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Efficient algorithms for temporal reasoning are essential in knowledge-based systems. This is central in many areas
of Artificial Intelligence including scheduling, planning, plan recognition, and natural language understanding. As
such, scalability is a crucial consideration in temporal reasoning. While reasoning in the interval algebra is NP-
complete, reasoning in the less expressive point algebra is tractable. In this paper, we explore an extension to the
work of Gerevini and Schubert which is based on the point algebra. In their seminal framework, temporal relations
are expressed as a directed acyclic graph partitioned into chains and supported by ametagraphdata structure, where
time points or events are represented by vertices, and directed edges are labelled with< or ≤. They are interested in
fast algorithms for determining the strongest relation between two events. They begin by developing fast algorithms
for the case where all points lie on a chain. In this paper, we are interested in a generalization of this, namely we
consider the problem of finding the maximum “distance” between two vertices in achain; this problem arises in real
world applications such as in process control and crew scheduling. We describe an O(n) time preprocessing algorithm
for the maximum distance problem on chains. It allows queries for the maximum number of< edges between two
vertices to be answered in O(1) time. This matches the performance of the algorithm of Gerevini and Schubert for
determining the strongest relation holding between two vertices in a chain.

Keywords: graph theory, maximum distance problem, temporal reasoning, analysis of algorithms and data structures

1 Introduction
Temporal reasoning plays a vital role in many domains of Artificial Intelligence including planning, plan
recognition, natural language understanding, scheduling, and diagnosis of technical systems. However,
even when an algorithm for temporal reasoning has reasonable complexity such as linear or quadratic time,
it may still be inadequate for large databases. In addition, if all the temporal precedence information is
stored in a matrix having O(n2) space and requiringΩ(n2) preprocessing, both the storage and processing
are still excessive for large-scale applications. The reality that some temporal reasoning tasks need a large
amount of time and space is noted; for example, the best known algorithm for computing closure in the
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point algebra takes O(n2) space and O(n4) time [GS95]. Thus, research has focused on particular domains
for which extremely efficient algorithms might be developed.

This paper has, as a foundation, the development of the work of Gerevini and Schubert [GS95], the
latest version of which is theTimeGraphIIsystem. The starting point of their technique is on chains,
i.e. sets of linearly ordered time points. After O(n) preprocessing, queries on chains can be answered in
O(1) time. On the other hand, determining the strongest relation between vertices in different chains is
dependent on ametagraphthat ideally should be much smaller than the original graph. In this method, an
arbitrary set of assertions regarding points in time is processed into a directed acyclic graph (DAG) where
time points or events are represented by vertices and directed edges are labelled with assertions among
time points. The DAG is then decomposed intochainsof such assertions which are separated from the
DAG. If the original graph is dominated by chains, the resulting reasoner will be efficient.

There are times in which it is not merely enough to know that an event precedes another but when it is
also useful to bound the number of events (or the amount of time) lying between particular events. We call
this the maximum time separation problem, or in other words, themaximum distance problem. Formally,
the problem is to find the longest weighted path between two vertices in a graph. This problem is the same
as the LONGEST PATH problem [GJ79] and is NP-complete for general graphs. With regard to directed
acyclic graphs or DAGs, the time complexity is O(|V|+ |E|) [CLR90]. For our purposes, we restrict
ourselves to chains and edges with weights of 0 or 1. The parameters of this problem are that≤ edges
have weight 0 and< edges have weight 1, where weights on edges are summed to get distances. Our
technique is based on partitioning the chain into discrete regions calledproper edge regionsand checking
where the events being queried lie in relation to these regions. We show that after O(n) preprocessing
time, queries about the maximum distance between two vertices in a chain can be answered in O(1) time.
This is the same performance as the algorithm of Gerevini and Schubert for reasoning within a chain.

A simple real-world example of an application of the maximum distance problem on chains can be
found in the education domain. The vertices represent courses, the< edges represent the relation of
course prerequisites, and the≤ edges represent the relation of course prerequisites/corequisites. Then, the
maximum distance between two vertices denotes the (maximum) number of courses in sequence required
before a specific course can be taken. This can be valuable in course planning (in realistic university
course requirements, the chains are often quite short though). As well, it is easy to imagine a similar
example in the realm of sports or game competitions. Crew scheduling is a further example of where
this can be useful. A group of workers is denoted by a vertex. The constraint that one group of workers
must start before another group is represented by< edges, and the constraint that one group of workers
must start before or at the same time as another group is conveyed by the≤ edges. Another widely
applicable example is that of the manufacturing or production of goods and other materials. Here, the
vertices represent processes, and the< edges represent the constraint that a process must precede another
process. The≤ edges signify the constraint that a process must precede or occur simultaneously to another
process. The information obtained from the maximum distance between two vertices can be used in the
optimization of resource allocation. While some of these applications may have short chains, it is quite
possible that further applications could be found, say from computational biology. As well, an extension
of our work may well he incorporated in the more general TimeGraphII framework.

Section 2 on the following page describes related work, and Section 3 on page 327 introduces the for-
mal definitions and problem descriptions. The algorithm for the maximum distance problem is explained
in Section 4 on page 329. The formal query algorithm is detailed in Section 5 on page 342 and Section
6 on page 348 describes some extensions to this work. Section 7 on page 349 gives the conclusion and
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future directions.

2 Related Work
Since the results of this paper are largely based on the work of Gerevini and Schubert [GS95], a summary
of their approach is given here. Beginning with arbitrary assertions in thepoint algebra, these assertions
are processed to yield a temporally labelled (TL) graph. The vertices of the TL graph represent time
points with each vertex having its own identifier. The directed edges are labelled with< and≤, and the
undirected edges are labelled with6= or =. Through the method described below, we can convert the TL
graph into a directed graph with only< and≤ edges, none of which are redundant such that there are no
explicit < and≤ relations implied by a transitive path.
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Fig. 1: The two kinds of the implicit< relation. Thin lines indicate paths, and thick lines represent6= edges. In both
of the graphs, there is an implicit< relation between v and w.

First, the “=” relations are eliminated by extracting the strongly connected components from the TL
graph through an algorithm adapted from depth first search. Each strongly connected component is col-
lapsed into a single vertex and all the identifiers of the vertices that make up the strongly connected
component are alternate identifiers for this new vertex. If an edge in a strongly connected component is
labelled with< or 6=, the graph is inconsistent and the process is halted.

