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Harmonics for deformed Steenrod operators
(Extended Abstract)
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Abstract. We explore in this paper the spaces of common zeros of several deformations of Steenrod operators. Proofs
are omitted in view of pages limitation for the extended abstract.

Résumé. Nous explorons dans cet article l’espace des zéros communs de plusieurs déformations d’opérateurs de
Steenrod. Faute de place, les preuves sont omises.
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1 Introduction
In recent years many authors have studied variations on a striking classical result of invariant theory
holding for any finite group W of real n×n matrices generated by reflections. Roughly stated, this result
asserts that there is a natural decomposition

R[x] ' R[x]W ⊗ R[x]W (1)

of the ring of polynomials R[x], in n variables x = x1, x2, . . . , xn, as a tensor product of the ring R[x]W

ofW -invariant polynomials, and the “W -coinvariant-space” R[x]W . This last is simply the space obtained
as the quotient of the ring R[x] by the ideal generated by constant-term-free W -invariant polynomials. It
is well known that R[x]W is isomorphic as a W -module to the space HW of W -harmonic polynomials,
i.e.: the set of polynomials f(x) that satisfy all partial differential equations of the form p(∂x)f(x) = 0,
where p(∂x) any constant-term-free W -invariant polynomial in the partial derivatives ∂i.

The purpose of this work is to study twisted versions of this setup. Typically, we replace symmetric
operators ∂k1 + . . .+ ∂kn, by operators of the form

Dk :=

n∑
i=1

ai,kxi∂
k+1
i + bi,k∂

k
i , (2)
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with some parameters ai,k and bi,k. We then consider the solution setHx of the system of partial differen-
tial equations Dkf(x) = 0, for k ≥ 1. Observe that the operators Dk are homogeneous. We say that they
are of degree −k since they lower degree of polynomials by k. It follows thatHx is graded by degree. In
particular, it makes sense to consider the Hilbert series

Hn(t) :=
∑
d≥0

td dim(πd(Hx)), (3)

with πd denoting the projection onto the homogeneous component of degree d. Clearly the right-hand
side of (3) depends on the choice of the parameters ai,k and bi,k. Recall that the Hilbert series of the space
HSn

, of Sn-harmonic polynomials (which corresponds to setting ai,k = 0 and bi,k = 1) is the classical
t-analog of n!. As we will see later, this is a “generic” value for Hn(t).

Before going on with our discussion, let us consider an interesting dual point of view. Following a
terminology of Wood [5], we shall say that a polynomial is a hit-polynomial if it can be expressed in the
form

f(x) =
∑
k

D∗k gk(x), (4)

for some polynomials gk(x), with D∗k standing for the dual operator of Dk with respect to the following
scalar product on the ring of polynomials.

For two polynomials f and g in R[x], one sets

〈f, g〉 := f(∂x)g(x)
∣∣
x=0

. (5)

In other words, this corresponds to the constant term of the polynomial resulting from the application of
the differential operator f(∂x) to g(x). A straightforward computation reveals that, for two monomials
xa and xb, we have 〈xa,xb〉 = a!, if a = b, and 0 otherwise. Here, as is now almost usual, a! stands for
a1!a2! · · · an!. This observation makes it clear that (5) indeed defines a scalar product on R[x]. Moreover,
the dual of the operator ∂ki is easily checked to be multiplication by xki . It follows that

D∗k =

n∑
i=1

ai,k x
k+1
i ∂i + bi,k x

k
i .

From general basic linear algebra principles, it follows that the space ofHx, of general harmonic polyno-
mials, is orthogonal to the space of hit-polynomials. Moreover, since the subspace of hit-polynomials is
homogeneous, the corresponding quotient C of R[x], by this subspace, is isomorphic to Hx as a graded
space.

