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Abstract. According to the Göttsche conjecture (now a theorem), the degree Nd,δ of the Severi variety of plane
curves of degree d with δ nodes is given by a polynomial in d, provided d is large enough. These “node polynomials”
Nδ(d) were determined by Vainsencher and Kleiman–Piene for δ ≤ 6 and δ ≤ 8, respectively. Building on ideas of
Fomin and Mikhalkin, we develop an explicit algorithm for computing all node polynomials, and use it to compute
Nδ(d) for δ ≤ 14. Furthermore, we improve the threshold of polynomiality and verify Göttsche’s conjecture on
the optimal threshold up to δ ≤ 14. We also determine the first 9 coefficients of Nδ(d), for general δ, settling and
extending a 1994 conjecture of Di Francesco and Itzykson.

Résumé. Selon la Conjecture de Göttsche (maintenant un Théorème), le degréNd,δ de la variété de Severi des courbes
planes de degré d avec δ noeuds est donné par un polynôme en d, pour d assez grand. Ces polynômes de noeudsNδ(d)
ont été déterminés par Vainsencher et Kleiman–Piene pour δ ≤ 6 et δ ≤ 8, respectivement. S’appuyant sur les idées de
Fomin et Mikhalkin, nous développons un algorithme explicite permettant de calculer tous les polynômes de noeuds,
et l’utilisons pour calculer Nδ(d), pour δ ≤ 14. De plus, nous améliorons le seuil de polynomialité et vérifions la
Conjecture de Göttsche sur le seuil optimal jusqu’à δ ≤ 14. Nous déterminons aussi les 9 premiers coéfficients de
Nδ(d), pour un δ quelconque, confirmant et étendant la Conjecture de Di Francesco et Itzykson de 1994.
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1 Introduction and Main Results
Node Polynomials
Counting algebraic plane curves is a very old problem. In 1848, J. Steiner determined that the number of
curves of degree d with 1 node through d(d+3)

2 − 1 generic points in the complex projective plane P2 is
3(d− 1)2. Much effort has since been put forth towards answering the following question:

How many (possibly reducible) degree d nodal curves with
δ nodes pass through d(d+3)

2 − δ generic points in P2?

The answer to this question is the Severi degree Nd,δ , the degree of the corresponding Severi variety.
In 1994, P. Di Francesco and C. Itzykson [DFI95] conjectured that Nd,δ is given by a polynomial in d
(assuming δ is fixed and d is sufficiently large). It is not hard to see that, if such a polynomial exists, it
has to be of degree 2δ.

†The author was partially supported by the NSF grant DMS-055588.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmANind.html


180 Florian Block

Recently, S. Fomin and G. Mikhalkin [FM, Theorem 5.1] established the polynomiality of Nd,δ using
tropical geometry and floor decompositions. More precisely, they showed that there exists, for every
δ ≥ 1, a node polynomial Nδ(d) which satisfies Nd,δ = Nδ(d) for all d ≥ 2δ. (The δ = 0 case is trivial
as Nd,0 = 1 for all d ≥ 1.)

For δ = 1, 2, 3, the polynomiality of the Severi degrees and the formulas for Nδ(d) were determined
in the 19th century. For δ = 4, 5, 6, this was only achieved by I. Vainsencher [Vai95] in 1995. In 2001,
S. Kleiman and R. Piene [KP04] settled the cases δ = 7, 8. Earlier, L. Göttsche [Göt98] conjectured a
more detailed (still not entirely explicit) description of these polynomials for counting curves on arbitrary
projective algebraic surfaces.

Main Results
In this paper we develop, building on ideas of S. Fomin and G. Mikhalkin [FM], an explicit algorithm for
computing the node polynomials Nδ(d) for an arbitrary δ. This algorithm is then used to calculate the
node polynomials for all δ ≤ 14.

Theorem 1.1 The node polynomials Nδ(d), for δ ≤ 14, are as listed in [Blo10, Appendix A].

A list of allNδ(d) for δ ≤ 14 is implicitly given in Theorem 3.1 of this paper using generating functions.
P. Di Francesco and C. Itzykson [DFI95] conjectured the first seven terms of the node polynomial Nδ(d),
for arbitrary δ. We confirm and extend their assertion. The first two terms already appeared in [KP04].

Theorem 1.2 The first nine coefficients of Nδ(d) are given by

Nδ(d) =
3δ

δ!

[
d2δ − 2δd2δ−1 −

δ(δ − 4)

3
d2δ−2 +

δ(δ − 1)(20δ − 13)

6
d2δ−3+

−
δ(δ − 1)(69δ2 − 85δ + 92)

54
d2δ−4 −

δ(δ − 1)(δ − 2)(702δ2 − 629δ − 286)

270
d2δ−5+

+
δ(δ − 1)(δ − 2)(6028δ3 − 15476δ2 + 11701δ + 4425)

3240
d2δ−6+

+
δ(δ − 1)(δ − 2)(δ − 3)(13628δ3 − 6089δ2 − 29572δ − 24485)

11340
d2δ−7+

−
δ(δ − 1)(δ − 2)(δ − 3)(282855δ4 − 931146δ3 + 417490δ2 + 425202δ + 1141616)

204120
d2δ−8 + · · ·

]
.

(1.1)

Let d∗(δ) denote the polynomiality threshold for Severi degrees, i.e., the smallest positive integer d∗ =
d∗(δ) such that Nδ(d) = Nd,δ for d ≥ d∗. As mentioned above S. Fomin and G. Mikhalkin showed that
d∗ ≤ 2δ. We improve this as follows:

Theorem 1.3 For δ ≥ 1, we have d∗(δ) ≤ δ.

In other words, Nd,δ = Nδ(d) provided d ≥ δ ≥ 1. L. Göttsche [Göt98, Conjecture 4.1] conjectured
that d∗ ≤

⌈
δ
2

⌉
+ 1 for δ ≥ 1. This was verified for δ ≤ 8 by S. Kleiman and R. Piene [KP04]. By direct

computation we can push it further.

Proposition 1.4 For 3 ≤ δ ≤ 14, we have d∗(δ) =
⌈
δ
2

⌉
+ 1.

That is, Göttsche’s threshold is correct and sharp for 3 ≤ δ ≤ 14. For δ = 1, 2 it is easy to see that
d∗(1) = 1 and d∗(2) = 1.

P. Di Francesco and C. Itzykson [DFI95] hypothesized that d∗(δ) ≤
⌈

3
2 +

√
2δ + 1

4

⌉
(which is equiv-

alent to δ ≤ (d∗−1)(d∗−2)
2 ). However, our computations show that this fails for δ = 13 as d∗(13) = 8.
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The main techniques of this paper are combinatorial. By the celebrated Correspondence Theorem of
G. Mikhalkin [Mik05, Theorem 1] one can replace the algebraic curve count by an enumeration of certain
tropical curves. E. Brugallé and G. Mikhalkin [BM07, BM09] introduced some purely combinatorial
gadgets, called (marked) labeled floor diagrams (see Section 2), which, if counted correctly, are equinu-
merous to these tropical curves. Recently, S. Fomin and G. Mikhalkin [FM] enhanced Brugallé’s and
Mikhalkin’s definition and introduced a template decomposition of labeled floor diagrams which is cru-
cial in the proofs of all results in this paper, as is the reformulation of algebraic plane curve counts in
terms of labeled floor diagrams (see Theorem 2.5).

This paper is organized as follows: In Section 2 we review labeled floor diagrams, their markings, and
their relationship with the enumeration of plane algebraic curves. The proofs of Theorems 1.1 and 1.2
are algorithmic in nature and involve a computer computation. We describe both algorithms in detail in
Sections 3 and 5, respectively. The first algorithm computes the node polynomials Nδ(d) for arbitrary
δ, the second determines a prescribed number of leading terms of Nδ(d). The latter algorithm relies on
the polynomiality of solutions of certain polynomial difference equations: This polynomiality has been
verified for pertinent values of δ (see Section 5). Proposition 1.4 is proved by comparison of the numerical
values ofNδ(d) andNd,δ for various d and δ (see Appendices A and B of [Blo]). Theorem 1.3 is discussed
in Section 4. For complete proofs of all statements see [Blo].

Additional Comments
In principle, once polynomiality of the Severi degrees Nd,δ is established with some threshold, one could
use the Caporaso-Harris recursion [CH98] to compute the node polynomials using simple interpolation.
This method, together with the threshold proved in Section 4 of this paper, can in principle be used to
compute Nδ(d) for larger values of δ, and also to increase the upper bound in Proposition 1.4.

The Gromov-Witten invariantNd,g enumerates irreducible plane curves of degree d and genus g through
3d + g − 1 generic points in P2. Algorithm 1 (with minor adjustments, cf. Theorem 2.5(2)) can be used
to directly compute Nd,g , without resorting to a recursion involving relative Gromov-Witten invariants à
la Caporaso–Harris [CH98].

By extending ideas of S. Fomin and G. Mikhalkin [FM] and of the present paper, we can obtain poly-
nomiality results for relative Severi degrees, associated with counting curves satisfying given tangency
conditions to a fixed line. This will be discussed in the forthcoming paper [Blo10].

A. Gathmann, H. Markwig and the author [BGM] define Psi-floor diagrams which enumerate plane
curves which satisfy point and tangency conditions, and conditions given by Psi-classes. We prove a
Caporaso-Harris type recursion for Psi-floor diagrams, and show that relative descendant Gromov-Witten
invariants equal their tropical counterparts.
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Brugallé and Grigory Mikhalkin for valuable comments and suggestions, and Gregg Musiker and the two
referees for helpful comments on an earlier version of this paper. Part of this work was accomplished at the
MSRI (Mathematical Sciences Research Institute) in Berkeley, CA, USA, during the semester program
on tropical geometry. I thank MSRI for hospitality.

2 Labeled Floor Diagrams
Labeled floor diagrams are combinatorial gadgets which, if counted correctly, enumerate plane curves
with certain prescribed properties. E. Brugallé and G. Mikhalkin introduced them in [BM07] (in slightly
different notation) and studied them further in [BM09]. To keep this paper self-contained and to fix
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notation we review them and their markings following [FM] where the framework that best suits our
purposes was introduced.

Definition 2.1 A labeled floor diagram D on a vertex set {1, . . . , d} is a directed graph (possibly with
multiple edges) with positive integer edge weights w(e) satisfying:

1. The edge directions respect the order of the vertices, i.e., for each edge i→ j of D we have i < j.

2. (Divergence Condition) For each vertex j of D, we have

div(j)
def
=

∑
edges e

j
e→ k

w(e)−
∑
edges e

i
e→ j

w(e) ≤ 1. (2.1)

This means that at every vertex of D the total weight of the outgoing edges is larger by at most 1 than the
total weight of the incoming edges.

The degree of a labeled floor diagram D is the number of its vertices. It is connected if its underlying
graph is. Note that in [FM] labeled floor diagrams are required to be connected. IfD is connected its genus
is the genus of the underlying graph (or the first Betti number of the underlying topological space). The
cogenus of a connected labeled floor diagramD of degree d and genus g is given by δ(D) = (d−1)(d−2)

2 −
g. If D is not connected, let d1, d2, . . . and δ1, δ2, . . . be the degrees and cogenera, respectively, of its
connected components. Then the cogenus ofD is

∑
j δj +

∑
j<j′ djdj′ . Via the correspondence between

algebraic curves and labeled floor diagrams ([FM, Theorem 3.9]) these notions correspond literally to the
respective analogues for algebraic curves. Connectedness corresponds to irreducibility. Lastly, a labeled
floor diagram D has multiplicity(i)

µ(D) =
∏

edges e

w(e)2. (2.2)

We draw labeled floor diagrams using the convention that vertices in increasing order are arranged left
to right. Edge weights of 1 are omitted.

Example 2.2 An example of a labeled floor diagram of degree d = 4, genus g = 1, cogenus δ = 2,
divergences 1, 1, 0,−2, and multiplicity µ = 4 is drawn below.

g g g g2- -
j

*

To enumerate algebraic curves via labeled floor diagrams we need the notion of markings of such
diagrams.

Definition 2.3 A marking of a labeled floor diagram D is defined by the following three step process
which we illustrate in the case of Example 2.2.

Step 1: For each vertex j of D create 1 − div(j) many new vertices and connect them to j with new
edges directed away from j. g g g g2- -

j

*@
@

@@R w @
@

HH
HH

PPPPPP
@R
HHj
PPPqw w w

(i) If floor diagrams are viewed as floor contractions of tropical plane curves this corresponds to the notion of multiplicity of tropical
plane curves.
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Step 2: Subdivide each edge of the original labeled floor diagram D into two directed edges by in-
troducing a new vertex for each edge. The new edges inherit their weights and orientations. Call the
resulting graph D̃.

g g g g2 2- - - - j

*

*

j
w w ww@

@
@@R @

@
HHHH

PPPPPP
@R
HHj
PPPqw w w w

Step 3: Linearly order the vertices of D̃ extending the order of the vertices of the original labeled floor
diagram D such that, as before, each edge is directed from a smaller vertex to a larger vertex.

2 2g g g gw w w w ww w w- - - - -

-

-

-
- -

-
-

The extended graph D̃ together with the linear order on its vertices is called a marked floor diagram,
or a marking of the original labeled floor diagram D.

We want to count marked floor diagrams up to equivalence. Two markings D̃1, D̃2 of a labeled floor
diagramD are equivalent if there exists an automorphism of weighted graphs which preserves the vertices
of D and maps D̃1 to D̃2. The number of markings ν(D) is the number of marked floor diagrams D̃ up to
equivalence.

Example 2.4 The labeled floor diagram D of Example 2.2 has ν(D) = 7 markings (up to equivalence):
In step 3 the extra 1-valent vertex connected to the third white vertex from the left can be inserted in three
ways between the third and fourth white vertex (up to equivalence) and in four ways right of the fourth
white vertex (again up to equivalence).

Now we can make precise how to rephrase the initial question of this paper in terms of combinatorics
of labeled floor diagrams.

Theorem 2.5 (Corollary 1.9 of [FM]) The Severi degree Nd,δ , i.e., the number of (possibly reducible)
nodal curves in P2 of degree d with δ nodes through d(d+3)

2 − δ generic points, is equal to

Nd,δ =
∑
D
µ(D)ν(D), (2.3)

where D runs over all (possibly disconnected) labeled floor diagrams of degree d and cogenus δ.

3 Computing Node Polynomials
In this section we give an explicit algorithm that symbolically computes the node polynomials Nδ(d), for
given δ ≥ 1. (As Nd,0 = 1 for d ≥ 1, we put N0(d) = 1.) An implementation of this algorithm was used
to prove Theorem 1.1 and Proposition 1.4. We mostly follow the notation in [FM, Section 5]. First, we
rephrase Theorem 1.1 in more compact notation. For δ ≤ 8 one recovers [KP04, Theorem 3.1].

Theorem 3.1 The node polynomialsNδ(d), for δ ≤ 14, are given by the generating function
∑
δ≥0Nδ(d)xδ

via the transformation ∑
δ≥0

Nδ(d)xδ = exp

(∑
δ≥0

Qδ(d)xδ
)
, (3.1)
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where

Q0(d) = 1,

Q1(d) = 3(d− 1)2,

Q2(d) =
−3
2
(d− 1)(14d− 25),

Q3(d) =
1
3
(690d2 − 2364d+ 1899),

Q4(d) =
1
4
(−12060d2 + 47835d− 45207),

Q5(d) =
1
5
(217728d2 − 965646d+ 1031823),

Q6(d) =
1
6
(−4010328d2 + 19451628d− 22907925),

Q7(d) =
1
7
(74884932d2 − 391230216d+ 499072374),

Q8(d) =
1
8
(−1412380980d2 + 7860785643d− 10727554959),

Q9(d) =
1
9
(26842726680d2 − 157836614730d+ 228307435911),

Q10(d) =
1
10
(−513240952752d2 + 3167809665372d− 4822190211285),

Q11(d) =
1
11
(9861407170992d2 − 63560584231524d+ 101248067530602),

Q12(d) =
1
12
(−190244562607008d2 + 1275088266948600d− 2115732543025293),

Q13(d) =
1
13
(3682665360521280d2 − 25576895657724768d+ 44039919476860362),

Q14(d) =
1
14
(−71494333556133600d2 + 513017995615177680d− 913759995239314452).

In particular, all Qδ(d), for 1 ≤ δ ≤ 14, are quadratic.

L. Göttsche [Göt98] conjectured that all Qδ(d) are quadratic. This theorem proves his conjecture for
δ ≤ 14.

The basic idea of the algorithm (see [FM, Section 5]) is to decompose labeled floor diagrams into
smaller building blocks. These gadgets will be crucial in the proofs of all theorems in this paper.

Definition 3.2 A template Γ is a directed graph (with possibly multiple edges) on vertices {0, . . . , l}, for
l ≥ 1, and edge weights w(e) ∈ Z>0, satisfying:

1. If i→ j is an edge then i < j.

2. Every edge i e→ i+ 1 has weight w(e) ≥ 2. (No “short edges.”)

3. For each vertex j, 1 ≤ j ≤ l − 1, there is an edge “covering” it, i.e., there exists an edge i → k
with i < j < k.

Every template Γ comes with some numerical data associated with it. Its length l(Γ) is the number of
vertices minus 1. The product of squares of the edge weights is its multiplicity µ(Γ). Its cogenus δ(Γ) is

δ(Γ) =
∑
i

e→j

[
(j − i)w(e)− 1

]
. (3.2)

For 1 ≤ j ≤ l(Γ) let κj = κj(Γ) denote the sum of the weights of edges i → k with i < j ≤ k and
define

kmin(Γ) = max
1≤j≤l

(κj − j + 1). (3.3)
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This makes kmin(Γ) the smallest positive integer k such that Γ can appear in a floor diagram on {1, 2, . . . }
with left-most vertex k. Lastly, set

ε(Γ) =

{
1 if all edges arriving at l have weight 1,
0 otherwise. (3.4)

For a list of all templates with δ ≤ 2 see [FM, Figure 10].
A labeled floor diagram D with d vertices decomposes into an ordered collection (Γ1, . . . ,Γm) of

templates as follows: First, add an additional vertex d + 1 (> d) to D along with, for every vertex j of
D, 1 − div(j) new edges of weight 1 from j to the new vertex d + 1. The resulting floor diagram D′
has divergence 1 at every vertex coming from D. Now remove all short edges from D′, that is, all edges
of weight 1 between consecutive vertices. The result is an ordered collection of templates (Γ1, . . . ,Γm),
listed left to right, and it is not hard to see that

∑
δ(Γi) = δ(D). This process is reversible once we record

the smallest vertex ki of each template Γi (see Example 3.3).

Example 3.3 An example of the decomposition of a labeled floor diagram into templates is illustrated
below. Here, k1 = 2 and k2 = 4.

d d d d d2- - -j
*

3- ↔ d d d d d d2- - -j
*

3- -
-

j
* ↔ d d d d d d( )

2- 3-
-

To each template Γ we associate a polynomial that records the number of “markings of Γ:” For k ∈ Z>0

let Γ(k) denote the graph obtained from Γ by first adding k+ i− 1−κi short edges connecting i− 1 to i,
for 1 ≤ i ≤ l(Γ), and then subdividing each edge of the resulting graph by introducing one new vertex for
each edge. By [FM, Lemma 5.6] the number of linear extensions (up to equivalence) of the vertex poset
of the graph Γ(k) extending the vertex order of Γ is a polynomial in k, if k ≥ kmin(Γ), which we denote
by P (Γ, k) (see [FM, Figure 10]). The number of markings of a labeled floor diagram D decomposing
into templates (Γ1, . . . ,Γm) is then

ν(D) =

m∏
i=1

P (Γi, ki), (3.5)

where ki is the smallest vertex of Γi in D. The algorithm is based on

Theorem 3.4 ([FM], (5.13)) The Severi degreeNd,δ , for d, δ ≥ 1, is given by the template decomposition
formula ∑

(Γ1,...,Γm)

m∏
i=1

µ(Γi)

d−l(Γm)+ε(Γm)∑
km=kmin(Γm)

P (Γm, km) · · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P (Γ1, k1), (3.6)

where the first sum is over all ordered collections of templates (Γ1, . . . ,Γm), for all m ≥ 1, with∑m
i=1 δ(Γi) = δ, and the sums indexed by ki, for 1 ≤ i < m, are over kmin(Γi) ≤ ki ≤ ki+1 − l(Γi),

Expression (3.6) can be evaluated symbolically, using the following two lemmata. The first is Faul-
haber’s formula [Knu93] from 1631 for discrete integration of polynomials. The second treats lower
limits of iterated discrete integrals and its proof is straightforward. Here Bj denotes the jth Bernoulli
number with the convention that B1 = + 1

2 .

Lemma 3.5 ([Knu93]) Let f(k) =
∑d
i=0 cik

i be a polynomial in k. Then, for n ≥ 0,

F (n)
def
=

n∑
k=0

f(k) =

d∑
s=0

cs
s+ 1

s∑
j=0

(
s+ 1

j

)
Bjn

s+1−j . (3.7)
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Data: The cogenus δ.
Result: The node polynomial Nδ(d).
begin

Generate all templates Γ with δ(Γ) ≤ δ;
Nδ(d)← 0;
forall the ordered collections of templates Γ̃ = (Γ1, . . . ,Γm) with

∑m
i=1 δ(Γi) = δ do

i← 1;
Q1 ← 1;
while i ≤ m do

ai ← max
(
kmin(Γi), kmin(Γi−1) + l(Γi−1), . . . , kmin(Γ1) + l(Γ1) + · · ·+ l(Γi−1)

)
;

end
while i ≤ m− 1 do

Qi+1(ki+1)←
∑ki+1−l(Γi)
ki=ai

P (Γi, ki)Qi(ki);
i← i+ 1;

end
QΓ̃(d)←

∑d−l(Γm)+ε(Γm)
km=am

P (Γm, km)Qm(km);

QΓ̃(d)←
∏m
i=1 µ(Γi) ·QΓ̃(d);

Nδ(d)← Nδ(d) +QΓ̃(d);
end

end
Algorithm 1: Algorithm to compute node polynomials.

In particular, deg(F ) = deg(f) + 1.

Lemma 3.6 Let f(k1) and g(k2) be polynomials in k1 and k2, respectively, and let a1, b1, a2, b2 ∈ Z≥0.
Furthermore, let F (k2) =

∑k2−b1
k1=a1

f(k1) be a discrete anti-derivative of f(k1), where k2 ≥ a1 + b1.
Then, for n ≥ max(a1 + b1 + b2, a2 + b2),

n−b2∑
k2=a2

g(k2)

k2−b1∑
k1=a1

f(k1) =

n−b2∑
k2=max(a1+b1,a2)

g(k2)F (k2). (3.8)

Using these results Algorithm 1 can be used to compute node polynomials Nδ(d) for an arbitrary
number of nodes δ. The first step, the template enumeration, is explained in [Blo, Section 3].

Proof of Correctness of Algorithm 1.: The algorithm is a direct implementation of Theorem 3.4.
The m-fold discrete integral is evaluated symbolically, one sum at a time, using Faulhaber’s formula
(Lemma 3.5). The lower limit ai of the ith sum is given by an iterated application of Lemma 3.6. 2

As Algorithm 1 is stated its termination in reasonable time is hopeless for δ ≥ 8 or 9. The novelty of
this section, together with an explicit formulation, is how to implement the algorithm efficiently. This is
explained in Remark 3.7.

Remark 3.7 The running time of the algorithm can be improved vastly as follows: As the limits of sum-
mation in (3.6) only depend on kmin(Γi), l(Γi) and ε(Γm), we can replace the template polynomials
P (Γi, ki) by

∑
P (Γi, ki), where the sum is over all templates Γi with prescribed (kmin, l, ε). After this

transformation the first sum in (3.6) is over all combinations of those tuples. This reduces the computation



Computing Node Polynomials for Plane Curves 187

drastically as, for example, the 167885753 templates of cogenus 14 make up only 343 equivalence classes.
Also, in (3.6) we can distribute the template multiplicities µ(Γi) and replace P (Γi, ki) by µ(Γi)P (Γi, ki)
and thereby eliminate

∏
µ(Γi). Another speed-up is to compute all discrete integrals of monomials using

Lemma 3.5 in advance.

The generation of the templates is the bottleneck of the algorithm. Their number grows rapidly with δ
as can be seen from Figure 1. However, their generation can be parallelized easily (see [Blo]).

Algorithm 1 has been implemented in Maple. Computing N14(d) on a machine with two quad-core
Intel(R) Xeon(R) CPU L5420 @ 2.50GHz, 6144 KB cache, and 24 GB RAM took about 70 days.

Remark 3.8 We can use Algorithm 1 to compute the values of the Severi degrees Nd,δ for prescribed
values of d and δ. After we specify a degree d and a number of nodes δ all sums in our algorithm become
finite and can be evaluated numerically. See [Blo, Appendix B] for all values of Nd,δ for 0 ≤ δ ≤ 14 and
1 ≤ d ≤ 13.

δ # of templates δ # of templates δ # of templates
1 2 6 1711 11 2233572
2 7 7 7135 12 9423100
3 26 8 29913 13 39769731
4 102 9 125775 14 167885753
5 414 10 529755

Fig. 1: The number of templates with cogenera δ ≤ 14.

4 Threshold Values
S. Fomin and G. Mikhalkin [FM, Theorem 5.1] proved polynomiality of Severi degrees Nd,δ in d, for
fixed δ, if d is sufficiently large. More precisely, they showed that Nδ(d) = Nd,δ for d ≥ 2δ. Here we
show that their threshold can be improved to d ≥ δ (Theorem 1.3).

We need the following elementary observation about robustness of discrete anti-derivatives of polyno-
mials whose continuous counterpart is the well known fact that

∫ a−1

a−1
f(x)dx = 0.

Lemma 4.1 For a polynomial f(k) and a ∈ Z>0 let F (n) =
∑n
k=a f(k) be the polynomial in n uniquely

determined by large enough values of n. (F (n) is a polynomial by Lemma 3.5.) Then F (a − 1) = 0. In
particular,

∑n
k=a f(k) is a polynomial in n, for n ≥ a− 1.

The lemma is non-trivial as, in general, F (a− 2) 6= 0.

Proof of Theorem 1.3 (Sketch): This follows from Equation (3.6) and repeated application of Lemma 3.6
and Lemma 4.1 as d ≥ δ simultaneously implies

d ≥l(Γm)− ε(Γm) + kmin(Γm)− 1,

d ≥l(Γm)− ε(Γm) + l(Γm−1) + kmin(Γm−1)− 2,

...
d ≥l(Γm)− ε(Γm) + l(Γm−1) + · · ·+ l(Γ1) + kmin(Γ1)−m,

(4.1)

for all collections of templates (Γ1, . . . ,Γm) with
∑m
i=1 δ(Γi) = δ. For details see [Blo]. 2
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5 Coefficients of Node Polynomials
The goal of this section is to present an algorithm for the computation of the coefficients of Nδ(d), for
general δ. The algorithm can be used to prove Theorem 1.2 and thereby confirm and extend a conjecture
of P. Di Francesco and C. Itzykson in [DFI95] where they conjectured the 7 terms of Nδ(d) of largest
degree.

Our algorithm should be able to find formulas for arbitrarily many coefficients of Nδ(d). We prove
correctness of our algorithm in this section. The algorithm rests on the polynomiality of solutions of
certain polynomial difference equations (see [Blo, (5.7)]).

First, we fix some notation building on terminology of Section 3. By Remark 3.7 we can replace the
polynomials P (Γ, k) in (3.6) by the product µ(Γ)P (Γ, k), thereby removing the product

∏
µ(Γi) of the

template multiplicities. In this section we write P ∗(Γ, k) for µ(Γ)P (Γ, k). For integers i ≥ 0 and a ≥ 0
let Mi(a) denote the matrix of the linear map

f(k) 7→
∑

Γ:δ(Γ)=i

n−l(Γ)∑
k=kmin(Γ)

P ∗(Γ, k) · f(k), (5.1)

where f(k) = c0k
a+c1k

a−1+· · · , a polynomial of degree a, is mapped to the polynomialMi(a)(f(k)) =
d0n

a+i+1+d1n
a+i+· · · in n. (By Lemma 3.5 and the proof of Lemma 5.1 the image has degree a+i+1.)

Hence Mi(a)c = d. Similarly, define M end
i (a) to be the matrix of the linear map

f(k) 7→
∑

Γ:δ(Γ)=i

n−l(Γ)+ε(Γ)∑
k=kmin(Γ)

P ∗(Γ, k) · f(k). (5.2)

Later we will consider square sub-matrices of Mi(a) and M end
i (a) by restriction to the first few rows

and columns which will be denoted Mi(a) and M end
i (a) as well. Note that Mi(a) and M end

i (a) are lower
triangular. The following observation is key to our algorithm.

Lemma 5.1 The first a+ i rows of Mi(a) and M end
i (a) are independent of the lower limits of summation

in (5.1) and (5.2), respectively.

The basic idea of the algorithm is that templates with higher cogenera do not contribute to higher
degree terms of the node polynomial. With this in mind we define, for each finite collection (Γ1, . . . ,Γm)
of templates, its type τ = (τ2, τ3, . . . ), where τi is the number of templates in (Γ1, . . . ,Γm) with cogenus
equal to i, for i ≥ 2. Note that we do not record the number of templates with cogenus equal to 1.

To collect the contributions of all collections of templates with a given type τ , let τ = (τ2, τ3, . . . ) and
fix δ ≥

∑
j≥2 τj (so that there exist template collections (Γ1, . . . ,Γm) of type τ with

∑
δ(Γj) = δ). We

define two (column) vectors Cτ (δ) and Cend
τ (δ) as the coefficient vectors, listed in decreasing order, of

the polynomials ∑
(Γ1,...,Γm)

n−l(Γm)∑
km=kmin(Γm)

P ∗(Γm, km) · · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P ∗(Γ1, k1) (5.3)

and ∑
(Γ1,...,Γm)

n−l(Γm)+ε(Γ)∑
km=kmin(Γm)

P ∗(Γm, km)

km−l(Γm−1)∑
km−1=kmin(Γm−1)

· · ·
k2−l(Γ1)∑

k1=kmin(Γ1)

P ∗(Γ1, k1) (5.4)
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Data: A positive integer N .
Result: The coefficient vector C of the first N coefficients of Nδ(d).
begin

Compute all templates Γ with δ(Γ) ≤ N ;
forall the types τ with def(τ) < N do

Compute initial values Cτ (δ0(τ)) using (5.3), with δ0(τ) as in Proposition 5.3;
Solve recursion (5.5) for first N − def(τ) coordinates of Cτ (δ);
Set

Cend
τ (δ)←

∑
i:τi 6=0

M end
i

(
2δ − i− 1− def(τ)

)
Cτ↓i(δ − i)

+M end
1

(
2δ − 2− def(τ)

)
Cτ (δ − 1);

end
C ← 0;
forall the types τ with def(τ) < N do

Shift the entries of Cend
τ (δ) down by def(τ);

C ← C + shifted Cend
τ (δ);

end
end

Algorithm 2: Computation of the leading coefficients of the node polynomial.

in the indeterminate n, where the respective first sums are over all ordered collections of templates of type
τ .

Before we can state the main recursion we need two more notations. For a type τ = (τ2, τ3, . . . ) and
i ≥ 2 with τi > 0 define a new type τ↓i via (τ↓i)i = τi − 1 and (τ↓i)j = τj for j 6= i. Furthermore, let
def(τ) =

∑
j≥2(j − 1)τj be the defect of τ . The following lemma justifies this terminology. Its proof is

elementary and can be found in [Blo].

Lemma 5.2 The polynomials (5.3) and (5.4) are of degree 2δ − def(τ).

The last lemma makes precise which collections of templates contribute to which coefficients ofNδ(d).
Namely, the first N coefficients of Nδ(d) of largest degree depend only on collections of templates with
types τ such that def(τ) < N . The following recursion is the heart of the algorithm.

Proposition 5.3 For every type τ and integer δ large enough, it holds that

Cτ (δ) =
∑
i:τi 6=0

Mi

(
2δ − i− 1− def(τ)

)
Cτ↓i(δ − i)

+M1

(
2δ − 2− def(τ)

)
Cτ (δ − 1).

(5.5)

More precisely, if we restrict all matrices Mi to be square of size N − def(τ) and all Cτ to be vectors of
length N − def(τ), then recursion (5.5) holds for

δ ≥ max

⌈N + 1

2

⌉
,
∑
j≥2

jτj

 . (5.6)
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We propose Algorithm 2 for the computation of the coefficients of the node polynomial Nδ(d). Due to
spacial constrains we explain the step which requires a solution of recursion (5.5) in [Blo].

As in Section 3 (Remark 3.7), Algorithm 2 can be improved significantly by summing the template
polynomials P (Γ, k) for templates Γ with fixed

(
kmin(Γ), l(Γ), ε(Γ)

)
in advance. Algorithm 2 has been

implemented in Maple. Once the templates are known the bottleneck of the algorithm is the initial value
computation. With an improved implementation this should become faster than the template enumeration.
Hence we expect Algorithm 2 to be able to compute the first 14 terms of Nδ(d) in reasonable time.
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[BM07] E. Brugallé and G. Mikhalkin. Enumeration of curves via floor diagrams. C. R. Math. Acad.
Sci. Paris, 345(6):329–334, 2007.
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