A further concern is that ofimplicit < relations. Animplicit < relation is present between a pair of
vertices when the strongest relation implied by the graph among the pair of vertices is<, and no path with
at least one< edge exists between the vertices. These relations occur in two forms, one with a6= edge
as well as a path containing only≤ edges between the pair of vertices (see Figure 1 (a)). The other form,
a 6= diamond, has two separate paths containing only≤ edges between the pair of vertices through two
different intermediate vertices that are connected by a6= edge (see Figure 1 (b)). The implicit relations are
efficiently identified and madeexplicitby adding< edges between the pairs of vertices involved. As well,
the redundant6= relations from the implicit< relations are removed. This step can be the most expensive
of the whole preprocessing, time-wise. However, the time taken is minimized by using the metagraph
structure (below) and for the second form of implicit< relations, by only looking for the smallest6=
diamonds. To state it differently, given a6= edge involving a pair of vertices, a search is made for their
nearest common ancestor and nearest common descendant. The resulting (<, ≤)-graph is then further
processed into structures designed for efficient reasoning.
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In the latest form of the system of Gerevini and Schubert, the focus of temporal reasoning is onchains
of events, where a chain is a path of≤ edges with possible transitive edges linking pairs of vertices on the
≤ path. From the (<, ≤)-graph, a timegraph is created, which is the (<, ≤)-graph partitioned into a set
of time chains such that each vertex is on precisely one chain. The timegraph has a unique source or start
time, and unique sink or end time. This allows each vertexv of the timegraph to be given apseudotime
consisting of the length of the longest path from the source tov, i.e. the≤ rank of v, multiplied by an
increment. The pseudotimes are computed by a slight adaptation of the DAG longest path algorithm.
Vertices within a chain can have anextgreaterlink, an edge connecting a vertex to the closest vertex
known to be strictly greater than the specified vertex based on the edge labels. It takes linear time to
compute pseudotimes, and to compute the nextgreater links within a chain.

The supporting metagraph is composed ofcross-edgesthat join different chains, the endpoints of which
are calledmetavertices. As well, each metavertex has two extra edges associated with it, namely, thenextin
edge that connects the metavertex to the closest vertex on the same chain with an incoming cross-edge,
and thenextoutedge that connects the metavertex to the closest vertex on the same chain with an outgoing
cross-edge. The metagraph, which includes the nextin, nextout and nextgreater edges, can be computed
in linear time. It expresses information represented in the original graph not related by the chains.

If it is assumed that the timegraph is dominated by chains of events, the metagraph is anticipated to
be much smaller than the original. This leads to efficient reasoning algorithms, given that reasoning
within a chain takes constant time. The five cases in which computing the strongest relation entailed by
the timegraph between two time points takes constant time are now described. If the identifiers of two
points are alternate names of the same vertex, the relationship between them is equality. The< relations
are identified by checking if the pseudotime of the head of the nextgreater link of the smaller vertex
(with respect to pseudotimes) is less than or equal to the pseudotime of the larger vertex. Otherwise, if
the pseudotime of one vertex is less than the pseudotime of another, a≤ relation exists between these
vertices. If two points having the same pseudotime are on different chains and there is no6= edge between
them, the relation between them is{=, <,>}. If there is a6= edge between the vertices, the relation
between the vertices is6=, provided that all implicit relations have been madeexplicit. However, to reason
about points in different chains, a standard search of the metagraph that takes O( ˆe) time is needed, where
ê is the number of edges in the metagraph. Gerevini and Schubert [GS95] also discusses point algebra
disjunctions, which is independent of the timegraph and not of interest here. We will also not be further
concerned with the metagraph in this paper.

Other structures and methods for temporal reasoning have been tried as well. Notably, Ghallab and
Mounir Alaoui [MA89] use a lattice of time points undergirded by a maximum spanning tree to attain
an efficient indexing. The system is claimed to be both sound and complete in dealing with the SIA (a
restricted form of the interval algebra comparable to the point algebra) by Ghallab and Mounir Alaoui
[MA89]. However, it was later shown to be incomplete for6= relations. Its performance for updating and
retrieving a set of temporal relations is linear with a small constant on average.

Dorn [Dor92] uses sequence graphs to reduce the time and space required by a variable but signifi-
cant amount for temporal reasoning in technical processes such as monitoring, diagnosis, planning and
scheduling in expert systems. A sequence graph is made up of at least one sequence chain and other in-
tervals that are only loosely attached to chains. Sequence chains are based on the observation that events
in technical domains frequently occur one after another. In addition, execution of the processes is often
uninterrupted for a long period of time. Only “intermediate” relations are stored, yet the techniques that
are used allow no loss of information. The approach of Dorn [Dor92] is interval based.
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Furthermore, Delgrande and Gupta [DG96] give an O(n) preprocessing algorithm that permits arbitrary
< and≤ queries about events in the point algebra to be answered in O(1) time in the class of series parallel
graphs. Series parallel graphs have been used to model process execution in addition to varied planning
and scheduling applications. The work of Van Allen et al. [VADG98] is an extension of the technique
of Delgrande and Gupta [DG96] for series-parallel graphs embedded in general graphs. It achieves a
similar performance to the methods of Gerevini and Schubert in which chains are the main components
of consideration as opposed to series parallel graphs.

3 Preliminaries
A directed graph Gis a pair(V,E), whereV is a set of vertices andE is a set of edges,E ⊆V ×V. The
graphs that we use are all finite and simple, that is, there are no self loops. For a directed edgee=(vi , v j ),
vi is the tail ofe andv j is the head ofe. A path fromvi to v j of lengthk in a graphG is a sequence of
vertices(v1,v2, . . . ,vk), such thatvi = v1, v j = vk and(vℓ−1,vℓ) ∈ E for ℓ=2 to k. The path contains the
vertices(v1,v2, . . . ,vk) and the edges(v1,v2), (v2,v3), . . ., (vk−1,vk). A path fromvi to v j is a cycle ifvi

=v j . A directed acyclic graph(DAG) is a directed graph with no directed cycles. In a DAG, if there is
a path fromvi to v j , we say thatvi is an ancestor ofv j andv j is a descendant ofvi . See Cormen et al.
[CLR90] for more details.

A timegraph that is based on a single chain is a DAGG= (V , E), where the vertex setV represents a
set of time events(v1,v2, . . . ,vn) occurring along a time line, and the edge setE denotes< and≤ relations
among time events [DG98, GS95]. For a vertexv j , j is referred to as the rank ofv j andv j is identified and
referred to asj. The time that the event denoted byvi happened is represented byt(vi). There are edges
(vi , vi+1) labelled with≤, for i=1 ton−1. The set of edges labelled with≤ is calledE≤; E≤ together with
V corresponds to a chain within the timegraph. As well, there are two distinguished events, namely the
source,v1, and the sink,vn, such thatt(v1) ≤t(vi) ≤ t(vn), for all vi ∈ V . All vertices except the source
and the sink have one outgoing≤ edge and one incoming≤ edge. The set of edges that is labelled with<

is referred to asE<, such that if (vi , v j ) ∈ E<, theni < j. This is interpreted to mean that eventvi happens
strictly before eventv j , i.e. t(vi) < t(v j). E is the union ofE≤ andE<.

We assume that there are no< redundant edges. As such, thecovering assumptionstates that a distinct
< edge(a,b) cannot exist when there is a< edge(c,d) that subsumes(a,b) such thata ≤ c < d ≤ b
(refer to Figure 2). From this, it can be seen that all vertices except the source and the sink have at most
one outgoing< edge and at most one incoming< edge. The reason for this is that if two different edges
terminate at the same vertex, they must start at different vertices and so one completely encloses the other,
and vice versa.