For, the special case corresponding to setting ai,k = q, and bi,k = 1, for all i and k, we denote Hx;q

resulting space which has been considered by Hivert and Thiéry (in [3]). Using the notation

Dk;q :=

n∑
i=1

q xi∂
k+1
i + ∂ki ,

Using a simply Lie-bracket calculation, Hivert and Thiéry have observed thatHx;q is simply characterized
as the common solutions of the two equations D1;qf(x) = 0, and D2;qf(x) = 0. Recall that the ring
of polynomials R[x] can be considered as a Sn-module for the action that corresponds to permutation of



Steenrod operators 499

the variables. This action restricts to a natural Sn-action on the space Hx;q , since the operators Dk;q are
symmetric. It is classical that HSn

= Hx;0 is isomorphic, as a Sn-module, to the regular representation
of Sn. Hivert-Thiéry go on to state that

Conjecture 1 (Hivert-Thiéry) As Sn-modules, the spaces Hx;q is isomorphic to HSn
, when q > 0. In

particular, this implies that the Hilbert series ofHx;q is [n]!t.

It follows from (1) that the graded Frobenius characteristic Fn(t) ofHx;q (andHSn
) is

Fn(t) = [n]!t (1− t)n
∑
λ`n

n∏
k=1

1

dk!

(
pk

k (1− tk)

)dk
, (6)

where dk = dk(λ) is the number of size k parts of λ.
In this work we generalize and extend the scope of the above conjecture to include the more general

operators of (2). Along the way we prove several related results.

2 Tilde-Harmonics and Hat-Harmonics
We first consider another interesting special case of (2). Namely, we suppose that all bi,k’s vanish, and all
ai,k’s are equal to 1. Thus, we consider the space of common zeros of the operators D̃k :=

∑n
i=1 xi ∂

k+1
i ,

which is called the space of tilde-harmonics, and denoted H̃x. We easily check that

[D̃k, D̃j ] = (k − j)D̃k+j , (7)

hence H̃x is simply the set of common zeros of the two equations D̃1f(x) = 0, and D̃2f(x) = 0.
The space H̃x affords a natural action of the symmetric group, and the associated graded Frobenius
characteristic is denoted F̃n(t). Computer experimentations suggest that the Hilbert series of H̃x seems
to be

H̃n(t) =

n∑
k=0

(
n

k

)
tk[k]t!. (8)

Modulo a natural conjecture, this follows from a very explicit description of H̃x outlined below. To state it
we need one more family of operators and yet another version of harmonic polynomials. For each k ≥ 1,
consider the operator D̂k =

∑n
i=1 xi∂

k+1
i + (k + 1) ∂ki , and introduce the space

Ĥx :=
{
f(x) ∈ R[x] | D̂kf(x) = 0, ∀k ≥ 1

}
,

whose elements are said to be “hat-harmonics”. We will soon relate the two notions of tilde and hat
harmonics. Experimentation suggest that Ĥx has dimension n!, and that even more precisely we have the
following.

Conjecture 2 As a graded Sn-module, Ĥx is isomorphic to the space of Sn-harmonics.

Now, for any given k-subset y of the n variables x, let us consider the space Ĥy, and write

ey :=
∏
x∈y

x,
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for the elementary symmetric polynomial of degree k in the variables y. As usual, we define the support
of a monomial to be the set of variable that appear in it, with non-zero exponent. Clearly, ya has support
y if and only if ya = ey y

b, for some b. Observe that we have the operator identity we can easily check
the operator identity

D̃k ex = ex D̂k, (9)

where ex stands for the operator of multiplication by ex. We can now state the following remarkable fact.

Theorem 1 The space of tilde-harmonics has the direct sum decomposition

H̃x =
⊕
y⊆x

eyĤy, (10)

if we consider that hat-harmonics for y = ∅ are simply the scalars.

The same holds for the more general case of operators ak D̃k and ak D̂k, with the ak’s equal to 0 or
1. The intent here is to restrict the set of equations considered to those k for which ak takes the value 1.
The corresponding spaces are denoted H̃a

x and Ĥa
x, with similar convention for the corresponding Hilbert

series and graded Frobenius characteristics. It follows that, even in this more general context, we have

Corollary 2 For all choices of ak,

H̃a
n(t) =

n∑
k=0

(
n

k

)
tk Ĥa

k(t). (11)

In particular, if conjecture 2 holds then (8) holds. There is an even finer corollary of Theorem 1.

