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application to two classes with boundaries
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Abstract. Based on a construction of the first author, we present a general bijection between certain decorated plane
trees and certain orientations of planar maps with no counterclockwise circuit. Many natural classes of maps (e.g.
Eulerian maps, simple triangulations,...) are in bijection with a subset of these orientations, and our construction
restricts in a simple way on the subset. This gives a general bijective strategy for classes of maps. As a non-
trivial application of our method we give the first bijective proofs for counting (rooted) simple triangulations and
quadrangulations with a boundary of arbitrary size, recovering enumeration results found by Brown using Tutte’s
recursive method.

Résumé. En nous appuyant sur une construction du premier auteur, nous donnons une bijection générale entre certains
arbres décorés et certaines orientations de cartes planaires sans cycle direct. De nombreuses classes de cartes (par
exemple les eulériennes, les triangulations) sont en bijection avec un sous-ensemble de ces orientations, et notre
construction se spécialise de maniere simple sur le sous-ensemble. Cela donne un cadre bijectif général pour traiter les
familles de cartes. Comme application non-triviale de notre méthode nous donnons les premiéres preuves bijectives
pour I’énumération des triangulations et quadrangulations simples (enracinées) ayant un bord de taille arbitraire, et
retrouvons ainsi des formules de comptage trouvées par Brown en utilisant la méthode récursive de Tutte.
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1 Introduction

The enumeration of planar maps (connected graphs embedded on the sphere) has received a lot of attention
since the seminal work of Tutte in the 60’s [Tut63]. Tutte’s recursive method consists in translating the
decomposition of a class of maps (typically obtained by deleting an edge) into a functional equation sat-
isfied by the corresponding generating function. The translation usually requires an additional “catalytic”
variable, and the obtained functional equation is solved using the so-called “quadratic method” [GJ83|
sec.2.9] or its extensions [BMJO6]. The final result is, for many classes of maps, a strikingly simple
counting formula. For instance, the number of (rooted) maps with n edges is #‘i;m (2711) Tutte’s
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method has the advantage of being systematic, but is quite technical in the way of solving the equation
and does not give a combinatorial understanding of the simple-looking enumerative formulas.

As an alternative method, bijective constructions have been developed to obtain more direct combina-
torial proofs of the counting formulas, with nice algorithmic applications (random generation and asymp-
totically optimal encoding in linear time). The first bijections appeared in [CV81]] and later in [Sch9§]]
where direct bijections for several classes of maps are described. Typically bijections are from a class
of “decorated” plane trees to a class of maps and operate on trees by progressively closing facial cycles.
Even if it has been successfully applied to many classes, e.g. in [PS06, PS03} [FPS08, BEG04], the bijec-
tive method for maps is up to now not as systematic as Tutte’s recursive method, since for each class of
maps one has to “guess” the tree family to match with, and one has to specify the construction from trees
to maps.

This article contributes to fill this gap. Based on a construction of the first author [Ber07, BC10], we
provide in Section [3]a general bijection ® between a set D of certain decorated plane trees which we call
mobild?|and a set O of certain orientations on planar maps with no counterclockwise circuit. As it turns
out, a map class is often in bijection with a subfamily S of O on which our construction restricts nicely;
typically the orientations in S are characterized by degree constraints which can be traced through our
construction and yields a degree characterization of the associated mobiles. The mobiles family is then
specifiable by a decomposition grammar and amenable to the Lagrange inversion formula for counting.
To summarize, our method makes the bijective method more systematic, since it consists in specializing a
“master bijection” ® to the class of maps under consideration. The problem of enumerating a class of map
M therefore reduces to guessing a family of “canonical” orientations (in O) for M instead of guessing a
family of trees to match with M (the first task being often simpler than the second).