Formally, the central problem of interest is the following:

Name: MAX DIST

Instance: G = (V ,E), a time graph based on a single chain, which is a DAG and satisfies the covering
assumption.

Problem: Find a representation ofG that allows the length of the longest path (maximum distance)
between any two verticesa, b ∈ V (a < b) to be computed by a constant time procedure. Here,
maximum distance is measured by assigning≤ edges weight 0 and< edges weight 1.
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Fig. 2: Edge(c,d) subsumes(a,b) making(a,b) redundant.

The maximum distance between two verticesa andb, is interpreted to be the maximum number of
< edges in a path between the vertices and is referred to asdistance(b,a). The statement that a vertexa
is of distanced from another vertexb is interpreted to mean that time eventb occurs at leastd time units
after time eventa. If time is discretized, it can also be interpreted to mean that at leastd−1 time events
occur betweena andb. For every vertexv∈ V , the maximum distance from the source tov is known as
sourceDistance(v). The expressionsourceDistance(b,a) is sourceDistance(b)− sourceDistance(a) and is
known as the difference distance betweena andb.

3.1 Definitions associated with the Actual Algorithm

Let G = (V ,E) be a chain and letv be a vertex inV . Then, the closest vertex onG that is known
to be strictly greater thanv is referred to asnextGreater(v) [GS95]. If such a vertex does not ex-
ist, nextGreater(v) is ∞. As well, the closest vertex onG that is known to be strictly less thanv is
called previousLesser(v). If such a vertex does not exist,previousLesser(v) is −∞. The first< edge
in the nextGreater traversal from vertexa to vertexb is the <-edge that determines thenextGreater

of vertex a which we will call (vi ,vi+1). The next< edge in the traversal which is denoted by
(vi+2,vi+3) is the edge that determines thenextGreater vertex of vi+1, i.e. nextGreater(vi+1) = vi+3.
The last< edge in the sequence of< edges is(v j−1,v j), the edge that determines thepreviousLesser

of vertex b. Zero or more intervening≤ edges may lie in between the<-edges, and as such,vi

could bea and v j could beb. In Figure 3, thenextGreater traversal from vertex 2 to vertex 20 in-
cludes the< edges(3,6), (6,10), (11,14) and (17,19). Formally, thenextGreater traversal from
vertex a to vertexb, a < b, ngTraversal(a,b) is a path froma to b in G that contains the< edges
(vi ,vi+1),(vi+2,vi+3), . . . ,(v j−1,v j) wherevi+1 = nextGreater(a), vi+2k+1 = nextGreater(vi+2k−1), 1 ≤

k≤ j−i−1
2 andv j−1 = previousLesser(b). Then, the number of< edges in thenextGreater traversal from

a to b is denoted by‖ngTraversal(a,b)‖. Observe that the difference distance betweena andb can be
expressed as‖ngTraversal(source,b)‖− ‖ngTraversal(source,a)‖. The path induced by the difference
distancecan be interpreted asngTraversal(source,b)−ngTraversal(source,a) in which “−” refers to the
set difference of sets of edges. The number of< edges in this path is equal tosourceDistance(b,a).

A < edge(u,v) is aproper edgeif (u,v)∈ ngTraversal(source,sink). A < edge that is not a proper edge
is anon-proper edge. For a< edge(vi ,v j), the associatedregionis the subsetV ′ ⊆ V connected with the
chainG whereV ′ = {vi+1,vi+2, . . . ,v j−1}. We can speak of the outgoing< edges or incoming< edges
of a region if their tail or head is one of the vertices of the region, respectively, and the other vertex is
outside the region. The region associated with a proper edge is known as aproper edge region. The chain
is divided intop disjoint proper edge regions,R1,R2, . . . ,Rp in ascending order of vertex indices, wherep
is the number of proper edges.
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Fig. 3: The different cases for the query algorithm.

4 An O(1) Time Solution for the MAX DIST Problem
In this section, we present an O(1) time query algorithm and an O(n) time preprocessing algorithm for the
MAX DIST Problem.

4.1 An Overview of the Algorithm
In this section, we describe the main ideas of our algorithm. Suppose we want to compute the maximum
distance between two verticesa andb, a < b in a chainG without preprocessing. The maximum distance
from a to b in G is the number of< edges in thenextGreater traversal froma to b, i.e. ‖ngTraversal(a,b)‖.
This follows from the covering assumption which implies that< edges cannot be contained in each other.
It can be seen that simplistically, it would take O(n) time to compute this distance.

The obvious way to preprocess the chain to allow for constant time queries would be to use the differ-
ence distance as the maximum distance. However, this only serves as an estimate for‖ngTraversal(a,b)‖,
since the maximum distance may be one less than the difference distance. An example of this can be seen
in Figure 3 whena is 15 andb is 19. Difference distances can be easily computed using an adaptation
of the Gereveni and Schubert algorithm for chains. The fact that the maximum distance is either equal to
the difference distance or one less than the difference distance is proven in Corollary 2 in Section 5 on
page 342.

1. If a is outside a proper edge region, the maximum distance is equal to the difference distance no
matter whereb is aftera. This is because the path induced by the difference distance is exactly
ngTraversal(a,b). For an illustration of this case, see Figure 3 witha as 8 andb as 22.

2. If a and b are in the same proper edge region, the maximum distance betweena andb is zero by
the covering assumption. For an example of this case, consider Figure 3 witha as 10 andb as 11.

3. If a is inside a proper edge region, and b is not in the proper edge region that a is in, then we must
consider two other cases:

(a) If there is no< edge e leaving the proper edge region that a is in such thattail(e) ≥ a, the
maximum distance is equal to one less than the difference distance. This is because the proper
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edge of the proper edge region thata is in, i.e. the first< edge in the path induced by the
difference distance, is counted in the difference distance when it is not on a path froma to b.
Consider Figure 3 witha as 15 andb as 19, for an example of this case.

(b) If there is a< edge e leaving the proper edge region that a is in such thattail(e) ≥ a, a short
discussion follows before the actual subcases are described. The rest of this section is devoted
to characterizing the intricacies of this case.

A non-proper pathis a maximalnextGreater traversal that begins with the tail of a< edge that is inside
a proper edge region. It terminates with a< edge(u,v) such that the edge that determinesnextGreater(v),
nextGreaterEdge(v) is a proper edge ornextGreater(v) = ∞. The non-proper path starting immediately at
or aftera is known as thenonProperPath(a). The vertex where thenonProperPath(a) terminates is known
asterminal(a). The pathnonProperPath(a) is equivalent tongTraversal(a, terminal(a)). Whenb is before
terminal(a), there are two possible cases. To see these cases, first let the< edges of thenonProperPath(a)
be e′1,e

′
2, . . . ,e

′
ℓ. Let e1,e2, . . . ,eℓ be proper edges such thattail(ei) < tail(e′i) < head(ei), for i=1 to ℓ.