Corollary 3 The graded Frobenius characteristic of H̃a
x is given by the symmetric function

F̃ a
n (t) =

n∑
k=0

tkF̂ a
k (t)hn−k(z) (12)

A conjecture of Wood [5, conjecture 7.3] is thus partially addressed in a very explicit manner. Indeed, in
view of Theorem 1, Wood’s conjecture is a consequence of Conjecture 2 and the fact that C̃ is isomorphic
to H̃x as a graded Sn-module.

3 More on q-harmonics
We now link the study of harmonics of the D̃k to further our understanding of the common zeros of
the operators Dk:q , in the case when q is considered as a formal parameter. Our point of departure is
the following important fact. Denote by ∇k :=

∑n
i=1 ∂

k
i the generalized Laplacian, and observe that

Dk:q = qD̃k +∇k, then we get the following.

Theorem 4 Up to a power of q, every q-harmonic polynomial f may be written in the form

f = f0 + qf1 + q2f2 + · · ·+ qmfm (13)
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with fi ∈ R[x], and such that for all k ≥ 1 we have

(a) ∇kf0 = 0

(b)∇kfi = −D̃kfi−1, for all i = 2, . . . ,m− 1,

(c) D̃kfm = 0.

(14)

In particular, it follows that for any r ≥ 0, and any choice of k1, k2, . . . , kr ≥ 1, the element

∇k1∇k2 · · · ∇krfr (15)

is a Sn-harmonic polynomial in the usual sense.

Let us now reformulate the expansion of (13) in the form

f = qr(f0 + qf1 + · · ·+ qmfm) (with each fi ∈ R[x], fi 6= 0)

We call f0 the first term of f and denote it “FT(f)”. Analogously we say that fm is the last term of f
and denote it “LT(f)”. The integer m will be called the length of f . We also set

HFx := L[FT(f) | f ∈ Hx;q] and HLx := L[LT(f) | f ∈ Hx;q] (16)

to respectively stand for the span of first terms of q-harmonics and last terms. Using a theorem of [3] we
then get the following remarkable corollary.

Corollary 5 The three spaces HFx , HLx and Hx;q are isomorphic as graded Sn-modules and therefore
they are all isomorphic to a submodule of the Harmonics of Sn.

Since the dimension of Hx;q is thus bounded above, the single equality dimHx;q = n! would imply
that Hx;q affords the regular representation of Sn. In particular this would yield that HFx is none other
than the space of harmonics of Sn. Since Hx;q is isomorphic to HFx , as a graded Sn-module, it would
follow thatHx;q itself is isomorphic to the space of harmonics of Sn (as a graded Sn-module). Thus the
Hivert-Thiéry conjecture would result.

4 The Kernel of Dk

To compute the general space Hx of harmonic polynomials, we need to find common solutions of the
differential equations Dkf(x) = 0, for k > 0. For each k, the kernel of the operator Dk may be given a
precise explicit description whenever ai,k d + bi,k 6= 0, for all d ∈ N.We lighten the notation by writing
simply ai instead of ai,k.

The case k = 1 illustrates all aspects of the method. We construct a set

{yr + Ψ1(yr)}r∈Nn−1 (17)

which is a basis of the solution set of D1f(x) = 0. Here, Ψ1 is a linear operator described below. Simply
writing x for xn, and y for the set of variables x1, . . . , xn−1, we expand f ∈ R[x] as polynomials in x:

f =
∑
d

fd
xd

d!
, with fd ∈ R[y]. (18)
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The effect of D1 can then be described in the format

D1

(∑
d

fd
xd

d!

)
=
∑
d

[D1(fd) + (d an + bn)fd+1]
xd

d!
. (19)

Setting a := an and b := bn, we now assume that a d+ b 6= 0, for all d ∈ N. Then, the right-hand side of
(19) vanishes if and only we choose f to be such that

fd+1 =
−1

a d+ b
D1(fd), (20)

for all d ≥ 0. Unfolding this recurrence for the fd’s, we find that every element of the kernel of D1 can
be written as f0 + Ψ1(f0), if we define the linear operator Ψ1 as

Ψ1(g) :=
∑
m≥1

(−1)m
Dm

1 (g)

[a; b]m

xm

m!
, for g ∈ R[y]. (21)

Here we use the notation [a; b]m := b (a + b) (2 a + b) · · · ((m − 1) a + b). This leads to the following
theorem.

