filtration

- C P*M(dﬂ", 2) - P*M(d,r, 1) - P*M(d, 7",0) = P*M(d,T’)

Define P, (d,7,e) := Puu(d,r,€)/Par(d,r,e + 1), and Tyn(d,7) = P,u(d,r,1). The image of
[Q(M)] in Tuni(d,r) is zero if and only if M is connected. The associated graded algebra P.\; =
@, P«m(d,r, e) has an induced Hopf algebra structure.
Define
PuX)= @ Tw(Xil,r) @ @ Ton(|Xel,7e).

There is a group homomorphism ¢y : P.(X) — P.u(d, 7, e). which takes the classes of a list of
xmatroids to the class of their direct sum. The next theorem essentially asserts a unique decomposition of
smatroids into connected components.

Theorem 8.1 We have the isomorphism

( ; ¢X) : S, Pou(X) = @B Pauild, rye) (2)

X=(X1,X2,...,Xc) =
d=X1UXoU-UXe;X1,..., X 20D

If d > 1, let tpyp(d, ) be the set of all pairs (X,r) € ppm(d,r) such that 7y > 0, and d & X1,
where k is the length of X. Similarly, if d > 2, let t\(d, r) be the set of all pairs (X, r) € ty(d, ) such
—r,andd & Xp_1.

Theorem 8.2 The group Tipyui(d, ) is freely generated by all [Rpyw(X, 1) with (X, 1) € tpym(d, 7).

9 Additive invariants
The algebra P}};" also has a natural filtration:
C PR(d,r,2) C PX"(d,r,1) C P (d,r,0) = PX"(d,r).

Here P;"(d, r, e) is spanned by the indicator functions of all xmatroid base polytopes of rank r and di-
mension d—e. Define Py (d,r,e) = P (d,r,e) /P (d,r,e+1). Let Py = Dare Pii(d,re)
be the associated graded algebra.

Define T3[" = D, Pt (d, 7, 1). The following theorem follows from Theorem

Theorem 9.1 The algebra Py, is the free symmetric algebra S(T Ri) on TR, and there exists an
isomorphism
T30 @Psym (d,r,e) 3)

Corollary 9.2 The algebra PX;" is a polynomial ring over Z.
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10 Invariants as elements in free algebras
Let
Pbym @Psym

be the graded dual of P};". Let muv = @, Pfﬁn(d, r,1). Then we have m?\; = @, . P (d,7,2)
and T" = m,qr/m2,;. The graded dual m¥; can be identified with

(PP /P (0,0) GBEBP:KE“ (@1

So mﬁM ®z Q will be identified with the ideal (ug,u1,...) of Q{ug,us,...) and mﬁ ®z Q will be
identified with the ideal (uo, u1) of Q(ug,u1). The graded dual (Tpy;)# ®z Q is a subalgebra (without
1) of the ideal (ug, u1, ... ), and (Tpy;)# ®z Q is a subalgebra of (ug, u1).

Theorem 10.1 Let ug, u1,uz, ... be indeterminates, where u; has bidgree (1,1). We have the following
isomorphisms of bigraded associative algebras over Q:

a. The space (Py;™)Y @z Q is isomorphic to Q{{ug, u1)), the completion (in power series) of the free
associative algebra generated by ug, u1.

b. The space (Ppy;')" ®z Q is isomorphic to Q((ug, u1,us, .. .).

c. The space (Tyy™)" ®z Q is isomorphic to Q{ug,u1}, the completion of the free Lie algebra
generated by ug, uq.

d. The space (Tpy1')" ®z Q is isomorphic to Q{uo, u1, us, ...}

Proposition 10.2 The Hopf algebra Ppy;" ®7 Q is isomorphic to the ring QSym of quasi-symmetric
functions over Q.

If we identify P}, ®z Q with QSym, then G is equal to WP/
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