We focus here, in Sectiond]and Section [5]respectively, on two classes that were not completely covered
before, namely simple triangulations and simple quadrangulations with a polygonal boundary and a root-
corner incident to the boundary. We show bijectively that the number ¢,, ;. of rooted simple triangulations
with n + k vertices and boundary of length &k and the number g,, ;. of rooted simple quadrangulations with
n + 2k vertices and boundary of length 2k satisfy

E-DIk—3)nlBn+2k—30 ™ T k—2)I2k— )l nl2n+ 3k — 2)I’
recovering results found by Brown respectively in [Bro64] and [Bro65] using Tutte’s recursive method.
The case without boundaries (k = 3 for triangulations, k& = 2 for quadrangulations) have already received
bijective proofs in [PS06, [FPS08] (for triangulations) and [FusO7, [Sch98] (for quadrangulations); our
construction actually coincides with [FPSO8, Theo.4.10] for triangulations and with [Sch98|, Sec.2.3.3]
for quadrangulations. The case of triangulations with boundaries has also received a partial bijective
interpretation, different from ours, in [PS06] (only one direction is given, from trees to maps, which by
injection shows that t,, 1, is at least the number above, but does not suffice to prove equality).

2 Maps and orientations

Maps. A (planar) map is a connected planar graph embedded in the oriented sphere and considered up to
continuous deformation. A map is simple if it has no loop nor multiple edge. The faces are the connected
components of the complementary of the graph. A plane tree is a map with a unique face. Cutting an

() The term mobile is borrowed from a bijection by Bouttier et al. [BEG04] which can be seen as a specialization of ®.
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edge e at its middle point gives two half-edges, each incident to an endpoint of e (they are both incident
to the same vertex if e is a loop). We shall also consider some maps decorated with dangling half-edges
called stems (see e.g. Figure[2(a)). A corner is the angular section between two consecutive half-edges
around a vertex. The degree of a vertex or face is the number of incident corners. A map is a triangulation
(resp. quadrangulation) if every face has degree 3 (resp. 4).

A map is said to be vertex-rooted if a vertex is marked, face-rooted if a face is marked, and corner-
rooted if a corner is marke The marked vertex, face or corner are called the root-vertex, root-face or
root-corner. For a corner-rooted map, the marked corner is indicated by a dangling half-edge pointing
to that corner; see Figure [l A corner-rooted map is said to induce the vertex-rooted map (resp. face-
rooted map) obtained by keeping the root-vertex (resp. root-face) as marked, but otherwise forgetting the
root-corner. Given a face-rooted (or corner-rooted) map, vertices and edges are said to be outer or inner
depending on whether they are incident to the root-face or not.

Orientations. An orientation O of a map M is the choice of a direction for each edge of M. A circuitis a
directed cycle. A source is a vertex incident to no ingoing edge. If M is face-rooted (resp. vertex-rooted,
corner-rooted), then the pair (M, O) is called a face-rooted orientation (resp. vertex-rooted orientation,
corner-rooted orientation). A corner-rooted orientation naturally induces a face-rooted orientation and a
vertex-rooted orientation. For a vertex v of M, the indegree in(v) is the number of edges going into v; the
outdegree out(v) is the number of edges going out of v. For a face f € M, the clockwise-degree cw( f)
is the number of edges incident to f that have f on their right; the counterclockwise-degree ccw( f) is the
number of edges that have f on their left. For corner-rooted maps, the half-edge indicating the root-corner
increases by 1 the indegree of the root-vertex and the clockwise-degree of the root-face.

A vertex-rooted orientation is said to be accessible if every vertex is accessible from the root-vertex by
a directed path; it is source-accessible if in addition the root-vertex is a source. A circuit of a face-rooted
(or corner-rooted) orientation is said clockwise if the root-face is on its left. The orientation is minimal
if every circuit is clockwise; it is clockwise-minimal if in addition the root-face is a (clockwise) circuit.
We extend the definition of accessibility to (face-rooted) clockwise-minimal orientations O by calling O
accessible if it is accessible from one of the vertices incident to the root-face. Observe that O is in fact
accessible from any vertex on the root-face in this case Similarly, we call a source-accessible orientation
O minimal if O is minimal for one of the faces incident to the root-vertex. Observe that O is in fact
minimal for every face incident to the root-vertex in this case.

Let d be a positive integer. We denote by S, the set of source-accessible minimal orientations such that
the root-vertex has degree d. We denote by O, the set of clockwise-minimal accessible orientations such
that the root-face has degree d. We denote by S; the subset of Sy such that every face incident to the
root-vertex has clockwise degree 1. We denote by O, the subset of O, such that every vertex incident to
the root-face has indegree 1.

Given a map M with vertex-set V' and given a function «« : V — N, an a-orientation is an orientation
of M such that in(v) = a(v) for each v € V. The following result is well-known [Fel04]:

Lemma 1 [fa face-rooted map M has an «-orientation, then M has a unique minimal a-orientation.

Duality. The dual M* of a map M is the map obtained by the following two step process; see Figure|I]

() Corner-rooted map are usually simply called rooted maps in the literature. A face-rooted map can be thought as a plane map (a
connected graph embedded in the plane) by thinking of the root-face as the infinite face.
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Fig. 1: The dual of an oriented map.

1. In each face f of M, draw a vertex vy of M*. For each edge e of M separating faces f and f’
(which can be equal), draw the dual edge e* of M™* going from vy to vy across e.

2. Flip the drawing of M*, that is, inverse the orientation of the sphere.

The dual of a face-rooted map is a vertex-rooted map. Corners of a map and of its dual are in natural
correspondence (they face each other); this gives the way of defining the root-corner of the dual of a
corner-rooted map; see Figure[I] Duality is involutive on maps and rooted maps.

The dual of an orientation of M is the orientation of the dual map M * obtained by applying the fol-
lowing rule at step 1: the dual-edge e* of an edge e € M is oriented from the left of e to the right of e.
Observe that duality is an involution for oriented map (this is the motivation for step 2 in the definition
of duality). The clockwise degree (resp. counterclockwise degree) of a face f of M is equal to the inde-
gree (resp. outdegree) of the vertex vy of M™ (this is true also with the special convention applying to
corner-rooted maps). Also one easily checks that minimality is equivalent to accessibility in the dual:

Lemma 2 A face-rooted orientation is minimal (resp. clockwise-minimal) if and only if the dual vertex-
rooted orientation is accessible (resp. source-accessible).

Observe that duality maps the set of orientations S, (resp. gd) to the set Oy (resp. (5(1). Also, minimal
accessible orientations (of corner-rooted maps) are self dual. We mention that these orientations, which
play an important role below, are in bijection with spanning trees [BerO7].

3 Bijections between mobiles and orientations

In this section, we first recall a bijection ® originally due to the first author [BerO7[]. We then present some
extensions of ® which will be convenient for our subsequent goals. Indeed, in the next two sections we
will show how to use these extensions in order to count several families of maps.

The bijection & maps minimal accessible (corner-rooted) orientations with n edges and pairs of corner-
rooted plane trees (B,T') with n + 1 and n edges respectively. The tree B is called the (rooted) mobile
and its vertices are bicolored in black and white (in such a way that edges always connect a black and a
white vertex). Informally, the bijection ® consists in folding the tree 7" (oriented from the root to leaves)
around the mobile. More precisely, one glues the vertices of T" on the black corners of the mobile and
then erases the edges and white vertices of B (leaving the edges of 7" as edges of a minimal accessible
orientation). In what follows we adopt a slightly different presentation, in which the tree 7" only appears
implicitly in certain decorations added to the mobile B.

A decorated mobile is a bicolored (unrooted) plane tree with outgoing stems (dangling outgoing half-
edges) possibly attached to each black corner; see Figure 2{a). The excess of a decorated mobile is the
number of edges minus the number of (outgoing) stems. A mobile with excess J is called a §-mobile. A
fully decorated mobile is obtained from a decorated mobile by inserting an ingoing stem (dangling ingoing
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(a) (b) ()

Fig. 2: The rooted closure of a mobile of excess § = 1.

half-edge) in each black corner following an edge of the mobile (and not a stem) in clockwise order around
the vertex; the fully decorated mobile is represented in solid lines in Figure b). The degree deg(v) of a
vertex v of a decorated mobile is the total number of incident half-edges (including the outgoing stems).
For a black vertex b the indegree in(b) and out-degree out(b) are respectively the number of incident
ingoing and outgoing stems incident to b in the fully-decorated mobile (so deg(b) = in(b) + out(d)).

3.1 Bijection between 1-mobiles and minimal accessible orientations

We now recall the bijection given in [Ber(O7]] between 1-mobiles and minimal accessible orientations.
Closure. Let D be a decorated mobile with p edges and ¢ outgoing stems (hence excess § = p — ¢).
The corresponding fully decorated mobile D’ has p ingoing and ¢ outgoing stems. A clockwise walk
around D’ (with the face area on the left of the walker) sees a succession of outgoing stems and ingoing
stems. Associating an opening parenthesis to outgoing stems and a closing parenthesis to ingoing stems,
one obtains thus a cyclic binary word with ¢ opening and p closing parentheses. This yields in turn a
matching of outgoing stems with ingoing stems, leaving |J| stems unmatched, which are ingoing if § > 0
and outgoing if § < 0; see Figure[2] The partial closure C of the decorated mobile D is obtained by
forming a directed edge out of each matched pair, see Figure [Ja)-(b). We consider C' as a planar map
with two types of edges (those of the mobile, which are undirected, and the new formed edges, which
are directed) and |d| stems. Note that, if § > 0, there are § white corners incident to the root-face of C,
because initially the number of such corners is equal to the number of edges, and then each matched pair
of stems decreases this number by 1. These corners, which stay incident to the root-face throughout the
partial closure, are called exposed white corners.

The rooted-closure of the decorated mobile D is obtained from the partial closure C' by erasing every
white vertex and edge of the mobile (this might result in a disconnected embedded graph in general).

Opening. Let M be an oriented map (rooted or not) with vertex set V' and face set F'. The partial opening
of M is the map C with two types of vertices (black vertices in V' and white vertices in W = {wy, f €
F'}) and two types of edges (directed and undirected) obtained as follows.

o Insert a white vertex wy inside each face f of M.

e Draw an undirected edge between wy and each corner incident to f which precedes an ingoing half-
edge in clockwise order around its incident vertex. If M is corner-rooted, then the stem indicating
the root-corner is interpreted as an ingoing half-edge and gives rise to an edge of C.

If M is a corner-rooted orientation, the rooted-opening of M is obtained from the partial opening C' by
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Rooted closure, duality: 1-mobile max. acc. ori. max. acc. ori.
black vertex b «———— vertex v ——— face f
deg(b)=deg(v) deg(v)=deg(f)
in(b)=in(v) in(v)=cw(f)
out(b)=out(v) out(v)=ccw(f)

white vertex w «———— face f +— vertexv
deg(w)=cw(f) ew(f)=in(v)

d-closure + duality: §-mobile ori. in Oj
Case § > 0 black vertex b ———— inner face f
deg(b)=deg(f)
in(b)=cw(/f)
out(b)=ccw(f)

white vertex w ~—  vertex v

deg(w)=in(v)

d-mobile ori. in 6\5I
Case § < 0 black vertex b «——— inner face f
e
m =CwW

out(b)=ccw(f)

white vertex w «———— inner vertex v
deg(w)=in(v)

Fig. 3: The closure-bijections, with the parameter correspondences.

erasing all the ingoing half-edges of M, thereby creating an undirected embedded bicolored graph with
some outgoing stems incident to black corners.
We recall the result from [BerQ7] (see also [BC10]) that we shall generalize.

Theorem 3 The rooted closure is a bijection between decorated mobiles of excess 6 = 1 and (corner-
rooted) minimal accessible orientations. The rooted opening is the inverse mapping. Lastly, the parameter-
correspondence is shown in Figure|3| top-part.

3.2 Bijection for §-mobiles

d-closure. We now define the §-closure of a §-mobile (the definition depends on the sign of ). Let D be
a d-mobile and let C' be the partial closure of D. The §-closure M of D is defined as follows.

e If & > 0, then C has 0 ingoing stems (incident to the root-face). The vertex-rooted orientation M
is obtained from C' by first creating a root-vertex v of M in the root-face of C' and connecting it to
each ingoing stem (stems thus become part of an edge of M directed away from v); second erasing
the edges and white vertices of the mobile.
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e If 9 < 0, then C has J outgoing stems (incident to the root-face). The vertex-rooted orientation M
is obtained from C' by first creating a root-vertex v of M in the root-face of C' and connecting it
to each outgoing stem and then reorienting these edges (stems thus become part of an edge of M
directed away from v); second erasing the edges and white vertices of the mobile.

e If § = 0, then M is the face-rooted orientation obtained from C' by erasing the edges and white
vertices of the mobile.

Actually, it is not obvious from our definitions that the J-closures give connected orientations but we
prove this and more below.

Theorem 4 Let 6 be in Z.

o For d > 0, the §-closure is a bijection between 6-mobiles and the set S5, which (by duality) is itself
in bijection with the set Os. The parameter-correspondence is shown in Figure[3|bottom-part.

e For § < 0, the d-closure is a bijection between §-mobiles and the subset 5‘5‘ C 85|, which (by

duality) is itself in bijection with the subset (5‘ 5| C Oys| The parameter-correspondence is shown
in Figure[3|bottom-part.

e For § =0, the d-closure is a bijection between d-mobiles and minimal orientations.

The remaining of this section is devoted to the proof of Theorem [ (the proof for § = 0, which is

similar, is omitted since we will not use it in this article).
Case § > 0. We first prove that the §-closure of a d-mobile is in Ss. Let D be a 6-mobile, let C' be its
partial closure and let M be its -closure. As observed above, the mobile D has § > 0 exposed white
corners. Let D’ be the decorated mobile obtained from D by creating a new black vertex b, joining b to an
exposed white corner, and adding ¢ outgoing stems to b. The excess of D’ is 1, hence by Theorem [3|the
rooted closure of D’ gives a minimal accessible orientation M’. Moreover, it is easily seen (Figure[d) that
the root-corner of M’ is incident to the new vertex b (because the ingoing stem incident to b is not matched
during the partial closure). Moreover (provided the ingoing root half-edge is not counted) b is a source of
the orientation M’, and the vertex-rooted orientation M is induced by the corner-rooted orientation M.
Thus, the orientation M is in Ss. _

The following comment will be useful later (for the case 6 < 0): the closure M of D is in S; if and only
if each of the exposed white corners of D is incident to a (white) leaf of D. Indeed, a white vertex wy of
D has an exposed white corner if and only if it corresponds to a face f of M incident to the root-vertex b.
Moreover, the clockwise degree of f is (as always) the degree of wy.

We now prove that the d-closure is a bijection by defining the inverse mapping. Let M be a vertex-
rooted orientation in Ss. By applying the partial opening of M and then erasing every ingoing half-edge
of M, one obtains an embedded graph with stems D. The embedded graph D is in fact disconnected
since the root-vertex b of M is incident to no edge of D (since b is a source of M). The J-opening D of
M is obtained from D by erasing the vertex b. In order to prove that D is a decorated mobile (i.e. a tree
with stems), we consider a minimal accessible orientation M’ obtained from M by choosing a root-corner
for M among the corners incident to the root-vertex b. By Theorem [3| the rooted opening of M’ gives
a decorated mobile D’. Clearly, D is obtained from D’ by erasing the black vertex b. Moreover, b is a
leaf of D’ (since b is incident to no ingoing half-edge except the stem indicating the root-corner of O),
hence D is a mobile, and it has excess . Lastly, since the rooted closure and rooted opening are inverse
mappings, it is clear that J-closure and §-opening are inverse mappings, hence bijections.
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(a) (b)

Fig. 4: Formulation of the d-closure, for § > 0, as a reduction to the rooted closure. Figure (a) shows generically the
partial closure of a 6-mobile with & = 4, in (b) one creates a black vertex b with ¢ outgoing stems, and connects it to
an exposed white corner, in (c) one performs the remaining matchings of stems to complete the §-closure.

Case § < 0. We denote d = —4. Let D be a §-mobile. We associate to D a d-mobile ¢(D) obtained
from D by transforming each of its d unmatched outgoing stems into an edge of ¢(D) connected to a
newly created white leaf. Observe that the d-closure of D and the d-closure of ¢(D) coincide. Hence
the d-closure is the composition of the mapping ¢ and of the d-closure. Moreover, the mapping ¢ is a
bijection between the set of J-mobiles and the set D, of d-mobiles such that every exposed white corner
belongs to a leaf. Indeed, ¢(D) belongs to Dy since the unique incident corner for each of the d newly
created white leaves remains exposed during the partial closure; and the inverse mapping ¢! is obtained
by replacing each edge incident to an exposed leaf by an outgoing stem. Lastly, by the observations above
(case § > 0), the d-closure induces a bijection between the set Dy and the set S;. The inverse mapping
to the §-closure, called the 6-opening, is obtained as the composition of ¢~! with the d-opening. This
completes the proof of Theorem 4] (in the cases 6 # 0).

4 Bijective counting of triangulations with boundaries

In this section we obtain bijections for simple triangulations (a.k.a. 3-connected triangulations, maximal
planar graphs) and for triangulations with boundaries. The bijections are obtained by specializing the clo-
sures defined in the previous section to certain classes of orientations characterizing simple triangulations.

Let T' be a face-rooted triangulation. A 3-orientation of T is an orientation such that inner vertices
have indegree 3 and outer vertices have indegree 1. Schnyder proved in [Sch89] that any simple face-
rooted triangulation admits a 3-orientation, that any 3-orientation is accessible from the outer vertices and
that the root-face is always directed. Moreover, one easily checks (using Euler’s relation) that loops and
double edges are obstructions to the existence of a 3-orientation. Thus, a planar triangulation admits a
3-orientation if and only if it is simple. In the following we simply call 3-orientation a 3-orientation of a
face-rooted triangulation. From Lemma [T] one obtains:

Lemma 5 Face-rooted simple triangulations are in bijection with minimal 3-orientations. Such orienta-
tions are clockwise-minimal and accessible.

Minimal 3-orientations are the orientations in (53 such that all inner vertices have indegree 3 and all
faces have degree 3. Thus, we can use the case § = —3 of Theorem {]to conclude that face-rooted simple
triangulations are in bijection with (—3)-mobiles having every vertex of degree 3 (recall that outgoing
stems count in the degree of a black vertex). In fact, the constraint that the excess is —3 can be omitted,
since it is a consequence of all vertices having degree 3 (as easily seen by induction on the number of
vertices). Call trivalent the decorated mobiles with all vertices of degree 3. We obtain:
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(a) (b) (d)

Fig. 5: (a) A mobile in By. (b) The 3-closure. (c) Duality. (d) The non-separated k-annular triangulation (with its
minimal pseudo 3-orientation).

Proposition 6 (Recovering [FPS08]) The d-closure, case § = —3 (together with duality) induces a bi-
Jection between face-rooted triangulations with n + 3 vertices and trivalent mobiles with n white vertices.

Proposition 7 (Counting rooted simple triangulations) For n > 0, let t,, be the number of corner-
rooted simple triangulations with n + 3 vertices. The generating function T'(x) = > - ,(2n + 1)t,a"
satisfies
T(x) = u®, whereu =1+ zu®.
(4n +1)!
(n+1)!Bn+2)I

Consequently, the Lagrange inversion formula gives: t, = 2

Proof: The Euler relation easily implies that a triangulation with n + 3 vertices has 2n 4 1 non-root
faces. Hence (2n + 1)t,, is the cardinality of the set H,, of face-rooted triangulations with n inner vertices
having an additional marked corner c not incident to the root-face (think of obtaining this map by first
marking a corner and then a face). Marking the corner c is equivalent to marking a black corner of the
associated mobile (since the black vertices are in correspondence to the triangular faces). In other words,
H,, is in bijection, via the (—3)-closure, with trivalent mobiles that have n white vertices and a marked
black corner, and T'(z) is the generating function of this class of mobiles. Finally, the expression of T'(x)
above is just the translation of a recursive decomposition for the mobiles (details are omitted here). o

We now proceed to count bijectively the triangulations with boundaries. In the following, & is an integer
greater than 3. A k-gonal triangulation is a map having one face of degree k whose contour is simple
(incident to k distinct vertices) and all other faces of degree 3. The k-gonal face is called boundary
face, and the vertices are called boundary or non-boundary depending on whether they are incident to
the boundary face. A pseudo 3-orientation of a k-gonal triangulation is an orientation such that all non-
boundary vertices have indegree 3, and the boundary face is directed. A pseudo 3-orientation of a k-gonal
triangulation is shown in Figure[5{d). By the Euler relation, a k-gonal triangulation with n non-boundary
vertices has 3n + 2k — 3 edges. Hence, the sum of indegrees of the boundary vertices is 2k — 3. A
k-annular triangulation is a face-rooted k-gonal triangulation whose root-face is not the boundary face;
see Figure d). Let T be a simple k-annular triangulation, with root-face f and boundary face f'. A
3-cycle C of T is called separating if C'is different from (the contour of) the root-face and has f on one
side and f’ on the other side; T is said to be non-separated if it has no separating 3-cycle. We denote by
T the set of k-annular triangulations, and by N, the subset of non-separated ones.

Lemma 8 A k-annular triangulation A admits a pseudo 3-orientation if and only if it is simple. If A
is simple, it admits a unique minimal pseudo 3-orientation. This orientation is accessible from all outer
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vertices if and only if A is non-separated. Moreover, the root-face is directed (in clockwise direction) in
this case.

To summarize, the set Ny, of non-separated k-annular triangulations is in bijection with the set of
clockwise-accessible minimal pseudo 3-orientations.

The proof of the lemma, which is ommited, essentially relies on Lemmaﬂ] and on the Euler relation.

By definition, the clockwise-accessible minimal pseudo 3-orientations are the orientations in O3 such
that every vertex has indegree 3 and every face has degree 3 except for one boundary face b which has
degree k and is directed clockwise. Moreover, a counting argument (using the Euler relation) shows that
the indegrees of the boundary vertices must add up to 2k — 3. Let D be the 3-mobile giving an orientation
O € N (by the 3-closure followed by duality) and let vj, be the black vertex of D corresponding to the
boundary face b. Since b is counterclockwise, v, has no outgoing stem and has k£ white neighbors, which
clearly (by definition of closure) corresponds to the boundary vertices; see Figure[5] Hence, the degree of
these white vertices of the mobile must add up to 2k — 3. Lastly, as in the case of triangulations without
boundary, the condition of the excess being 3 is implied by the degree conditions on black and white
vertices, so can be omitted. To conclude, by specialization of the 3-closure, Lemma@]translates into:

Theorem 9 The family Ny, of non-separated k-annular triangulations is in bijection with the family By,
of decorated mobiles having every vertex of degree 3 except for one black vertex b of degree k carrying
no outgoing stem and such that the degrees of its k (white) neighbors add up to 2k — 3.

Theorem 10 (Counting rooted k-gonal triangulations) Let k > 3, n > 0, and let t}, ,, be the number
of simple corner-rooted k-gonal triangulations with n + k vertices having the root-corner in the k-gonal
face. The generating function Ty, (x) = 3, 5 o(2n + k — 2) ty 2" satisfies

2k —4
Ty (z) = <k;—3> w73 where u =1+ zu®.

202k —3)!  (dn+ 2k —5)!
(k—1)1(k —3)! nl(3n + 2k — 3)!"

Consequently, the Lagrange inversion formula gives: ty, , =

Proof: Let ﬁ be the set of k-annular triangulations with a marked corner in the boundary face (equiva-
lently, a marked boundary vertex). Let N , be the subset of these k-annular triangulations that are non-
separated. Let also 7 be the set of corner-rooted simple triangulations with a marked inner face. The
separating 3-cycles of a k-annular triangulation are linearly ordered by inclusion of their boundary re-
gion (the region which contains the boundary face). Thus, there is a unique decomposition of k-annular
triangulations A € Tk into a pair (N, T) € Ni x T. This decomposition is a bijection and translates
into the generating function equation Tk( ) = N, k( )T (), where Ty (x), Ni(z), T (x) are respectively
the generating function of the maps in 7}, Ny, T counted by number of non-boundary vertices. The
generating function Ty (z) is 3 n>0(2n 4k —2) ty ,x™ because maps in 75, with n non-boundary vertices
have 2n + k — 2 non-boundary faces. Moreover, by Proposition T(z) = u?, where u = 1 + au?. It
remains to express Nj(z) in terms of u. By Theorem@](and the fact that marking a corner in the boundary
face accounts to marking a corner incident to the special black vertex in the associated mobile), Ny (z) is
the generating function of corner-rooted mobile (counted by number of white vertices) such that the root-
vertex is a black corner of degree k£ whose (white) neighbors have total degree 2k — 3. The white vertices
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have a total of k — 3 hanging subtrees, which are trivalent trees whose generating funcion is v = u? (easy
proof omitted). In addition, there are (2]5:34) ways to distribute the £ — 3 hanging trees on the k£ white
2k—4) u2k—6 O

vertices. Hence, N, (z) = (k_3

5 Bijective counting of quadrangulations with boundaries

In this section we reiterate the strategy used in previous section to the case of quadrangulations.

We call 2-orientation a face-rooted orientation, in which faces have degree 4, inner vertices have inde-
gree 2, and outer vertices have indegree 1. De Fraysseix et al. [dFOdMOI]|| have shown that any simple
face-rooted quadangulation admits a 2-orientation, that any 2-orientation is accessible from the outer
vertices and that the root-face is always directed. Moreover, one easily checks that a double edge is an
obstruction for 2-orientation. Hence minimal 2-orientations are in bijection with simple face-rooted quad-
rangulations. By definition, minimal 2-orientations are the orientations in O4 having faces of degree 4
and inner vertices of indegree 2. The (—4)-closure (followed by duality) gives a bijection between such
orientations and (-4)-mobiles whise white vertices have degree 2 and whose black vertices have degree 4.
Call these mobiles tetravalent. We obtain:

Proposition 11 (Counting rooted simple quadrangulations) For n > 0, let q,, be the number of rooted
simple quadrangulations with n + 4 vertices. Then the generating function Q(x) = >, <o(n + 1)gna”
satisfies
Q(z) = u*, whereu =1+ zu?.
(3n+3)!
n+2)!(2n + 3)!

Consequently, the Lagrange inversion formula gives: ¢q, = 2 (

Call 2k-gonal quadrangulation a map with faces of degree 4 except for one face of degree 2k > 4.
The strategy for counting simple 2k-gonal quadrangulations parallels the case of triangulations. One
first defines a 2k-annular quadrangulation to be a simple quadrangle-rooted 2k-gonal quadrangulation.
One then proves that any such map admits a unique minimal pseudo 2-orientation (orientation such that
the boundary face is clockwise and non-boundary vertices have indegree 2), and that this orientation is
clockwise-accessible if and only if the map is non-separated (no 4-cycle separates the root-face from
the boundary face). Any 2k-annular quadrangulation decomposes uniquely into a pair made of a face-
rooted quadrangulation with an additional marked face and a non-separated 2k-annular quadrangulation.
Moreover, the later maps are in bijection (via the 4-closure) with a family of pseudo-tetravalent decorated
mobiles which is easy to enumerate. We obtain:

Theorem 12 (Counting rooted simple 2k-gonal quadrangulations) Let k > 2, n > 0, and let gy, ,, be
the number of rooted simple 2k-gonal quadrangulations with n + 2k vertices and with the root-corner
incident to the 2k-gonal face. The generating function Qx(x) = >_, ~o(n +k — 1)qi,nx" satisfies

k—
Qr(z) = <3k 23> w72, where v =1+ zu®.

3(3k — 2)! (3n + 3k —4)!
(k —2)1(2k — 1)! n!(2n + 3k — 2)!"

Consequently, the Lagrange inversion formula gives: qj, n, =
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