Theorem 6 The collection of polynomials yr + Ψ1(yr) is a basis for the kernel of D1. In fact, given any
polynomial f in the kernel of D1, its expansion in terms of this basis is simply obtained as

f =
∑
r

ar(y
r + Ψ1(yr)) (22)

with (f mod x) =
∑

r ary
r.

It follows readily that, whenever a d + b 6= 0 for all d ∈ N, the Hilbert series of the dimension of the
kernel of D1 is (1− t)1−n. In view of Theorem 1, this implies that the Hilbert series of the kernel of D̃1

is

1 +

n∑
k=1

(
n

k

)
tk

1

(1− t)k−1
. (23)

In fact, we can get an explicit description of this kernel using (9).
We can generalize formula (21) to get a description of the kernel of Dk as follows. Observe as before

that

Dk

(∑
d

fd
xd

d!

)
=
∑
d

[Dk(fd) + (a d+ b)fd+k]
xd

d!
. (24)

For this expression to be zero, we must have

fd+k =
−1

a d+ b
Dk(fd),

with the same conditions as before on a and b. This recurrence has a unique solution given initial values
for fd, 0 ≤ d ≤ k − 1. Clearly these can be fixed at leisure. Substituting the solution of the recurrence in
f , we get an element of the kernel of Dk if and only if f is of the form

f = (f mod xk) + Ψk(f mod xk),
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with Ψk the linear operator defined as

Ψk

(
k−1∑
r=0

fr
xr

r!

)
:=
∑
m≥1

k−1∑
r=0

(−1)m
Dm
k (fr)

[a k; a r + b]m

xkm+r

(km+ r)!
. (25)

In particular, it follows that the Hilbert series of the kernel of Dk is (1 + t+ . . . tk−1) (1− t)1−n.

5 Some explicit harmonic polynomials
Common zeros of all Dk’s are exactly what we are looking for. Some of these are easy to find when the
Dk’s are symmetric. Let λ be any partition of n, and consider a tableau τ of shape λ, this is to say a
bijection

τ : λ −→ {1, 2, . . . , n},

with λ identified with the set of cells of its Ferrers diagram. Recall that, for λ = λ1 ≥ λ2 ≥ . . . ≥ λk > 0,
the cells of λ are the n pairs (i, j) in N2, such that

1 ≤ i ≤ λj , 1 ≤ j ≤ k.

The value τ(i, j) is called an entry of τ , and it is said to lie in column i of τ . The Garnir polynomial of a
λ-shape tableau τ , is defined to be

∆τ (x) :=
∏
i, j<k

(xτ(i,j) − xτ(i,k)).

In other terms, the factors that appear in ∆τ (x) are differences of entries of τ that lie in the same column.
Now, define Vλ to be the linear span of the polynomials ∆τ , for τ varying in the set of tableaux of

shape λ. In formula,
Vλ := R{∆τ | τ tableau of shape λ}.

In other words, Vλ is the linear span of the ∆τ . It is well known that this homogeneous (invariant)
subspace is an irreducible representation of of Sn of dimension equal to the number of standard Young
tableaux. Moreover, in the ring R[x], there exists no isomorphic copy of this irreducible representation
lying in some homogeneous component of degree lower then that in which lies Vλ. It is easy to check that
the degrees of all of the ∆τ ’s, for a tableau of shape λ, are all equal to

`(λ)∑
i=1

(i− 1)λi,

which is usually denoted n(λ) in the literature (see [4]). This is the smallest possible value for the cocharge
of a standard tableau of shape λ. This fact has the following easy implication.

Proposition 7 For any tableau τ of shape λ, the Garnir polynomial ∆τ (x) is a zero of Dk, for k ≥ 1,
whenever Dk is symmetric.
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A direct consequence of this is that there is at least one copy of each irreducible representation of Sn

inHx, when the Dk’ s are all symmetric. Moreover, under the same conditions, we have∑
λ`n

fλ t
n(λ) � Hn(t),

with “�” denoting coefficient wise inequality, and Hn(t) as in (3).