Refer to Figure 3 for a clear picture of this. The difference distance countse1,e2, . . . ,eℓ but the maximum
distance must counte′1,e

′
2, . . . ,e

′
ℓ. Now, if head(ej)≤ b≤ head(e′j)−1 for somej, the maximum distance

corresponds to one less than the difference distance. This is becauseej is counted in the difference distance
whene′j has not terminated yet. Otherwise,head(e′j) ≤ b≤ head(ej+1)−1 for somej, and the maximum
distance is equal to the difference distance. This is becauseej has been already counted in the difference
distance and now the correspondinge′j has terminated as well.

To differentiate between these two cases, we introduce a labelling scheme on non-proper paths. In
particular, an (essentially) unique numeric label is assigned to each distinct non-proper path. One problem
with this is that non-proper paths can merge, i.e. the next non-proper edge of at least two distinct non-
proper paths is the same (in Figure x3,terminal(6) = terminal(7) = 14). When this occurs, we assign all
the labels of the paths being merged to be the label of the merged path. In this way, we keep track of
where thenonProperPath(a) terminates. This will allow us to differentiate between Case 3(b)i and 3(b)ii
of this algorithm, i.e. to determine ifb is less thanterminal(a). We assign the labels using integers so that
the merged non-proper paths are labelled with a contiguous range of numbers. For uniformity, we extend
this and write all the labels as a range of integers. The label[a,b] includes all numbers in the range froma
to b inclusive. In practice, all the< edges of a non-proper path will be labelled with the label of the path.

While the actual algorithm is detailed in Section 4.3 on page 334, some features of our labelling
algorithm are noted here. A very important attribute of the labelling scheme is that for each proper edge
region, the incoming and outgoing< edges of the region are labelled in ascending order of heads and
tails, respectively. This is known as theordering condition. To see a very basic example of this, consider
the proper edge region{6, 7} in Figure 3. The tail of the edge (6, 10) with label [1, 1] which is 6 is less
than the tail of the edge (7,11) with label [2,2] which is 7. In addition, the proper edges themselves are all
labelled with [0,0]. Finally, labels of non-proper paths are sometimes reused when this creates no danger
(see Figure 4‡) and thus are not entirely unique.

(continuing 3(b))
i. If b < terminal(a),
A. If the low endpoint of the label ofnextGreaterEdge(a) is less than or equal to the high endpoint

of the label of the edge that determinespreviousLesser(b), previousLesserEdge(b), then the

‡ Note that in the color diagrams, the right-hand side of the boxes should have arrows.
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maximum distance is equivalent to the difference distance. This is due to the fact that when this
condition holds,head(e′j) ≤ b≤ head(ej+1)−1 for somej, by the ordering condition (and the
covering assumption). Observe Figure 3 witha as 3 andb as 10 to see an example of this.

B. If the low endpoint of the label ofnextGreaterEdge(a) is more than the high endpoint of the
label ofpreviousLesserEdge(b), then the maximum distance is equal to one less than the dif-
ference distance. This is because when this condition holds,head(ej) ≤ b≤ head(e′j)−1 for
some j, again due to the ordering condition. Observe Figure 3 witha as 2 andb as 8 to see an
instance of this.

ii. If b≥ terminal(a),

A. If the nonProperPath(a) terminates outside a proper edge region, the maximum distance is
equal to the difference distance. This is similar to Case 1. Notice Figure 3 witha as 18 andb
as 22 to see an example of this.

B. If thenonProperPath(a) terminates inside a proper edge region,

• If terminal(a) and b are in the same proper edge region, the maximum distance corresponds
to the difference distance. This is similar to Case 2. Notice Figure 3 witha as 3 andb as 15
to see an instance of this;terminal(a) is 14.

• If b is not in the proper edge region thatterminal(a) is in, the maximum distance is equivalent
to one less than the difference distance. This is analogous to Case 3(a). Notice Figure 3 with
a as 2 andb as 19 to see an instance of this.

For the formal description of the querying algorithm, see Section 5 on page 342.

4.2 Some Simple Heuristics

Before we describe the actual algorithm that solves the MAX DIST problem in more detail, we will point
out the inaccuracies of one of the many simple heuristics which we have tried unsuccessfully. This will
provide a deeper appreciation of our more complex solution.

Supposea andb are vertices of a time chainG , a < b. Then, as previously noted,sourceDistance(b,a)
can be eitherdistance(b,a) or distance(b,a)+1. We can definesinkDistance(b,a) in a similar way, noting
that it can also be at mostdistance(b,a)+1. Define theoutgoing intervalof a vertexv as the interval from
v to the tail ofnextGreaterEdge(v) inclusive. Likewise, define theincoming intervalof v as the interval
from the head ofpreviousLesserEdge(v) tov inclusive. Now, it is less intuitive that if we take the minimum
of both the source and sink distances over the outgoing interval ofa and the incoming interval ofb, the
result can still be off by one.

Consider Figure 5 whenb is 27. This induces an incoming interval of [25, 27]. We consider two
possible instantiations fora for this example, namely,a′ which is 2 inducing an outgoing interval of
[2, 3] anda′′ which is 4 inducing an outgoing interval of [4, 4]. The incoming interval has a uniform
sourceDistance of 3 andsinkDistance of 1. The two outgoing intervals have a uniformsourceDistance

of 0 andsinkDistance of 4. Based on the heuristic, the maximum distance between botha′ andb anda′′

andb should be 3. However, this is only true of the maximum distance betweena′ andb; the maximum
distance betweena′′ andb is 2.

The problem is that we cannot tell which ofhead(e′j)≤b≤ head(ej+1)−1 orhead(ej)≤b≤ head(e′j)−
1 (assuming the same definitions from the previous section) holds. To put it differently, there is no way to
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[0,0] [0,0] [0,0]              [0,0] [0,0]
               [2, 2]   [1,1]                                [2, 2]                                                          [2, 2]                                 [2,2]
                                                            [3, 3]                                                                                    [3, 3]                                 [3, 3]                                              
                     [4, 4]   [5,5]                                 [4, 4]

1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21      22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

[0,0] [0,0] [0,0]              [0,0] [0,0]
                    [1, 1]                          [1, 1]                                                                 [1, 1]                     [1, 1]
                                                                                                       [2,2]
                    [3, 3]                                                                             [3,3]    [2, 3]                                                                       [2, 3]]                          

1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21       22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

             [0,0] [0,0] [0,0]              [0,0] [0,0]

                  [1, 1]                                 [1, 1]                                                    [1, 1]                                       [4,4]                  
                         [2, 2]                                                                                          [2,2]
                         [3, 3]                                                                                           [3,3]

  1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21      22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

                [0,0] [0,0] [0,0]              [0,0] [0,0
                 [1,1]                                       [1,1]                                                                                              [4,4]
                              [2,2]                                       [2,2]                                                                                                  [5.5]
                           [3,3]                                               [3,3]                                                                                        [6,6]

        1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21      22     23    24    25    26    27    28    29    30    31     32     33    34     35    36
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                0                                          0                                                     0                                       0                                      0
                      1                                                 1                                 1

                                                       2                                                    2                                              2                 

1       2       3      4       5      6      7      8      9      10    11      12      13     14     15      16     17     18     19      20    21      22     23    24    25    26    27    28    29    30    31     32     33    34      35      36

The proper edges are black.
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know thatpreviousLesserEdge(b) is not onnonProperPath(a′′) and it actually ends before the correspond-
ing non-proper edge ofnonProperPath(a′′) ends. In addition,terminal(a) must be taken into account in
the computation of maximum distances.

4.3 The Labelling Algorithm

4.3.1 General Description
Now is a good opportunity to define the following fields that the formal querying algorithm in Section 5
on page 342 uses in addition tonextGreater(v), previousLesser(v) andsourceDistance(v) for all vertices
v of G :

startProperEdge(v) is the tail of the proper edge of the proper edge region containingv, if v is inside a
proper edge region. Ifv is outside a proper edge region,startProperEdge(v) = ∞.

labelNextGreater(v) is the label attached tonextGreaterEdge(v) and it is computed by the labelling
algorithm described in this section. IfnextGreater(v) = ∞, it is undefined.

labelPreviousLesser((v) is the label attached topreviousLesserEdge(v) and it is computed by the la-
belling algorithm described in this section. IfpreviousLesser(v) = −∞, it is undefined.

terminal(v) is the last vertex innonProperPath(v). It is used to differentiate between the case when there
is no non-proper edgee leaving the proper edge region thatv is in such thattail(e) ≥ v and the
instance when there is such an edge. It is undefined in the former instance; an example of this in
Figure 3 is thatterminal(15) is undefined. Whenv is outside a proper edge region and before the
head of the last proper edge in the chain, thenterminal(v) will correspond to the head of the last
proper edge in the chain (in Figure 3,terminal(16) = 22). If v is at or after the head of the last
proper edge in the chain,terminal(v) is undefined (in Figure 3,terminal(22) is undefined).

Our preprocessing algorithm labels the proper edges and assigns the terminal fields that are associ-
ated with proper edges, while thestartProperEdge andsourceDistance fields are being calculated. The
nextGreater field is computed by the mechanisms detailed in [GS95] prior to this. Subsequently, the la-
belling algorithm assigns labels to all the non-proper edges in a chain. In addition, it also assigns the
terminal fields associated with all the non-proper paths. Care must be taken to ensure that the resulting
labels obey the ordering condition as it is a vital part of the correctness of the query algorithm. Note that
the labels are assigned in two passes through the chain. The purpose of the first pass of preprocessing
for the label assignment of the second pass is twofold: to calculate the count of distinct numbers used in
the entire labelling and to compute the size of the range of the label of each individual non-proper edge§.
The count of distinct labels needed is basically equivalent to the number of distinct non-proper paths in
the chain, since each non-proper edge must have its own label. However, when a non-proper path has
terminated, its label can be reused. When non-proper paths merge, the merged path is not included in the
count. In addition, the size of the range of a label is always one except where several non-proper paths
merge into one path. Then, the size of the range of the label is the sum of the sizes of the ranges of the
labels of the “last”< edges of the non-proper paths merging together.

The first pass considers each proper edge region one by one from the source to the sink (see Fig. 6).
Computing the number of distinct labels needed and calculating the size of the range of a label is done in

§ If we let a label assigned in this fashion be[ℓ,h] and the size of its range bes, ℓ = h−s+1.
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the same way. To compute these values, the pattern of the heads of the incoming< edges and the tails of
the outgoing< edges for each proper edge region is examined (refer to the following section for a more
complete description of this).

The second pass involves assigning labels that form a contiguous interval of the positive integers using
the information gathered in the first pass. In addition, it assigns theterminal fields associated with non-
proper paths. This pass scans each proper edge region in turn from thesink to the source, the reverse
of the first pass. The first proper edge region considered is the nearest proper edge region from the sink
having outgoing edges. It is interesting to observe that if the second pass would scan from source to sink,
fractional labels could be required and this would result in significant complications. Thus, to label the
outgoing edges in a proper edge regionRi , we do the following:

1. If Ri+1 has no outgoing edges orRi = Rp (defined in Section 3.1 on page 328, i.e. the last proper
edge region of the chain), the outgoing edges are processed in decreasing tail order. These edges are
then given labels, the high endpoint of which is the value of the next number to be used in a label.
The low endpoint of the labels is based on the size of the range of the label of the edge together
with the high endpoint of the labels . After each label is assigned, the next number to be used is
decremented by the size of the range of the label. Note that the next number to be used in a label
is initially set to be the number of labels needed, which was determined in the first pass. Some
examples of this case are the labelling of (28,35) and (25,33) in the first chain and all the< edges
of the last chain except (2, 9), (3, 10), and (4, 11) in Figure 7.

2. Otherwise, the outgoing edges ofRi that are part of a non-proper path for which at least one edge
has been labelled are identified (see next section for more details). This is important since the labels
of all the< edges of a particular non-proper path are the same up to a partition of a range (when the
path is considered in reverse). This is done by examining the pattern of the heads of the incoming
edges (outgoing edges ofRi) and the tails of the outgoing edges ofRi+1.

(a) If there is no such edge, Case 1 is applied. An instance of this case us the labelling of (18,23),
(19, 26) and (20,27) in the third chain in Figure 7.

(b) If there is at least one such edge, each edge is labelled appropriately. Let the edges labelled
in this way bee′′1,e

′′
2, . . . ,e

′′
y in increasing tail order. Let the label ofe′′1 be [ℓ1,h1] and let the

label ofe′′y be[ℓy,hy]. Some illustrations of this case are the labelling of all the< edges in the
second chain except (26, 34) and (27, 35) and the< edges (2, 9), (3, 10), and (4, 11) in the
last chain in Figure 7.

(c) Any remaining outgoing edges ofRi with lower tails thane′′1 are labelled in decreasing tail
order. The high endpoint of the first edge to be labelled this way isℓ1−1. After each label is
assigned in this fashion, the next number to be used is decremented by the size of the range of
the label. An example of this is the labelling of (2,7) in the first chain in Figure 7,

(d) As well, any remaining outgoing edges with higher tails thane′′y are labelled in increasing tail
order. The low endpoint of the first edge to be labelled this way ishy + 1. Two examples of
this are the labelling of (3,10) and (4, 11) in the third chain in Figure 7,

See Figures 4 and 7 for clarification.
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First Pass

            1(1)

                 2(1)                            (1)                                                          (1)                                       (1)
                                                                   5(1)                                                   5(1)                                   (1)
                   3(1)          4(1)                               (1)
1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21      22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

                              1(1)                         (1)                                                      (1)                                 (1)
                                                    3(1)
                       2 (1)                             (1)                                                         (2)                                                (2)                                 

1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21       22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

                 1(1)                              (1)                                                       (1)                                      4(1)
                         2 (1)                                                                                   2(1)
                         3 (1)                                                                                        3(1)

  1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21      22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

                1(1)                                  (1)                                                                                                 4(1)
                             2(1)                            (1)                                                                                              5(1)
                            3(1)                              (1)                                                                                                      6(1)                                                                                       

        1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21      22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

c(d) on an  edge e means that  on encountering e, the number  of distinct labels  is incremented to c and the size of the range of the  label of
e is d.  c is   omitted when e is not the first < edge of a non-proper path. Note that in the first chain after R3, the number  of distinct labels
needed is 3.
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When theterminal of a non-proper path is encountered during this pass of the labelling algorithm, it is
indexed under all the numbers included in the range of the label of the last< edge of the non-proper path.
Then, to fill theterminal fields of the vertices in a proper edge region immediately preceding a< edge of
a particular non-proper path, the information indexed under the lower endpoint of the label of the edge
is retrieved. This is a default; the upper endpoint of the label could be used instead for the same effect.
Naturally, this is done after the outgoing edges of the proper edge region have been assigned labels. As
an example, let us reflect on the second chain of Figure 4. We register 35 as theterminal under indices 2
and 3 and then 34 as theterminal under index 1. Consider theterminal field assignments inR4, i.e. {25,
. . ., 28} (the rest are similar). Vertices 25 and 26 get theterminal field indexed under 1, i.e. 34, and vertex
27 gets theterminal field indexed under 2, i.e. 35.

In other words, for any vertexv, terminal(v) is determined by the value indexed under the lower end-
point of labelNextGreater(v), given thatnextGreaterEdge(v) is a non-proper edge. This is a default; the
upper endpoint of the label could be used instead for the same effect. This is because of some properties
of merging process; see Observations 3 and 5 in Section 4.3.3 on page 339. In addition, observe that the
reuse of labels causes no problems, due to Observation 4.

4.3.2 Some More Details
Here, we explain in further detail the way in which the number of distinct labels and the size of the range
of the label for each non-proper edge are computed in the first pass of the algorithm.

We will focus on a single proper edge region,Ri . We inspect the sequence of heads of incoming edges
and the tails of outgoing edges ofRi from left to right. If there are no heads of incoming edges immediately
before the tail of a particular outgoing edgeeo,k, the count of distinct labels required is incremented by
one. As well, the size of the range of the label ofeo,k is one. This is due to the fact thateo,k is the first<
edge of a non-proper path. Otherwise when there is at least one head of an incoming edge immediately
before a particular outgoing edgeeo,k, the count of distinct labels needed is not incremented. The cause of
this is that under these conditions,eo,k is part of a non-proper path which has been already encountered. In
other words, each incoming edgeei, j immediately before the tail of a particular outgoing edgeeo,k satisfies
nextGreater(head(ei, j)) = head(eo,k); this is referred to as thenextGreater condition. Thus, the size of the
range of the label ofeo,k is the sum of the sizes of the ranges of the labels of each of the incoming
edges, the heads of which are immediately beforeeo,k. For every successive head of an incoming edge
encountered, this sum is accumulated. As an example of this, consider the second chain of Figure 6. The
size of the range of the labels of (10, 19) and (11,20) is 1, but the size of the range of the label of (20, 27)
is the sum of these ranges which is 2.

When there is no outgoing edge following a sequence of at least one incoming edge, we subtract the
accumulated sum from the number of distinct labels required, provided that thenextGreater condition has
been satisfied at least once forRi . This is because in that situation, Case 2(d) applies for the second pass.
When we do the subtraction, the range of contiguous numbers used in the entire labelling will always have
a lower endpoint of 1. An example of this case is found in the third chain of Figure 6. Upon encountering
the heads of (3,10) and (4, 11) inR2, the count of distinct labels needed is decremented to 1 from 3. Then,
after we reach the tail of (19, 26) inR3, the count of distinct labels is 2. If the subtraction would not be
done, the label for (2,9) would be 3 and not 1.

For the second pass of the labelling algorithm, the process of identifying the< edges belonging to
particular non-proper paths that have been previously encountered is similar to the above method. To
recognize the outgoing edges ofRi that are part of a non-proper path for which at least one edge has been
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Second Pass

                  (1)   5(0)                              (1)                                                  (1)                                                  2(1)
                                                            3(1)                                                                                      (1)                                        1(2)
                   (1)                6(0)                                    4(1)

1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21      22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

                       (0)                             (0)                                                                 (0)
                                                                                                       (0)                                                                                 2(0)                                                                                                                                                                                              
                      (0)                                                                            (0)              (0)                                                                      1(1)

1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21       22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

                  (0)                                (0)                                                       4(0)                                     1(3)                  
                        5(0)                                                                                          3(1)
                         6(0)                                                                                            2(2)

  1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21      22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

                   (0)                                      6(0)                                                                                             3(3 )
                              (0)                                       5(1)                                                                                               2(4)
                           (0)                                               4(2)                                                                                        1(5)

        1       2       3      4       5      6      7      8      9      10   11      12      13     14     15      16     17     18     19      20    21      22     23    24    25    26    27    28    29    30    31     32     33    34     35    36

c(d) on an  edge e means that the non-proper path of e is the “c”th in line to be assigned a label and the next number to be used for a label
on encountering e is d.  c is  omitted when e is not the last < edge of a non-proper path.
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labelled, we examine the sequence of heads of incoming edges and the tails of outgoing edges ofRi+1

from left to right. Once the outgoing edge following a sequence of incoming edges (we keep track of the
first and last edges of this sequence) is reached, we go back and label the incoming edges according to the
label of the outgoing edge and the size of the ranges of the labels of the incoming edges. To assign labels
to the incoming edges ofRi+1 (outgoing edges ofRi) for which thenextGreater condition can be met, the
following rules are applied:

First, assume that for an intervalI = [ℓ,h], first(I) = ℓ, last(I) = h. Let the size of the range
of the label of a non-proper edgeebe|label(e)|, label(e) being the label ofe.

Now, if nextGreater(head(ei, j)) = head(eo,k), for j = g to f ¶ in ascending head order,

label(ei,g) = [first(label(eo,k)),first(label(eo,k))+ |label(ei,g)|−1] .

For j = g+1 to f ,

label(ei, j) =
[

last(label(ei, j−1))+1, last(label(ei, j−1))+
∣

∣label(ei, j)
∣

∣

]

.

Note that we must keep track of the first incoming edge ofRi+1 for which thenextGreater condition
cannot be met, so as to carry out Case 2(d) of the second pass when it is necessary.

As an example, let us consider the labelling of the outgoing edges ofR2 of the second chain of Figure 4.
It is determined thatnextGreater(head((9,18))) = head((18,25)), solabel((9,18)) = [1,1+1−1] = [1,1].
Next, it is determined thatnextGreater(head((10,19))) = nextGreater(head((11,20))) = head((20,27)),
solabel((10,19)) = [2,2+1−1] = [2,2] andlabel((11,20)) = [2+1,2+1] = [3,3].

4.3.3 Properties of the Labelling Algorithm
Rational numbers present problems in terms of storage and access. This is especially significant in terms of
computing and assigning theterminal fields, and rational number labels would cause undue complications
in the labelling scheme. Consequently, the following three observations are important.

Lemma 1 All the outgoing edges of a proper edge region for which thenextGreater condition can be met
are labelled.

Proof: Suppose that there is a gap between the outgoing edges of a proper edge region for which the
nextGreater condition can be met that are labelled. Then, there has to be at least one unlabelled edgeey

between two edgesex andez labelled arbitrarily with[ℓx,hx] and[ℓz,hz] respectively, among the outgoing
edges of the proper edge regionRi . This case must hold after all the outgoing edges of a proper edge region
for which thenextGreater condition can be met have been identified and assigned labels. In addition,
assume thatex, ey andez are in ascending tail order. For this to be true, outgoing edges labelled with
[ℓx,hx] and[ℓz,hz] respectively must be consecutive inRi+1. There are two possible ways that there is no
edge with a label that corresponds toey in Ri+1. One way is when the head ofey is outside a proper edge
region and betweenRi andRi+1. However, to obey the covering assumption, the head ofex must also be
outside a proper edge region betweenRi andRi+1. Thus, the premise that edges labelled[ℓx,hx] and[ℓz,hz]
respectively are consecutive inRi+1 andey has no label is violated. This is because thenex would not get

¶ The variablesf andg are merely used for “indexing”.
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its label from an edge labelled[ℓx,hx] in Ri+1 (see Figure 8(a)). The other way is that the heads ofex, ey

andez are inRi+1 and are all in ascending order. Again, a contradiction is reached since nowey should
get its label from the edge inRi+1 that is part of the same non-proper path whichez is a part of;ey andez

merge into one path (refer to Figure 8(b)). The statement of the lemma follows from this.✷

Lemma 2 The labelling algorithm labels every non-proper edge.

Proof: For the proper edge regions in which Case 1 of the second pass of the labelling algorithm applies,
it is fairly obvious that all the outgoing edges are labelled since the labelling proceeds through all the
outgoing edges one by one in decreasing tail order.

For the proper edge regions in which Case 2 of the second pass of the labelling algorithm applies, it
suffices to know that the edges labelled in Case 2(b) form a contiguous “block” of labelled edges. By
Lemma 1 and the property ofnextGreater fields that all the vertices immediately before a< edge have
the head of the edge as theirnextGreater field value, this holds. As an aside, it is interesting to note that
the outgoing edges with lower tails than those in the block (when they exist) all end outside a proper edge
region. All the outgoing edges with tails lower than those of the block are labelled in descending tail order
in Case 2(c). In addition, all the outgoing edges with tails higher than those of the block are labelled in
ascending tail order in Case 2(d). Since every non-proper edge is a outgoing edge of some proper edge
region by the covering assumption, the lemma follows from this.✷

Claim 1 Fractional labels are not needed when using the labelling scheme described.

Proof: This follows from Lemmas 1 and 2.✷
The following claim expresses an essential attribute for the labelling scheme to enable the query algo-

rithm to function correctly.

Claim 2 The ordering condition holds.

Proof: The proof is by construction of the labels.✷

It is important that the labels of non-proper paths form a contiguous interval of the positive integers
so that when non-proper paths merge, the label ranges are consistent and theterminal fields are retrieved
properly.

Claim 3 The numbers used in the labels of non-proper paths form a contiguous interval of the positive
integers.

Proof: The proof is by construction of the labels.✷

A couple more characteristics of the labelling algorithm follow.

Claim 4 The label of a non-proper path can be reused after the path has terminated or before the path
has started, and this is the only time that labels are reused by the labelling method.

Proof: As long as there is a< edge of a particular non-proper path in a proper edge region, the label of
that non-proper path is in a sense “reserved”. This is because the label of all the< edges of a particular
non-proper path is the same up to a partition of a range (when the path is considered in the sink to source
direction). Since a label of a non-proper path only needed for the span of the path, it can be safely reused
in proper edge regions outside this span. The only situation when labels may be reused is in Case 2(d) of
the labelling algorithm. Observe Figure 4 which shows the label assignment for the same chains shown
in the first pass and second pass illustrations of Figures 6 and 7 for examples of label reuse; for example,
the< edges (3, 10) and (19, 26) as well as (4, 11) and (20, 27) in the third chain have the same labels.✷
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                                             Ri                                                                         Ri+1

                                                         ez [

�

z, hz]                                                                  [

�

z, hz]
                                              ey                  [

✁

y, 

✁

z-1]                                                                                 
                                      ex                               [

✂

x, 

✂

y-1]     

(a)

                                             Ri                                                                         Ri+1

                                                         ez                           [

✂

z, hz]
                                              ey                                                               [

✁

y, hy]                                                                   [

✂

y, hz]
                                      ex                                                                           [

✂

x, hx]                                                                     [

✂

x, hx]

(b)

There can be any number of < edges, the tails of which are before the tail of  ex or after the tail of  ez in Ri. The < edges shown are the bare
minimum.
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Claim 5 Distinct label ranges associated with a particular proper edge region are not overlapping, i.e.
if a < edge ei with a label of[c,d] and a< edge ej with a label of[e, f ] are both entering or leaving the
same proper edge region, either d< e or f < c.

Proof: The proof is by construction of the labels. Once several different non-proper paths merge into one
path, they cannot become separate again.✷

4.4 The Complexity Results
Theorem 1 The running time of the labelling algorithm is O(n), where n= |V | for a chainG = (V ,E).

Proof: The first pass scans each proper edge region from the source to the sink. The sequence of heads of
incoming edges and the tails of outgoing edges of each proper edge region is examined from left to right.
Carrying out the first pass means passing over each non-proper edge twice. Thus, the work done in the
first pass takes O(n) time. This is because the maximum number of< edges possible in a chain isn−1
due to the covering assumption.

The second pass scans each proper edge region from the sink to the source. The sequence of heads of
incoming edges and the tails of outgoing edges of each proper edge region (after the first to be considered
for the labelling and except where the previously considered proper edge region has no outgoing edges)
is inspected from left to right. Carrying out the second pass means passing over each non-proper edge at
most 3 times. Thus, the work done to assign the labels takes O(n) time.

As well, the time needed to assign theterminal fields associated with non-proper edges is O(n) as the
terminal of each non-proper path is discovered once and the number of non-proper paths is bounded above
by n−1. Also, the size of the indexed storage that keeps track of theterminal fields associated with edges
having certain labels isn−1. Thus, the time taken by the second pass is in the order ofn. The fact that the
maximum number of< edges possible in a chain isn−1 under the covering assumption really underlies
this bound. Therefore, the total time taken by the labelling algorithm is O(n). ✷

5 The Formal Querying Algorithm
5.1 Preliminaries
Theorem 2 distance(b,a) = ‖ngTraversal(a,b)‖, where a and b∈ V and a< b for some chainG =
(V ,E).

Proof: First, once the number of< edges of a path froma to b is known, we know thatdistance(b,a)
can be no less. Thus,distance(b,a) must be at least‖ngTraversal(a,b)‖. Now, we must prove that
distance(b,a) can be no more than‖ngTraversal(a,b)‖. If we imagine adding another distinct< edge,
the head and tail of which are both outside the region of any< edge contained inngTraversal(a,b), the
added edge would be a< edge ofngTraversal(a,b) and‖ngTraversal(a,b)‖ would be increased by 1. This
does not makedistance(b,a) more than‖ngTraversal(a,b)‖ (i), and if the added edge is inside a proper
edge region, the covering assumption is violated as well. The only way thatdistance(b,a) could be more
than‖ngTraversal(a,b)‖ would be to have at least two< edges contained (and at least one edge must be
completely enclosed) in the same< edge that is a part ofngTraversal(a,b) (iia) and (iib). However, this
is a contradiction by the covering assumption. Thus,distance(b,a) = ‖ngTraversal(a,b)‖. See Fig. 9.✷

Corollary 1 distance(b,a) = distance(b′,a)+distance(b,b′), provided that b′ is outside the region of any
< edge contained inngTraversal(a,b).
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source • ✲• ✲
a

• ✲• ✲• ✲❯

· · ·

• ✲• ✲• ✲• ✲❯ • ✲• ✲
b

• ✲◆ • ✲• ✲• ✲• sink❯❯

(i)

◆

(iia)

❯

(iib)

Fig. 9: Proof of Theorem 2.

Proof: From the definition of thenextGreater traversal, we have‖ngTraversal(a,b)‖= ‖ngTraversal(a,b′)‖+
‖ngTraversal(b′,b)‖. From this and Theorem 2, the corollary follows.✷

Now, the way in which the path induced bysourceDistance(b,a) consisting of only proper edges among
the< edges compares tongTraversal(a,b) will be analyzed.

Henceforth, assume thata is inside a proper edge region andb′ is not in the proper edge region thata is
in. In addition, there is a non-proper edgee leaving the proper edge region thata is in such thattail(e)≥ a.

Theorem 3
Under these assumptions, ifhead(e′j) ≤ b′ ≤ head(ej+1)− 1‖ and b′ ≤ terminal(a), distance(b′,a) =
sourceDistance(b′,a) = j (i). In addition, if head(e′j) = b′ = terminal(a), startProperEdge(b′) = ∞,
distance(b′,a) = sourceDistance(b′,a) = j (ii).

Proof: We proceed by induction onj.

Basis Case: For j=1, there is one non-proper edge betweena andb′, namely,e′1. As well,a< head(e1) <

b′ and the head of a proper edge is the only place where the distance from the source increases.
Thus,distance(b′,a) = sourceDistance(b′,a) = 1 (see Fig. 10 and Fig. 11 for cases (i) and (ii),
respectively). The basis case is established.

Inductive Case: Assume the inductive hypothesis holds wheni < j, for some j. Now, we prove
that it holds for j. Assume thathead(e′j) ≤ b′ ≤ head(ej+1) − 1 and b′ ≤ terminal(a) or
head(e′j) = b′ = terminal(a), startProperEdge(b) = ∞. Since the inductive hypothesis holds when
i < j, if head(e′j−1) ≤ b′′ ≤ head(ej)−1, distance(b′′,a) = sourceDistance(b′′,a) = j −1. Now,
there is an additional non-proper edgee′j in ngTraversal(a,b′) compared tongTraversal(a,b′′).
Thus, distance(b′,a) = distance(head(e′j−1),a) + 1 = j − 1+ 1 = j and sourceDistance(b′,a) =

sourceDistance(head(e′j−1),a)+1= j −1+1= j by Corollary 1 (see Fig. 12 and Fig. 13 for cases
(i) and (ii), respectively). Again, the fact that the head of a proper edge is the only place where the
distance from the source increases has been used. The inductive case is established.✷

We maintain our assumption thata is inside a proper edge region andb′ is not in the proper edge region
that a is in. As well, there is a non-proper edgee leaving the proper edge region thata is in such that
tail(e) ≥ a.

Theorem 4 Under these assumptions, ifhead(ej)≤b≤ head(e′j)−1and b< terminal(a), distance(b′,a)=
sourceDistance(b′,a)−1 = j −1.

Proof: The proof is by induction onj and is similar to the proof of Theorem 3.✷

‖ We assume the same notation for the proper edges and the< edges. of the non-proper path as in Section 4.1 on page 329.
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source
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· · ·
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· · ·

• sink❯⑦

e′1

Fig. 10: Basis Case of proof of Theorem 3(i).
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• sink◆✇

e′1

Fig. 11: Basis Case of proof of Theorem 3(ii).
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Fig. 12: Inductive Case of proof of Theorem 3(i).
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Fig. 13: Inductive Case of proof of Theorem 3(ii).
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5.2 The Actual Query Algorithm and its Proof
Again, note that for an intervalI = [ℓ,h],first(I) = ℓ, last(I) = h. As such, the query algorithm is as
follows:

1. If startProperEdge(a) = ∞, thendistance(b,a) = sourceDistance(b,a).

2. If startProperEdge(a) 6= ∞ andb < nextGreater(startProperEdge(a)), thendistance(b,a)= 0.

3. If startProperEdge(a) 6= ∞ andb≥ nextGreater(startProperEdge(a))

(a) If terminal(a) = “undefined”, thendistance(b,a) = sourceDistance(b,a)−1.

(b) If terminal(a) 6= “undefined”

i. If b < terminal(a)

A. If first(labelNextGreater(a)) ≤ last(labelPreviousLesser(b)), then distance(b,a) =
sourceDistance(b,a).

B. If first(labelNextGreater(a)) > last(labelPreviousLesser(b)), then distance(b,a) =
sourceDistance(b,a)−1.

ii. If b≥ terminal(a),

A. If startProperEdge(terminal(a)) = ∞, distance(b,a) = sourceDistance(b,a).

B. If startProperEdge(terminal(a)) 6= ∞,

• If b < nextGreater(startProperEdge(terminal(a))), then distance(b,a) =
sourceDistance(b,a).

• If b ≥ nextGreater(startProperEdge(terminal(a))), then distance(b,a) =
sourceDistance(b,a)−1.

Figure 14 on the next page gives an example for each case of the query algorithm. According to the
illustrated chain we have:

1. distance(15,5) = sourceDistance(15,5) = 2.

2. distance(10,8) = 0.

3. (a) distance(15,10) = sourceDistance(15,10)−1 = 1.

(b) i. A. distance(9,3) = sourceDistance(9,3) = 1.

B. distance(8,4) = sourceDistance(8,4)−1 = 0.

ii. A. distance(15,3) = sourceDistance(15,3) = 3.

B. • distance(14,4) = sourceDistance(14,4) = 2.

• distance(15,4) = sourceDistance(15,4)−1 = 2.

Theorem 5 The query algorithm is correct with respect to computing the maximum distance between any
two vertices a and b∈ V such that a< b.

Proof: The cases in the following proof correspond exactly to those in the query algorithm.
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✲•
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✲•
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❘
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1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vertex
0 0 0 0 1 1 1 1 1 1 2 2 2 2 3 sourceDistance
∞ 1 1 1 ∞ ∞ ∞ 7 7 7 ∞ ∞ 12 12 ∞ startProperEdge
5 8 8 9 11 11 11 12 13 15 15 15 ∞ ∞ ