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Abstract. A finite subgroup G of GL(n,C) is involutory if the sum of the dimensions of its irreducible complex
representations is given by the number of absolute involutions in the group, i.e. elements g ∈ G such that gḡ = 1,
where the bar denotes complex conjugation. A uniform combinatorial model is constructed for all non-exceptional
irreducible complex reflection groups which are involutory including, in particular, all infinite families of finite irre-
ducible Coxeter groups. If G is a classical Weyl group this result is much refined in a way which is compatible with
the Robinson-Schensted correspondence on involutions.

Résumé. Un sousgroupe fini G de GL(n,C) est dit involutoire si la somme des dimensions de ses representations
irréductibles complexes est donné par le nombre de involutions absolues dans le groupe, c’est-a-dire le nombre de
éléments g ∈ G tels que gḡ = 1, où le bar dénotes la conjugaison complexe. Un model combinatoire uniform est
construit pour tous les groupes de réflexions complexes irréductibles qui sont involutoires, en comprenant, toutes les
familles de groupes de Coxeter finis irreductibles. Si G est un groupe de Weyl ce resultat peut se raffiner dans une
manière compatible avec la correspondence de Robinson-Schensted sur les involutions.
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1 Introduction
In their paper [7] Bernstein, Gelfand and Gelfand introduced the problem of the construction of a model
of a group G, i.e. a representation which is the direct sum of all irreducible complex representations of
G with multiplicity one. We can find several constructions of models in the literature for the symmetric
group [2, 3, 13, 15, 16, 17] and for some other special classes of complex reflection groups [1, 4, 5, 6].
A complex reflection group, or simply a reflection group, is a subgroup of GL(V ), where V is a fi-
nite dimensional complex vector space, generated by reflections, i.e. by elements of finite order which
fix a hyperplane pointwise. There is a well-known classification of irreducible reflection groups due to
Shephard-Todd [20] including an infinite family G(r, p, n) depending on 3 parameters together with 34
exceptional cases. As mentioned above one can find in the literature models for some reflection groups
such as the wreath product groups G(r, 1, n) as well as the groups G(2, 2, n), which are better known as
the Weyl groups of type D.
If G is a finite subgroup of GL(n,C), a specialization of a theorem of Bump and Ginzburg [8] gives a
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combinatorial description of the character of a model of the group G if its dimension is given by the num-
ber of absolute involutions of G (i.e. elements g ∈ G such that gḡ = 1). We say that a group satisfying
this condition is involutory. It turns out that a complex reflection group G(r, p, n) is involutory if and
only if GCD(p, n) = 1, 2 and that one can construct an explicit model for all these groups in a uniform
way. This construction involves in a crucial way the theory of projective reflection groups developed in
[9]. Indeed a byproduct of this construction is also a model for some related projective reflection groups.

The model of the groupG considered in this paper has a basis indexed by the absolute involutions of the
dual group G∗ (see §2) and it is clear from the definition that the subspace spanned by the basis elements
indexed by the absolute involutions in a symmetric conjugacy class is a submodule. IfG is a classical Weyl
group we show that any such submodule is given by the sum of all irreducible representations indexed
by the shapes corresponding to the indexing involutions by means of the projective Robinson-Schensted
correspondence. This decomposition becomes particularly interesting for Weyl groups of type D with
respect to the so-called split representations.

The paper is organized as follows. In §2 we collect the notation and the preliminary results which are
needed. In §3 we classify all projective reflection groups of the formG(r, p, q, n) (see §2 for the definition)
which are involutory. In §4 we show an explicit model for all involutory reflection groups. In §5 a first
decomposition is given for the model of the generic involutory reflection group G(r, p, n), which reflects
the existence of the split representations. In §6 and §7 a finer decomposition is given for the groups of
type Bn and Dn.

2 Notation and preliminaries
In this section we collect the notations that are used in this paper as well as the preliminary results that are
needed.

We let Z be the set of integer numbers and N be the set of nonnegative integer numbers. For a, b ∈ Z,
with a ≤ b we let [a, b]

def
= {a, a + 1, . . . , b} and, for n ∈ N we let [n]

def
= [1, n]. For r ∈ N we let

Zr
def
= Z/rZ. If r ∈ N, r > 0, we denote by ζr the primitive r-th root of unity ζr

def
= e

2πi
r .

The main subject of this work are the complex reflection groups, or simply reflection groups, with
particular attention to their combinatorial representation theory. The most important example of a complex
reflection group is the group of permutations of [n], known as the symmetric group, that we denote by Sn.
We know by the work of Shephard-Todd [20] that all but a finite number of irreducible reflection groups
are the groupsG(r, p, n) that we are going to describe. IfA is a matrix with complex entries we denote by
|A| the real matrix whose entries are the absolute values of the entries of A. The wreath product groups
G(r, n) = G(r, 1, n) are given by all n× n matrices satysfying the following conditions:

• the non-zero entries are r-th roots of unity;

• there is exactly one non-zero entry in every row and every column (i.e. |A| is a permutation matrix).

If p divides r then the reflection group G(r, p, n) is the subgroup of G(r, n) given by all matrices
A ∈ G(r, n) such that detA

det |A| is a r
p -th root of unity.

Following [9], a projective reflection group is a quotient of a reflection group by a scalar subgroup. Ob-
serve that a scalar subgroup of G(r, n) is necessarily a cyclic group of the form Cq =< ζqI > of order q,
for some q|r.
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It is also easy to characterize all possible scalar subgroups of the groups G(r, p, n): in fact the scalar
matrix ζqI belongs to G(r, p, n) if and only if q|r and pq|rn. In this case we let G(r, p, q, n)

def
=

G(r, p, n)/Cq . If G = G(r, p, q, n) then the projective reflection group G∗
def
= G(r, q, p, n), where

the roles of the parameters p and q are interchanged, is always well-defined. We say that G∗ is the dual
of G and we refer the reader to [9] for the main properties of this duality. In this work we will see another
important occurrence of the relationship between a group G and its dual G∗.

If the non-zero entry in the i-th row of g ∈ G(r, n) is ζzir we let zi(g)
def
= zi ∈ Zr and say that

z1(g), . . . , zn(g) are the colors of g. We can also note that g belongs to G(r, p, n) if and only if z(g)
def
=∑

zi(g) ≡ 0 mod p.
For g ∈ G(r, n) we let |g| ∈ Sn be the permutation defined by |g|(i) = j if gi,j 6= 0. We may observe

that an element g ∈ G(r, n) is uniquely determined by the permutation |g| and by its colors zi(g) for all
i ∈ [n].
If g ∈ G(r, n) we let ḡ ∈ G(r, n) be the complex conjugate of g. We can also observe that ḡ is determined
by the conditions |ḡ| = |g| and zi(ḡ) = −zi(g) for all i ∈ [n]. Since the bar operator stabilizes the cyclic
subgroup Cq =< ζqI > it is well-defined also on the projective reflection groups G(r, p, q, n).
In [9] we can find a parametrization of the irreducible representations of the groups G(r, p, q, n), that
we briefly recall for the reader’s convenience. Given a partition λ = (λ1, . . . , λl) of n, the Ferrers
diagram of shape λ is a collection of boxes, arranged in left-justified rows, with λi boxes in row i. We
denote by Fer(r, n) the set of r-tuples (λ(0), . . . , λ(r−1)) of Ferrers diagrams such that

∑
|λ(i)| = n. If

µ ∈ Fer(r, n) we define the color of µ by z(µ) =
∑
i i|λ(i)| and, if p|r we let Fer(r, p, n)

def
= {µ ∈

Fer(r, n) : z(µ) ≡ 0 mod p}. If q ∈ N is such that q|r and pq|nr then the cyclic group Cq acts on
Fer(r, p, n) by a shift of r/q positions of its elements (see [9, Lemma 6.1]). Paralleling the definition for
the projective reflection groups we denote the corresponding quotient set by Fer(r, p, q, n). We denote by
(Cp)µ the stabilizer of µ in Cp. For example, if

µ =

[
, , ,

]
and µ′ =

[
, , ,

]
,

then µ and µ′ are elements in Fer(4, 2, 8) which represent the same class in Fer(4, 2, 4, 8). We also
observe that in this case the stabilizer in C4(µ) = C4(µ′) is the cyclic group C2 of order 2.

Proposition 2.1 The irreducible complex representations of G(r, p, q, n) can be parametrized by pairs
(µ, ρ), where µ ∈ Fer(r, q, p, n) and ρ ∈ (Cp)µ, where (Cp)µ is the stabilizer of any element in the class
µ by the action of Cp.

If µ ∈ Fer(r, n) we denote by ST µ the set of all possible fillings of the boxes in µ with all the numbers
from 1 to n appearing once, in such way that rows are increasing from left to right and columns are
incresing from top to bottom in every single Ferrers diagram of µ. We let ST (r, n)

def
= ∪µ∈Fer(r,n)ST µ

and we define ST (r, p, n) and ST (r, p, q, n) as already done for Ferrers diagrams. For example, the two
elements

T =

[
, , ,2 8

4
1 3 5

7
6
]

and T ′ =

[
, , ,6 2

4
8 1 3

7
5
]

belong to ST (4, 2, 8) and represent the same class in ST (4, 2, 4, 8).
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The classical Robinson-Schensted correspondence [22, §7.11] for the symmetric groups was general-
ized to the Stanton-White correspondence [23] for the wreath products G(r, n). A further generalization
of the correspondence, which is valid for all projective reflection groupsG(r, p, q, n), is explicitely shown
in [9, §10]. We refer to this correspondence as the projective Robinson-Schensted correspondence. We do
not describe this correspondence explicitly, but we briefly state it for future reference.

Theorem 2.2 There exists an explicit map

G(r, p, q, n) −→ ST (r, p, q, n)× ST (r, p, q, n)

g 7−→ [P (g), Q(g)],

satisfying the following properties:

1. P (g) and Q(g) have the same shape in Fer(r, p, q, n) for all g ∈ G(r, p, q, n);

2. if P,Q ∈ ST (r, p, q, n) have the same shape µ ∈ Fer(r, p, q, n) then

|{g ∈ G(r, p, q, n) : P (g) = P and Q(g) = Q}| = |(Cq)µ|,

(Cq)µ being, as above, the stabilizer in Cq of any element in the class µ.

If G is a finite group we let Irr(G) be the set of irreducible complex representations of G. If M is a
complex vector space and ρ : G → GL(M) is a representation of G we say that the pair (M,ρ) is a
G-model if the character χρ is the sum of the characters of all irreducible representations of G over C,
i.e. M is isomorphic as a G-module to the direct sum of all irreducible modules of G with multiplicity
one. Sometimes we simply say that M is a G-model if we do not need to know the map ρ explicitly or
if it is clear from the context. It is clear that two G-models are always isomorphic as G-modules, and so
we can also speak about “the” G-model. The last result in this section is a beautiful theorem of Bump
and Ginzburg, which generalizes a classical theorem of Frobenius and Schur [11], and allows us in some
cases to determine the character of the model of a finite group if we know its dimension.

Theorem 2.3 ([8], Theorem 7) Let G be a finite group, τ ∈ Aut(G) with τ2 = 1 and M be a G-model.
Assume that

dim(M) = #{g ∈ G : gτ(g) = z},
where z is a central element in G such that z2 = 1. Then

χM (g) = #{u ∈ G : uτ(u) = gz}.

3 Involutory projective reflection groups
In this section we start the investigation of a model for the projective reflection groups G(r, p, q, n).
The main result here is the characterization of the groups G(r, p, q, n) such that the dimension of a
G(r, p, q, n)-model is equal to the number of absolute involutions in G(r, p, q, n). In these groups we
can directly apply Theorem 2.3 to obtain a combinatorial description of the character of the model. The
next result relates the dimension of a model with the projective Robinson-Schensted correspondence.

Proposition 3.1 Let G = G(r, p, q, n). The dimension of a G-model is equal to the number of elements
g in the dual group G∗ which correspond by means of the projective Robinson-Schensted correspondence
to pairs of the form [P, P ], for some P ∈ ST (r, q, p, n).
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The next target is to show that absolute involutions in G∗ correspond to pairs of the form [P, P ] under
the projective Robinson-Schensted correspondence, and then to characterize those groups for which the
converse holds, i.e. the groups where the fact that v 7→ [P, P ] implies that v is an absolute involution.

If g ∈ G(r, p, q, n), we say that g is a symmetric element if any (equivalently every) lift of g in G(r, n)
is a symmetric matrix. We similarly define antisymmetric elements in G(r, p, q, n). Observe that we
can have antisymmetric elements only if r is even. The following result is a characterization of absolute
involutions in G(r, p, q, n).

Lemma 3.2 Let g ∈ G(r, p, q, n). Then g is an absolute involution, i.e. gḡ = 1, if and only if either g is
symmetric or q is even and g is antisymmetric.

We denote by I(r, p, q, n) the set of absolute involutions in G(r, p, q, n).

Theorem 3.3 Let G = G(r, p, q, n). Then∑
φ∈Irr(G)

dimφ ≥ |I(r, q, p, n)|

and equality holds if and only if either GCD(p, n) = 1, 2, or GCD(p, n) = 4 and r ≡ p ≡ q ≡ n ≡ 4
mod 8.

We conclude this section by observing that a projective reflection group G = G(r, p, q, n) and its dual
group G∗ always have the same number of absolute involutions. This fact will be the keypoint in the
description of the character of the model for the groups satisfying the conditions of Theorem 3.3.

Proposition 3.4 We always have |I(r, p, q, n)| = |I(r, q, p, n)|.

The proof of this proposition is by direct computation. A “nice” bijective proof is desirable.
We say that a projective reflection group G = G(r, p, q, n) is involutory if the dimension of a model

of G is equal to the number of absolute involutions in G. By Proposition 3.4 we have that G(r, p, q, n) is
involutory if and only if it satisfies the conditions in Theorem 3.3.
If we restrict our attention to standard reflection groups we may note that a group G(r, p, n) is involutory
if and only if GCD(p, n) = 1, 2. In particular all infinite families of finite irreducible Coxeter groups
(these are An = G(1, 1, n), Bn = G(2, 1, n), Dn = G(2, 2, n), I2(r) = G(r, r, 2)) are involutory. In the
next section we establish a unified construction of a model for all involutory reflection groups (and the
corresponding quotients).

The fact that G(r, p, n) is involutory if GCD(p, n) = 1, 2 can also be deduced from known results in
the following alternative way. From the characterization of automorphism of complex reflection groups
appearing in [18, §1] one can deduce that, under these hypothesis, any irreducible representation φ of
G(r, p, n) can be realized by a matrix representation φ : G(r, p, n) → GLn(C) satisfying φ(ḡ) = φ(g).
Then a straightforward application of the twisted Schur-Frobenius theory developed in [14] implies that
G(r, p, n) is involutory.

4 Models
From the results of the previous section we have that the dimension of the model of an involutory reflection
groupG, is equal to the number of absolute involutions ofG and also to the number of absolute involutions
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of G∗. In this section we show how we can give the structure of a G-model to the formal vector space
having a basis indexed by the absolute involutions in G∗.

Unless otherwise stated, we let G = G(r, p, n) be an involutory reflection group, i.e. such that
GCD(p, n) = 1, 2. By Theorem 2.3 we have that the character χ of a G-model is given by

χ(g) = |{u ∈ G : uū = g}|.

Once we have an algebraic-combinatorial description of the dimension and of the character of a model for
G(r, p, n) we have two of the main ingredients of the proof of our main result. Before stating it, we need
some more definitions. If σ, τ ∈ Sn with τ2 = 1 we let

Inv(σ) = {{i, j} : (j − i)(σ(j)− σ(i)) < 0} and Pair(τ) = {{i, j} : τ(i) = j 6= i}.

If g ∈ G(r, p, n) and v ∈ I(r, p, n)∗ we let

s(g, v) = #
(
Inv(|g|) ∩ Pair(|v|)

)
a(g, v) = z1(ṽ)− z|g|−1(1)(ṽ) ∈ Zr

where ṽ is any lift of v in G(r, n). Note that since a(g, v) is the difference of two colors of ṽ it is
well-defined. Furthermore, given g, g′ ∈ G(r, n), we let

< g, g′ >=
∑
i

zi(g)zi(g
′) ∈ Zr.

Also, it is easy to see that, given g ∈ G = G(r, p, n), the function of the dual group G∗ = G(r, 1, p, n)

Tg : G(r, 1, p, n)→ Zr
g′ 7→< g, g′ >

is well defined, i.e., taken any two lifts ḡ and ĝ of g′ in G(r, n), we have < g, ḡ >≡< g, ĝ > mod r.
We denote by I(r, p, n)∗ = I(r, 1, p, n) the set of absolute involutions in G∗ and we recall (Lemma 3.2)
that these elements can be either symmetric or antisymmetric.

Theorem 4.1 Let GCD(p, n) = 1, 2 and let

M(r, p, n)∗
def
=

⊕
v∈I(r,p,n)∗

CCv

and % : G(r, p, n)→ GL(M(r, p, n)∗) be defined by

%(g)(Cv)
def
=

{
ζ<g,v>r (−1)s(g,v)C|g|v|g|−1 if v is symmetric
ζ<g,v>r ζ

a(g,v)
r C|g|v|g|−1 if v is antisymmetric.

(1)

Then (M(r, p, n)∗, %) is a G(r, p, n)-model.

The proof of this theorem consists in the explicit and rather involved computation of the character of this
representation, and in verifying that this character agrees with the character described in Theorem 2.3.

If q|r and pq|rn (i.e. the group G(r, p, q, n) is defined) we can consider the submodule M(r, q, p, n) ⊆
M(r, p, n)∗ spanned by all elementsCv such that v ∈ I(r, q, p, n). The next result shows thatM(r, q, p, n)
is the sum of all irreducible representations of G(r, p, n) indexed by elements µ ∈ Fer(r, q, p, n).
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Corollary 4.2 Let GCD(p, n) = 1, 2. Then the pair (M(r, q, p, n), %), where

% : G(r, p, q, n)→ GL(M(r, q, p, n))

is defined as in Theorem 4.1, is a G(r, p, q, n)-model.

We will see in the following sections several important generalizations of these results if the group G is a
classical Weyl group.

5 Splitting split representations
If GCD(p, n) = 2, there is another natural decomposition ofM(r, p, n)∗ into twoG(r, p, n)-submodules.
The submodule Sym(r, p, n)∗ spanned by symmetric elements and the submodule Asym(r, p, n)∗ spanned
by antisymmetric elements. Recall from Proposition 2.1 that an irreducible representation µ of G(r, n)
when restricted to G(r, p, n) either remains irreducible if the stabilizer (Cp)µ is trivial, or splits into two
irreducible representations of G(r, p, n) if (Cp)µ has two elements (note that there are no other possi-
bilities since GCD(p, n) = 2), and that all irreducible representations of G(r, p, n) are obtained in this
way.

Theorem 5.1 Let χ be the character of Sym(r, p, n)∗ and φ be an irreducible representation of G(r, n).
If φ does not split inG(r, p, n) then< χ,χφ >= 1. If φ splits into two irreducible representations φ+, φ−

of G(r, p, n) then
< χ,χφ+ >= 1⇐⇒< χ,χφ− >= 0.

If we restrict our attention to the case of Weyl groups Dn = G(2, 2, n), the proof of this result is based on
the following observation which is a direct consequence of the explicit formulas for the split characters of
the groups Dn (see [21, 19]).

Proposition 5.2 Let g ∈ Sn be of cycle-type 2α. Then one can label the split representations of Dn by
(λ, λ)+ and (λ, λ)− so that ∑

λ`n/2

(χ(λ,λ)+ − χ(λ,λ)−)(g) = 2`(α)χM (α),

where χM is the character of the model for Sn/2.

Consider now the two representations of Dn (Asym(2, 2, n)∗, ρ+) and (Asym(2, 2, n)∗, ρ−), given by

ρ+(g)(Cv)
def
= (−1)<g,v>C|g|v|g|−1 , ρ−(g)(Cv)

def
= (−1)<g,v>(−1)a(g,v)C|g|v|g|−1

(notice that ρ−(g) = %(g)|Asym(2,2,n)∗ ). An explicit computation of the characters of the representations
ρ+ and ρ− and Proposition 5.2 show that∑

λ`n/2

χ(λ,λ)+(g)−
∑
λ`n/2

χ(λ,λ)−(g) = χρ+(g)− χρ−(g) ∀ g ∈ Dn.

Comparing the dimensions of the representations involved, and recalling the linear independence of char-
acters, we can conclude that

χρ+(g) =
∑
λ`n/2

χ(λ,λ)+(g) and χρ−(g) =
∑
λ`n/2

χ(λ,λ)−(g) :

this means that (Asym(2, 2, n)∗, %) ∼=
⊕

λ`n/2(λ, λ)−, as claimed.
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6 Refinement for Bn

Let us have a closer look at the model (M,%) for G = G(r, n). There is an immediate decomposition of
M into submodules that we are going to describe.

Let g, h ∈ G(r, n). We say that g and h are Sn-conjugate if there exists σ ∈ Sn such that g = σhσ−1.
If c is an Sn-conjugacy class of absolute involutions in G we denote by M(c) the subspace of M spanned
by the elements in c, and it is clear that

M =
⊕
c

M(c) as G-modules,

where the sum runs through all Sn-conjugacy classes of absolute involutions. It is natural to ask if we can
describe the irreducible decomposition of the submodules M(c). This decomposition is known if G is
the symmetric group Sn (see [1, 13]). We will focus on the case of Bn and we show that the irreducible
decompositions of these submodules are well behaved with respect to the RS correspondences, a problem
which was raised in [2]. The meaning of ’well behaved with respect to the RS correspondence’ will be
clarified in Theorem 6.1.

Let v be an involution of Bn. We denote by R(v) the element of Fer(2, n) which is the shape of the
tableaux of the image of v via the Robinson-Schensted correspondence. Namely R(v)

def
= (λ, µ), where

v
RS−→ [P, P ], P ∈ ST (2, n), P of shape (λ, µ).

For notational convenience we letR(c) = ∪v∈cR(v). The main goal of this section is the following result.

Theorem 6.1 Let c be an Sn-conjugacy class of involutions in Bn. Then the following decomposition
holds:

M(c) ∼=
⊕

(λ,µ)∈R(c)

ρλ,µ.

In order to prove Theorem 6.1, first of all we need to parametrize the Sn-conjugacy classes of involutions
explicitly. With this purpose we let

• fix(v)
def
= #{i : i > 0 and v(i) = i}

• fix−(v)
def
= #{i : i > 0 and v(i) = −i}

• pair(v)
def
= #{(i, j) : 0 < i < j, v(i) = j and v(j) = i}

• pair−(v)
def
= #{(i, j) : 0 < i < j, v(i) = −j and v(j) = −i}.

Proposition 6.2 Two involutions v, w in Bn are Sn-conjugate if and only if

fix(v) = fix(w), pair(v) = pair(w),

fix−(v) = fix−(w), pair−(v) = pair−(w).

Furthermore, given an involution v in Bn, let R(v) = (λ, µ). Then λ has fix(v) odd columns and
fix(v) + 2 pair(v) boxes, while µ has fix−(v) odd columns and fix−(v) + 2 pair−(v) boxes.



Involutory reflection groups 223

We can thus name the Sn-conjugacy classes of the involutions of Bn in this way:

cf0,f1,p0,p1
def
= {v : fix(v) = f0; fix−(v) = f1; pair(v) = p0; pair−(v) = p1}.

The description given for the Sn-conjugacy classes ensures that the subspace M0 of M generated by the
involutions v ∈ Bn with fix(v) = fix−(v) = 0, is a Bn-submodule. The crucial step in the proof of
Theorem 6.1 is the following partial result regarding this submodule (we observe that in this case n is
necessarily even, n = 2m): M0 is the direct sum of all the irreducible representations of B2m indexed by
pairs of diagrams whose columns have an even number of boxes, each of such representations occurring
once. To show this we need the following argument which generalizes an idea appearing in [13].

Lemma 6.3 Let Πm be representations of B2m, m ranging in N. Then the following are equivalent:

a) for every m, Πm is the direct sum of all the irreducible representations of B2m indexed by pairs
of diagrams whose columns have an even number of boxes, each of such representations occurring
once;

b) for every m,

(b0) Π0 is unidimensional;

(b1) the following isomorphism holds:

Πm ↓B2m−1
∼= Πm−1 ↑B2m−1 ; (2)

(b2) the module Πm contains all the irreducible representations of B2m indexed by the pairs of
diagrams (12j , 12(m−j)), j ∈ [0,m], where 1k is the single Ferrers diagram with one column
of length k.

This lemma can be proved constructively by means of a generalization to Bn of the branching rule (see
[12]). The implication b)⇒ a) of the preceding lemma can be applied to the case Πm = M0.

The group B0 is the identity group so property b0) is trivially verified.
Let us denote by N0 the B2m−2-module constructed in the same way. To check property b1), we have

to show that
M0 ↓B2m−1

∼= N0 ↑B2m−1 . (3)

The following argument is used. LetMh
0 be the submodule ofM0 generated by the involutions v satisfying

fix(v) = fix−(v) = 0, pair(v) = h and pair−(v) = m − h. Each Mh
0 , once restricted to B2m−1, splits

into two submodules according to the color of 2m. We denote by Mh,+
0 the submodule of Mh

0 containing
involutions v such that z2m(v) = 0, and similarly for Mh,−

0 . So we have

M0 ↓B2m−1=

m⊕
h=0

(
Mh,+

0

⊕
Mh,−

0

)
.

One checks that Nh
0 ↑B2m−1∼= Mh+1,+

0 ⊕Mh,−
0 and property (b1) follows.

As for property (b2) one can proceed as follows. For any S ⊆ [2m] let CS =
∑
Cv , where the sum

is over all involutions v ∈ B2m with fix(v) = fix−(v) = 0 and such that zi(v) = 0 if and only if
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i ∈ S. Then one can check that the subspace spanned by all CS with |S| = 2h affords the represen-
tation parametrized by the single-rowed diagrams (2h, 2(n − h)). From this it is possible to derive the
representation (12h, 12(m−h)).

Let us now turn to the case of the general submodule M(c). For every k ∈ [0, n], let f0, f1, p0, p1 be
nonnegative integers such that f0 + f1 = k, 2(p0 + p1) = n − k. By means of Proposition 6.2 we have
to show that

M(cf0,f1,p0,p1) ∼=
⊕

(λ,µ)∈R(cf0,f1,p0,p1 )

%λ,µ,

where

R(cf0,f1,p0,p1) = {(λ, µ) such that λ ` f0 + 2p0, µ ` f1 + 2p1,

λ has f0 odd columns, µ has f1 odd columns}.

Generalizing the ideas developed for M0, one shows that

M(cf0,f1,p0,p1) ∼= IndB
n

Bn−(f0+f1)×Bf0+f1
(M0 ⊗ %ιf0 ,ιf1 ),

where M0 is the Bn−(f0+f1)-module constructed as above, and ιk is the single-rowed Ferrers diagram of
length k. This isomorphism can be achieved by standard representation theory, while the rest of the proof
can be carried out by applying the partial result obtained on M0 and a generalization of the Littlewood-
Richardson rule to the case of Bn.

Example 6.4 Let v ∈ B6 given by |v| = [6, 4, 3, 2, 5, 1] and z(v) = [1, 0, 0, 0, 1, 1]. Then f0 = f1 =
p0 = p1 = 1 and the Sn-conjugacy class c of v has 180 elements. Then the B6-module M(c) is given
by the sum of the irreducible representations indexed by (λ, µ) ∈ Fer(2, 6) such that both λ and µ are
partitions of 3 and have exactly one column of odd length. In particular

M(c) ∼= ρ(
,

) ⊕ ρ(
,

) ⊕ ρ(
,

) ⊕ ρ(
,

).

7 Refinement for Dn

We have already seen that in an involutory reflection group G(r, p, n) the submodule generated by the
antisymmetric absolute involutions Asym(r, p, n)∗ is isomorphic to the multiplicity-free sum of all the
irreducible representations ρ(λ,λ)− , while all the other irreducible representations of G(r, p, n) are af-
forded by Sym(r, p, n)∗. We will make use of what was proved for Bn to give a finer decomposition of
Sym(2, 2, n)∗ for the groups Dn.

Let v̄ be a symmetric involution of D∗n = Bn/ ± I and v and −v be its lifts in Bn. We also denote
by c̄ the Sn-conjugacy class of v̄ in D∗n and by c and c′ the Sn-conjugacy classes of v and −v in Bn.
Generalizing the notation used in §6 we let R(v̄) be the element of Fer(2, 1, 2, n) which is the shape of
the tableaux of the image of v̄ via the projective Robinson-Schensted correspondence. Namely R(v̄)

def
=

(λ, µ), where
v
RS−→ [P, P ], P ∈ ST (2, 1, 2, n), P of shape (λ, µ).

We also let
R(c̄) =

⋃
w̄∈c̄

R(w̄).
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One can verify that the restrictions of the Bn-modules M(c) and M(c′) to Dn are isomorphic. If v and
−v are not Sn-conjugate then a direct application of Theorem 6.1 provides

M(c̄) ∼=
⊕

(λ,µ)∈R(c̄)

ρλ,µ.

Note that in this case we obtain unsplit representations only sinceR(v) = (λ, µ) impliesR(−v) = (µ, λ).
If v and −v are Sn-conjugate, using Theorems 6.1 and 5.1 we can conclude that

M(c̄) ∼=
⊕

(λ,µ)∈R(c̄):
λ6=µ

ρλ,µ ⊕
⊕

(λ,λ)∈R(c̄)

ρ(λ,λ)+ .

Example 7.1 Let v ∈ B6 given by |v| = [6, 4, 3, 2, 5, 1] and z(v) = [1, 0, 0, 0, 1, 1]. Then c̄, the Sn-
conjugacy class of v̄, has 90 elements and the decomposition of the Dn-module M(c̄) is given by all
representations indexed by (λ, µ) ∈ Fer(2, 1, 2, 6) where both λ and µ are partitions of 3 and have
exactly one column of odd length, with the additional condition that if λ = µ the split representation to
be considered is (λ, λ)+. Therefore

M(c̄) ∼= ρ(
,

) ⊕ ρ(
,

)+ ⊕ ρ(
,

)+ .
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