6 A new regular sequence and a universal dimension bound
The goal of this section is to establish a bound for the dimension of Hx;q which is valid for all values of
q. To carry this out we need some auxiliary results from commutative algebra. Let F be an algebraically
closed field and let θ1(x), θ2(x), . . . , θn(x) be homogeneous polynomials of F[x] of respective degrees
d1, d2, . . . , dn. The following result is basic.

Proposition 8 The polynomials θ1(x), θ2(x), . . . , θn(x) form a regular sequence in F[x] if and only if
the system of equations

θ1(x) = 0 , θ2(x) = 0 , . . . , θn(x) = 0

has, for x ∈ Fn, the unique solution

x1 = 0 , x2 = 0 , . . . , xn = 0.

We next make use of this proposition to study the sequence of polynomials

ϕm(x) :=

n∑
i=1

aix
m
i ,

for m ≥ 0. More precisely we seek to obtain conditions on the coefficient sequence

a = (a1, a2, . . . , an) ∈ Fn (26)

which assure that, for a given k ≥ 1, that the polynomials

ϕk(x), ϕk+1(x), . . . , ϕk+n−1(x)

form a regular sequence in F[x].
We first observe that the polynomials ϕm(x), for m > n, may be expressed in term of the ϕk(x)’s, for

1 ≤ k ≤ n. Indeed, recall that the ordinary elementary symmetric functions er(x) may be presented in
the form of the identity

(t− x1)(t− x2) · · · (t− xn) =

n∑
r=0

(−1)rer(x) tn−r.

Setting t = xi, we obtain
n∑
r=0

(−1)rer(x)xn−ri = 0.
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Multiplying both sides by ai xm−ni and isolating ai xmi , we get

ai x
m
i = −

n∑
r=1

(−1)rer(x) ai x
m−r
i .

Thus, summing up on i, the following recurrence results

ϕm(x) =

n∑
r=1

(−1)r+1er(x)ϕm−r(x). (27)

Unfolding this recurrence, we conclude that ϕm lies in the ideal (ϕ1, ϕ2, . . . , ϕn)F[x], for all m ≥ 1.

Remark 1 It is interesting to observe that identity (27) yields that

ϕ1(x), ϕ2(x), . . . , ϕn(x) (28)

is never a regular sequence when a1 + a2 + · · ·+ an = 0. Indeed, setting m = n in (27), we get

ϕm(x) =

n−1∑
r=1

ϕm−r(x)(−1)r+1er(x) + (−1)n+1en(x)
(
a1 + a2 + · · ·+ an

)
and thus the vanishing of a1 + a2 + · · ·+ an forces ϕn(x) to vanish modulo the ideal

(ϕ1, ϕ2, . . . , ϕn−1)F[x].

Let us now denote
Φkn := (ϕk, ϕk+1, . . . , ϕk+n−1)F[x],

the ideal in F[x] generated by the n polynomials ϕ`(x), with k ≤ ` ≤ k + n − 1. We also write Φn for
Φ1
n. Proposition 8 and (27) combine to yield the following remarkable result.

Theorem 9 For any k ≥ 1 the sequence

ϕk(x), ϕk+1(x), . . . , ϕk+n−1(x), (29)

is regular if and only if the sequence

ϕ1(x), ϕ2(x), . . . , ϕn(x), (30)

is regular.

This given, here and after we need only be concerned with finding conditions on a1, a2, . . . , an that
assure the regularity of sequence ϕ1, ϕ2, . . . , ϕn. The following result offers a useful criterion.

Theorem 10 In the ring F[x], the polynomials

ϕ1, ϕ2, . . . , ϕn
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form a regular sequence if and only if we have

x
(n
2)+1

i ∈ Φn. (31)

When this happens we have the Hilbert series equalities

FF[x]/Φk
n
(t) = [k]t[k + 1]t · · · [k + n− 1]t (32)

and, in particular,
dimF[x]/Φkn = (k)(k + 1) · · · (k + n− 1).

Going along the lines of Remark 1, we are now ready to assert the following characterization of the ai’s
for which we have regularity.

Theorem 11 For k > 1, the sequences

ϕk, ϕk+1, . . . , ϕk+n−1 (33)

is regular if and only if we have
ai1 + ai2 + · · ·+ aik 6= 0, (34)

for all 1 ≤ i1 < i2 < · · · < ik ≤ n.

We intend to derive the consequences of this assumption in the theory of q-harmonics. First, we simply
reformulated every statement modulo the substitution of variables

(a1, a2, . . . , an) 7→ x = (x1, x2, . . . , xn),

x 7→ ξ = (ξ1, ξ2, . . . , ξn),

and we now have
Φkn = (ϕk(ξ), ϕk+1(ξ), . . . , ϕk+n−1(ξ))Fx[ξ].

This given, from Theorem (10) we can derive the following facts about the ring

Fx[ξ1, ξ2, . . . , ξn],

where now, Fx denotes the field of rational functions in x with coefficients in F.

Theorem 12 Let
u1(ξ), u2(ξ), . . . , u(n+1)!(ξ)

be a monomial basis for the quotient
Fx[ξ]/Φkn,

and let deg(ui) = di. Then every polynomial f(ξ) ∈ Fx[ξ], which is homogeneous of degree d, has a
unique expansion of the form

f(ξ) =

(n+1)!∑
i=1

ui(ξ)
∑

∑
k rk(k+1)=d−di

ai;r(x)ϕr11 (ξ), ϕr22 (ξ) · · ·ϕrnn (ξ), (35)

where the coefficients ai;r(x) are rational functions of x, for r ∈ Nn. In particular if d >
(
n+1

2

)
then

f(ξ) ≡ 0 mod Φkn. (36)
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Let us now denote by D(x) the algebra of differential operators with coefficients in Fx. Moreover,
let Dd(x) denote the subspace of D(x) consisting of operators of order d. More precisely we have
D ∈ Dd(x) if and only if D may be expanded in the form

D =
∑
|r|≤d

ar(x) ∂rx (37)

with coefficients ar(x) ∈ Fx such that ar(x) 6= 0 at least once when |r| = d. We are here extending our
vectorial notation to operators, so that

∂rx = ∂r11 ∂
r2
2 · · · ∂rnn

is an operator of order |r| = r1 + r2 + . . .+ rn. The degree condition in (37) imply that the polynomial

σ(D) :=
∑
|r|=d

ar(x) ξr.

does not identically vanish. We will refer to σ(D) as the “symbol” of D.
This given, as a corollary of Theorem (10), we obtain the following basic result for Steenrod operators

Theorem 13 Every operator D ∈ Dd(x) has an expansion of the form

D =

(n+1)!∑
i=1

∑
∑

` rk(k+1)≤d−di

ai;r(x)ui(∂x)Dr1
1;qD

r2
2;q · · ·Drn

n;q

where di = deg(ui) and ai;r(x) ∈ Fx. Note that this holds true for any rational value of q.

We may now establish the main goal of this section.

Theorem 14 For any value of q the dimension of the space of q-Harmonic polynomials in x does not
exceed (n+ 1)!

7 Last Considerations
Further computer experiments suggest that we have

Conjecture 3 The set Da
n of common polynomial zeros of the operators

n∑
i=1

ai ∂
k
xi
∂jyi ,

for all k, j ∈ N such that k + j > 0, is of a bigraded space of dimension (n+ 1)n−1, whenever we have
a = (a1, . . . , an) such that ∑

k∈K

ak 6= 0, (38)

for all nonempty subsets K of {1, . . . , n}.
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Another interesting experimental observation concerning the space of common zeros of D1 and D2

with general operators

D1 :=

n∑
i=1

ai xi∂
2
i + bi ∂i,

D2 :=

n∑
i=1

ci xi∂
3
i + di ∂

2
i ,

is that there seem to be conditions, similar to (38), for which this space is always n!-dimensional.
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