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Abstract. Let Bn be the hyperoctahedral group acting on a complex vector space V . We present a combinatorial
method to decompose the tensor algebra T (V) on V into simple modules via certain words in a particular Cayley
graph of Bn. We then give combinatorial interpretations for the graded dimension and the number of free generators
of the subalgebra T (V)Bn of invariants of Bn, in terms of these words, and make explicit the case of the signed
permutation module. To this end, we require a morphism from the Mantaci-Reutenauer algebra onto the algebra of
characters due to Bonnafé and Hohlweg.

Résumé. Soit Bn le groupe hyperoctaédral agissant sur un espace vectoriel complexe V . Nous présentons une
méthode combinatoire donnant la décomposition de l’algèbre T (V) des tenseurs sur V en modules simples via certains
mots dans un graphe de Cayley donné. Nous donnons ensuite des interprétations combinatoires pour la dimension
graduée et le nombre de générateurs libres de la sous-algèbre T (V)Bn des invariants de Bn, en termes de ces mots,
et explicitons le cas du module de permutation signé. À cette fin, nous utilisons un morphisme entre l’algèbre de
Mantaci-Reutenauer et l’algèbre des charactères introduit par Bonnafé et Hohlweg.

Keywords: Tensor algebras, invariants of finite groups, hyperoctahedral group, signed permutation module, Cayley
graph, words.

1 Introduction
Let V be a vector space over the field C of complex numbers with basis {x1, x2, . . . , xn}. Then the tensor
algebra

T (V) = C⊕ V ⊕ V⊗2 ⊕ V⊗3 ⊕ · · ·
can be identified with the ring C〈x〉 of polynomials in noncommutative variables x = x1, x2, . . . , xn,
where we use the notation V⊗d to represent the d-fold tensor space. Any action of a finite group G on V
can be extended to the tensor algebra and the graded character can be found in terms by what we might
identify as an analogue of MacMahon’s Master Theorem [10] for the tensor space,

χV⊗d(g) = tr(M(g))d =
[
qd
] 1

1− trM(g)q
,

where
[
qd
]

represents taking the coefficient of qd in the expression to the right and M(g) is a matrix
which represents the action of the group element g on a basis of V . In particular, we consider the algebra
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of invariants of G, denoted T (V)G, as the subspace of elements of T (V) which are fixed under the action
of G. The analogue of Molien’s Theorem [6] for the tensor algebra allows us to calculate the graded
dimension of this space

P(T (V)G) =
∑
d≥0

dim(V⊗d)Gqd =
1

|G|
∑
g∈G

1

1− trM(g) q
. (1.1)

It is well-known that the algebra of invariants ofG is freely generated [7, 8] by an infinite set of generators
(except when G is scalar) [6].

These algebraic tools do not clearly show the underlying combinatorial structure of these algebras.
Our main goal is to find a combinatorial method to decompose T (V) into simple G-modules. The idea
is to associate to a module V of G, a special subalgebra of the group algebra together with a surjective
morphism of algebras into the algebra of characters of G. Then we get as a consequence a combinatorial
way to decompose T (V) by counting words generated by a particular Cayley graph of the group G. To
compute the graded dimension of T (V)G, it then suffices to look at the multiplicity of the trivial module in
T (V). This leads to combinatorial descriptions for the graded dimension and the number of free generators
of the algebras of invariants of G, which unifie their interpretations.

At this point, we treated the cases of the cyclic, dihedral and symmetric groups [3]. For the symmetric
group, the main bridge to link the words in a particular Cayley graph and the decomposition of the tensor
algebra into simple modules is a morphism from the theory of the descent algebra [12, 15]. In order to
handle cases beyond those already considered, we must find a relation between the group algebra and the
algebra of characters.

We present in this paper the case of the hyperoctahedral group Bn, where the main bridge comes from a
surjective morphism from the Mantaci-Reutenauer algebra [11] onto the characters of Bn due to Bonnafé
and Hohlweg [1]. More precisely, we present a combinatorial way to decompose the Bn-module T (V)
into simple modules using words in a Cayley graph of Bn and study the subalgebra T (V)Bn of invariants.
This technique applies to modules that can be realized in the Mantaci-Reutenauer algebra, for example for
modules indexed by bipartitions of hook shapes, and we make explicit the case of the signed permutation
module V[n−1],[1]. We also give combinatorial descriptions for the graded dimensions and the number of
free generators of the algebra T (V[n−1],[1])

Bn of invariants, using words in a particular Cayley graph of
Bn. Finally, we present an application to set partitions, since the dimension of T (V[n−1],[1])

Bn is also
given by the set partitions of at most n even parts [2].

The paper is organized as follows. We recall in Section 2.1 the definition of a Cayley graph, and
introduce its weighted version. Section 2.2 fixes some notation about bipartitions and bitableaux. Section
2.3 is dedicated to the hyperoctahedral group and recalls its representation theory. In Section 2.4, we
describe the generalized Robinson-Schensted correspondence from [16, 5] needed in the statement of the
Main Theorem. The bridge between the words in a particular Cayley graph of Bn and the decomposition
of the tensor algebra is a morphism from the Mantaci-Reutenauer algebra into the character algebra of Bn,
which we present in Section 2.5. In Section 3, we prove the Main Theorem which gives a combinatorial
way to decompose the tensor algebra on any Bn-module into simple modules. As a consequence, we give
in Section 4 a combinatorial way to compute the graded dimension of the space of invariants of Bn, and
give a description for its number of free generators as an algebra. We then investigate in Sections 3.1 and
4.1 the case of the signed permutation module and give an application to set partitions in Section 4.2.
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2 Preliminairies
2.1 Cayley graph
For our purpose, let us recall the definition of a Cayley graph. Let G be a finite group and let S ⊆ G
be a set of group elements. The Cayley graph associated with (G,S) is defined as the oriented graph
Γ = Γ(G,S) having one vertex for each element of G and the edges associated with elements in S. Two
vertices g1 and g2 are joined by a directed edge associated to s ∈ S if g2 = g1s. If the resulting Cayley
graph of G is connected, then the set S generates G.

A path along the edges of Γ corresponds to a word in the alphabet S. We denote by S∗ the free monoid
on S, i.e. the set of all words in the alphabet S. Naturally, the length of a word is the number of its letters.
We say that a word reduces to an element g ∈ G in the Cayley graph Γ if it corresponds to a path along the
edges from the vertex labelled by the identity to the one labelled by g. Such a word, when simplified with
respect to the group relations, corresponds to the reduced word g. We denote byWd(g) the set of words
of length d which reduce to g. A word w is called a prefix of a word u if there exits a word v such that
u = wv. The prefix is proper if v is not the empty word. We say that a word does not cross the identity if
it has no proper prefix which reduces to the identity.

We also consider weighted Cayley graphs, where we associate a weight ν(s) to each letter s ∈ S. We
define the weight of a word w = s1s2 · · · sr in S∗ to be the product of the weights of its letter,

ν(w) = ν(s1)ν(s2) · · · ν(sr).

For sake of simplicity, we use undirected edges to represent bidirectional edges and nonlabelled edges to
represent edges of weight one.

Example 2.1 The Cayley graph of the hyperoctahedral group B2 = {12, 21, 12̄, 21̄, 1̄2, 2̄1, 1̄2̄, 2̄1̄} of
signed permutations of {1, 2} with generators 1̄2 and 2̄1 of weigth one is represented in Figure 1.

12 21̄

2̄1

1̄2

21

2̄1̄

1̄2̄

12̄

1

Fig. 1: Γ(B2, {1̄2, 2̄1}).

2.2 Bipartitions and bitableaux
To fix the notation, we recall some definitions. A partition λ of a positive integer n is a decreasing
sequence λ1 ≥ λ2 ≥ . . . ≥ λ` > 0 of positive integers such that n = |λ| = λ1 + λ2 + . . . + λ`. We
write λ = [λ1, λ2, . . . λ`] ` n. It is natural to represent a partition by its Young diagram which is the finite
subset diag(λ) = {(a, b) | 0 ≤ a ≤ `−1 and 0 ≤ b ≤ λa+1−1} of N2. Visually, each element of diag(λ)
corresponds to the bottom left corner of a box of dimension 1× 1 in N2.

A bipartition of n, denoted λ ` n, is a couple λ = (λ1, λ2) of partitions such that |λ| = |λ1|+|λ2| = n.
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Example 2.2 The bipartitions of 2 are

, ∅ , ∅ , ∅, ∅, .

A tableau t of shape λ ` n with values in T = {1, 2, . . . , n} is a function t : diag(λ)→ T . We denote
by sh(t) the shape of t. We can visualize it by filling each box c of diag(λ) with the value t(c). A standard
Young tableau of shape λ ` n is a tableau with filling {1, 2, . . . , n} and strictly increasing values along
each row and each column.

A bitableau is a pair T = (t1, t2) of tableaux. The shape of a bitableau is the couple sh(T) =
(sh(t1), sh(t2)). A standard Young bitableau is a bitableau T = (t1, t2) where t1 and t2 have strictly
increasing values along each row and each column, |sh(T)| = n and the filling of t1 and t2 is the set
{1, 2, . . . , n}. We denote by SYB(λ) the set of standard Young bitableaux of shape λ and by SYBn the
set of standard Young bitableaux with n boxes.

Example 2.3 The standard Young bitableaux of shape λ ` 2 are

1 2 , ∅
2
1 , ∅ 1 , 2 2 , 1 ∅,

2
1 ∅, 1 2 .

2.3 The hyperoctahedral group Bn
Denote by [n] the set {1, 2, . . . , n} and by m the integer −m. The hyperoctahedral group is the group of
signed permutations of [n] of order 2nn! which can be seen as the wreath product of the cyclic group of
order two Z/2Z with the symmetric group Sn of permutations of [n]. We will often represent an element
π of Bn as a word

π = π(1)π(2) · · ·π(n),

where each π(i) is an integer whose absolute value is in [n]. Note that if we forget the signs in π, we get
a permutation of [n]. We denote by e the identity element in the hyperoctahedral group.

Example 2.4 1̄76̄5̄243 is an element of B7.

Since the conjugacy classes of Bn are characterized by bipartitions of n (see [9], Appendix B), it is
natural to index the simple modules of Bn with bipartitions λ = (λ1, λ2) such that |λ1| + |λ2| = n. We
denote them by Vλ with associated irreducible characters χλ. In particular, V[n],∅ is the trivial module
and V[n−1],[1] the signed permutation module (see Example 4.4). Let us denote by ZIrr(Bn) the algebra
of characters of Bn.

2.4 Generalized Robinson-Schensted correspondence
The Robinson-Schensted correspondence [13, 14] is a bijection between the elements σ of the symmetric
group Sn and pairs (P (σ), Q(σ)) of standard Young tableaux of the same shape. In this section, we
present a generalization of this correspondence to the hyperoctahedral group defined as in [16, 5].

Consider the element π ofBn as a word. Define P(π) to be the standard Young bitableau (P+(π), P−(π))
where P+(π) and P−(π) are the insertion tableaux (from the Robinson-Schensted correspondence) of π
with respectivley positive and negative letters of π. Similarly, Q(π) = (Q+(π), Q−(π)) is the standard
Young bitableau whereQ+(π) andQ−(π) are the recording tableaux of π for the insertion of respectivley
positive and negative letters of π. The map

π ←→ (P(π),Q(π))
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is a bijection from Bn onto the set of all pairs of standard Young bitableaux of the same shape. We say
that P(π) and Q(π) are respectively the insertion and recording bitableaux of π.

Example 2.5 Consider the element 1̄76̄5̄243 of B7. Then we find

P(π) =

7
4
2 3 ,

6
1 5 and Q(π) =

7
5
2 6 ,

4
1 3 .

2.5 Mantaci-Reutenauer algebra and special morphism
Surprisingly, the key to prove our main result comes from a morphism from the Mantaci-Reutenauer
algebra onto the characters of Bn due to Bonnafé and Hohlweg [4].

A signed composition of n, denoted c |= n, is a sequence of nonzero integers c = (c1, c2, . . . , ck) such
that |c| = |c1| + |c2| + · · · + |ck| = n. Following Mantaci and Reutenauer [11], we associate to each
element π ∈ Bn a descent composition Des(π) constructed by recording the length of the increasing runs
(in absolute value) with constant sign, and then recording that sign.

Example 2.6 The descent composition of 1̄76̄5̄243 ∈ B7 is Des(1̄.7.6̄.5̄.24.3) = (1̄, 1, 1̄, 1̄, 2, 1).

The descent composition Des(T) of a standard Young bitableau T = (t+, t−) with n boxes is defined in
[1] in the following way. First, look for maximal subwords j j+ 1 j+ 2 · · · k of consecutive letters of the
word 12 · · ·n such that either the numbers j, j + 1, j + 2, . . . , k can be read in this order in t+ when one
goes from left to right and top to bottom, or they can be read in t− in the same manner. The concatenation
of these subwords is the word 12 · · ·n and the descent composition Des(T) is the signed composition of
n obtained by recording the lengths of these subwords, and the sign of their tableau.

Example 2.7 Consider the bitableau T=

7
5
2 6 ,

4
1 3 . The partition of 1234567 in maximal subwords is

1|2|3|4|56|7 hence we can deduce that Des(T) = (1̄, 1, 1̄, 1̄, 2, 1).

Given a signed composition c |= n, define the element of the group algebra of Bn

Dc =
∑
π∈Bn

Des(π)=c

π.

These elements form a basis of the Mantaci-Reutenauer algebraMRn, which is a subalgebra of the group
algebra of Bn containing the Solomon’s descent algebra of Bn [11]. Given a standard Young bitableau T
with n boxes, define the element of the group algebra of Bn

ZT =
∑
π∈Bn

Q(π)=T

π,

where Q(π) corresponds to the recording bitableau resulting from the generalized Robinson-Schensted
correspondence. These elements are linearly independent and the space Qn that they span is called the
coplactic space, introduced by Bonnafé and Hohlweg [4]. Note that this space in not an algebra in gen-
eral. By Lemma 5.7 of [1], the descent composition of an element π ∈ Bn coincides with the descent
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composition of its recording bitableau Q(π). Therefore we can rewrite Dc as

Dc =
∑
π∈Bn

Des(π)=c

π =
∑

T∈SYBn
Des(T)=c

ZT, (2.1)

hence MRn ⊆ Qn (see [1] Corollary 5.8). There is a surjective algebra morphism from the Mantaci-
Reutenauer algebra onto the character algebra Θ :MRn → ZIrr(Bn) due to Bonnafé and Hohlweg [4],
and a linear map

Θ̃ : Qn → ZIrr(Bn) (2.2)

defined by Θ̃(ZT) = χsh(T) such that Θ̃ restricted toMRn corresponds to Θ.

3 Decomposition of T (V) into simple modules
In this section, we develop a combinatorial method to decompose the d-fold tensor of any Bn-module
into simple modules. To achieve this, we use the algebra morphism Θ : MRn → ZIrr(Bn) introduced
in Section 2.5 from the Mantaci-Reutenauer algebra onto the algebra of characters of Bn. The next
proposition says that the multiplicity of a simple module in the d-fold tensor of any module V is given as
some coefficients in fd, where f is an element ofMRn whose image under Θ is the character of V .

Proposition 3.1 Let V be a Bn-module such that Θ(f) = χV , for some element f inMRn. For λ ` n,
the multiplicity of Vλ in V⊗d is equal to ∑

T∈SYB(λ)

[ZT]fd,

where [ZT]fd means taking the coefficient of ZT in fd.

Proof: By Equation (2.1), we can write fd as

fd =
∑
λ`n

∑
T∈SYB(λ)

cTZT.

Applying the linear map (2.2), we get

Θ̃(fd) =
∑
λ`n

∑
T∈SYB(λ)

cTΘ̃(ZT) =
∑
λ`n

∑
T∈SYB(λ)

cTχλ.

Since the restriction of Θ̃ toMRn is Θ, we get Θ̃(fd) = Θ(fd) = Θ(f)d = χVd and thus

[χλ]χV
d =

∑
T∈SYB(λ)

cT =
∑

T∈SYB(λ)

[ZT]fd.

2

The subsequent theorem provide us with an interesting interpretation for the multiplicity of Vλ in the
d-fold tensor of a Bn-module. This multiplicity is the weighted sum of words in a particular Cayley graph
of Bn which reduce to πT, an element of Bn having recording bitableau T of shape λ (after performing
the generalized Robinson-Schensted correspondence). But first, the following key lemma will allow us to
link some coefficients of an element of the group algebra to some weighted words in a Cayley graph of G.
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Lemma 3.2 ([3]) Let Γ(G, {s1, s2, . . . , sr}) be a Cayley graph of G with weights ν(si) = νi. Then the
coefficient of π ∈ G in the element (ν1s1 + ν2s2 + · · ·+ νrsr)

d of the group algebra CG equals∑
w∈Wd(π)

ν(w).

Before stating the Main Theorem, we need to recall the following. The support of an element f of the
group algebra of Bn is defined by supp(f) = {π ∈ Bn|[π]f 6= 0}, where [π]f is the coefficient of π in f .

Theorem 3.3 Let V be a Bn-module such that Θ(f) = χV , for some element f ofMRn, and consider
the Cayley graph Γ(Bn, supp(f)) with weights ν(π) = [π](f) for each π ∈ supp(f). For λ ` n, the
multiplicity of Vλ in V⊗d is equal to ∑

T∈SYB(λ)

∑
w∈Wd(πT)

ν(w),

where πT ∈ Bn is such that Q(πT) = T andWd(πT) is the set of words of length d which reduce to πT.

Proof: From Proposition 3.1, the multiplicity of Vλ in V⊗d is∑
T∈SYB(λ)

[ZT]fd.

Since by definition π ∈ supp(ZT) if and only if π has recording bitableau T, the coefficient of ZT in fd

is also the coefficient of πT in fd with Q(πT) = T and the result follows from Lemma 3.2. 2

3.1 Decomposition of T (V[n−1],[1]) into simple modules
When the hyperoctahedral group Bn acts as a reflection group on the ring of polynomials in n noncommu-
tative variables, this action corresponds to the signed permutation module V[n−1],[1]. We use the following
two corollaries of Proposition 3.1 and Theorem 3.3 respectively, for establishing a connection between
the multiplicity of a simple module in V[n−1],[1]

⊗d and words of length d in a particular Cayley graph of
Bn. To this end, consider the basis element D(1̄,n−1) of the Mantaci-Reutenauer algebraMRn, which is
the sum of all elements of Bn having descent composition (1̄, n− 1). Since

Θ
(
D(1̄,n−1)

)
= Θ̃

(
Z

2 3 4 ··· n , 1

)
= χ[n−1],[1],

we have the following formulas for the multiplicity.

Corollary 3.4 For λ ` n, the multiplicity of Vλ in V[n−1],[1]
⊗d is equal to∑

T∈SYB(λ)

[ZT]D(1̄,n−1)
d.
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Corollary 3.5 Consider the Cayley graph Γ(Bn, supp(D(1̄,n−1))). For λ ` n, the multiplicity of Vλ in
V[n−1],[1]

⊗d is equal to ∑
T∈SYB(λ)

|Wd(πT)|,

where πT ∈ Bn is such that Q(πT) = T.

Example 3.6 Using Corollary 3.4, the B3-module V[2],[1]
⊗4 decomposes into simple modules as

V[2],[1]
⊗4 ∼= 4V[3],∅ ⊕ 7V[2,1],∅ ⊕ 3V[1,1,1],∅ ⊕ 10V[1],[2] ⊕ 10V[1],[1,1].

Indeed, the element D(1̄,2)
4 of the Mantaci-Reutenauer algebra equals

4Z
1 2 3 ,∅+3Z

3
1 2 , ∅

+4Z
2
1 3 ,∅

+3Z
3
2
1 ,∅

+5Z
3 , 2 1

+2Z
2 , 1 3

+3Z
1 , 2 3

+5Z
3 ,

2
1

+3Z
1 ,

3
2

+2Z
2 ,

3
1

and is sent to
4χ[3],∅ + 7χ[2,1],∅ + 3χ[1,1,1],∅ + 10χ[1],[2] + 10χ[1],[1,1]

via the map Θ̃. Table 1 shows how these multiplicities can also be computed using Corollary 3.5 by
considering words of length four in the Cayley graph of B3 with generators {1̄23, 2̄13, 3̄12}.

Vλ T ∈ SYB(λ)
πT ∈ B3

Q(πT) = T
W4(πT)

mult. of Vλ

in V[2],[1]
⊗4

V[3],∅ 1 2 3 , ∅ 123
aaaa abab baba
bbbb

4

V[2,1],∅

3
1 2 , ∅ 132 acab caba cbbb
2
1 3 , ∅ 213

aaba abbb baaa
bbab

7

V[1,1,1],∅

3
2
1 , ∅ 321 baca bcbb ccab 3

V[1],[2]

1 , 2 3 31̄2̄ bbca bccb cccc
2 , 1 3 1̄32̄ bcac ccbc

3 , 1 2 1̄2̄3
aabb abba baab
bbaa cacc

10

V[1],[1,1]

1 ,
3
2 32̄1̄ bcab caca ccbb

2 ,
3
1 2̄31̄ acac cbbc

3 ,
2
1 2̄1̄3

aaab abaa babb
bbba cabc

10

1

Tab. 1: Decomposition of V[2],[1]
⊗4 using words in Γ(B3, {a, b, c}) where a = 1̄23, b = 2̄13 and c = 3̄12.
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4 Algebra T (V)Bn of invariants of Bn
As a consequence of Theorem 3.3, we have a combinatorial interpretation for the graded dimension of the
algebra T (V)Bn of invariants of Bn in terms of words in a particular Cayley graph of Bn.

Corollary 4.1 Let V be a Bn-module such that θ(f) = χV , for some f ∈MRn, and consider the Cayley
graph Γ(Bn, supp(f)) with weight ν(π) = [π](f) for each π ∈ supp(f). Then

dim
(
V⊗d

)Bn
=

∑
w∈Wd(e)

ν(w).

Proof: The dimension of the space of invariants of Bn in V⊗d is equal to the multiplicity of the trivial
module in V⊗d. Then the result follows from Theorem 3.3. 2

Another interesting result is that the number of free generators of the algebra of invariants of Bn can
be counted by some special words in a particular Cayley graph of Bn. These are the weighted words
corresponding to paths which begin and end at the identity vertex, but without crossing the identity vertex.

Proposition 4.2 Let V be a Bn-module such that θ(f) = χV , for some f ∈ MRn. Then the number of
free generators of T (V)Bn as an algebra are counted by the words which reduce to the identity without
crossing the identity in the Cayley graph Γ(Bn, supp(f)) with weight ν(π) = [π](f) for each π ∈
supp(f).

4.1 Algebra T (V[n−1],[1])Bn of invariants of Bn
We have an interpretation for the graded dimension of the space T (V[n−1],[1])

Bn of invariants of Bn in
terms of paths starting from and ending at the identity vertex in the Cayley graph of Bn generated by the
elements of Bn having descent composition (1̄, n− 1). As a consequence of Corollary 4.1, we can easily
compute these dimensions since

Θ
(
D(1̄,n−1)

)
= χ[n−1],[1].

Corollary 4.3 The dimension of (V[n−1],[1]
⊗d)Bn is equal to the number of words of length d which

reduce to the identity in the Cayley graph Γ(Bn, supp(D(1̄,n−1))).

Example 4.4 When the group B3 acts on the polynomial ring C〈x1, x2, x3〉 by π(xi) = sgn(π(i))x|π(i)|,

the space C〈x1, x2, x3〉B3
4
∼= (V[2],[1]

⊗4)B3 of invariants of B3 has a monomial basis indexed by the set
partitions of [4] with at most 3 parts of even cardinality (see Section 4.2):

m{1234}(x1, x2, x3) = x1x1x1x1 + x2x2x2x2 + x3x3x3x3,

m{12,34}(x1, x2, x3) = x1x1x2x2 + x1x1x3x3 + x2x2x1x1 + x2x2x3x3 + x3x3x1x1 + x3x3x2x2,

m{13,24}(x1, x2, x3) = x1x2x1x2 + x1x3x1x3 + x2x1x2x1 + x2x3x2x3 + x3x1x3x1 + x3x2x3x2,

m{14,23}(x1, x2, x3) = x1x2x2x1 + x1x3x3x1 + x2x1x1x2 + x2x3x3x2 + x3x1x1x3 + x3x2x2x3.

As recorded in Table 2, its cardinality equals the one of the set

{aaaa, abab, baba, bbbb}
of words of length 4 in the letters a = 1̄23, b = 2̄13 and c = 3̄12 which reduce to the identity in the Cayley
graph Γ(B3, {a, b, c}).
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In general, for any module V , the algebra T (V)Bn of invariants of Bn is freely generated [6], therefore
we have the following relation between its Poincaré series and the generating series F(T (V)Bn) counting
the number of its free generators:

P(T (V)Bn) =
1

1−F(T (V)Bn)
. (4.1)

The next corollary of Proposition 4.2 presents a nice interpretation for the number of these free generators.

Corollary 4.5 The number of free generators of T (V[n−1],[1])
Bn as an algebra are counted by the words

which reduce to the identity without crossing the identity in the Cayley graph Γ(Bn, supp(D(1̄,n−1))).

Example 4.6 The free generators of T (V[2],[1])
B3 are counted by the number of words which reduce to

the identity without crossing the identity in the Cayley graph Γ(B3, {a, b, c}) where a = 1̄23, b = 2̄13 and
c = 3̄12. They are

aa
abab
baba
bbbb

abaaab abbabb abbbba baaaba
baabbb babbab bbaabb bbabba
bbbaab abcabc acacac accbbc
bbcacc bcabca bcacca bccbcc
baccab cacaca caccbb cbbcac
cbccbc ccbbca ccbccb cccccc

. . .

Using relation (4.1) and the analogue of Molien’s Theorem (1.1), the generating series for the number of
free generators is given by

F(T (V[2],[1])
B3) = 1− P(T (V[2],[1])

B3)−1

= 1−
(

1

48

{ 1

(1− 3q)
+

15

(1− q) + 16 +
15

(1 + q)
+

1

(1 + 3q)

})−1

=
q2 − 6q4

1− 9q2 + 3q4
,

with series expansion q2 + 3q4 + 24q6 + 207q8 + 1791q10 + 15498q12 + 134109q14 + 1160487q16 + · · ·

4.2 Applications to set partitions
A set partition of [n], denoted by A ` [n], is a family of disjoint nonempty subsets A1, A2, . . . , Ak ⊆ [n]
such that A1 ∪A2 ∪ . . . ∪Ak = [n]. The subsets Ai are called the parts of A. The algebra

T (V[n−1],[1])
Bn ∼= C〈x〉Bn

corresponds to the space of polynomials in noncommutative variables x = {x1, x2, . . . , xn} which are
invariant under the action of Bn defined in Example 4.4. Using the fact that a monomial basis for the
space C〈x〉Bn of invariants of Bn is indexed by the set partitions with at most n parts of even cardinality,
a closed formula for the Poincaré series of T (V[n−1],[1])

Bn has been proved in [2] and is given by

P(T (V[n−1],[1])
Bn) = 1 +

n∑
k=1

1 · 3 · . . . · (2k − 1)q2k

(1− q2) (1− 4 q2) · · · (1− k2 q2)
.
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The words considered in the Cayley graph of Bn, with generators the elements having descent compo-
sition (1̄, n− 1), have a different nature to that of set partitions. But from Corollary 4.3, we can show for
instance the following result.

Corollary 4.7 The number of set partitions of [2d] into at most n parts is the number of words of length
2d which reduce to the identity in the Cayley graph Γ(Bn, supp(D(1̄,n−1))).

5 Appendix
The table in this section represents the words of length 2, 3 and 4 which reduce to a specific element in
the Cayley graph Γ(B3, {1̄23, 2̄13, 3̄12}).

123 132 231 213 312 321 231̄ 132̄ 123̄ 21̄3 12̄3 13̄2

aa ba ca

aba

bbb

abb

bba

acb

cba

aaaa

abab

baba

bbbb

acab

caba

cbbb

bcab

caca

ccbb

aaba

abbb

baaa

bbab

aaca

acbb

caaa

cbab

baca

bcbb

ccab

1̄23 2̄13 3̄12 321̄ 312̄ 213̄ 31̄2 32̄1 23̄1 1̄32 2̄31 3̄21

aaa

bab

aab

baa

aac

caa

aca

cbb

bca

ccb

bcb

cca
cab cac bac

31̄2̄ 21̄3̄ 12̄3̄ 1̄32̄ 1̄23̄ 2̄13̄ 1̄2̄3 1̄3̄2 2̄3̄1 32̄1̄ 23̄1̄ 13̄2̄

bb cb cc

bbca

bccb

cccc

bccc

cbca

cccb

accc

cbcb

ccca

bcac

ccbc

bcbc

ccac

acbc

cbac

aabb

abba

baab

bbaa

cacc

aacb

acbc

bacc

caab

cbaa

aacc

baca

bcba

caac

ccaa

bcab

caca

ccbb

abca

accb

cbcc

abcb

acca

bbcc

2̄31̄ 3̄21̄ 3̄12̄ 2̄1̄3 3̄1̄2 3̄2̄1 3̄2̄1̄ 2̄3̄1̄ 1̄3̄2̄ 3̄1̄2̄ 2̄1̄3̄ 1̄2̄3̄

ab ac bc

abc acc bcc bbc cbc ccc

acac

cbbc

abac

bbbc

abbc

bbac

aaab

abaa

babb

bbba

cabc

aaac

acaa

babc

cabb

cbba

aabc

baac

bcaa

cacb

ccba

Tab. 2: Words in Γ(B3, {a, b, c}), where a = 1̄23, b = 2̄13 and c = 3̄12.
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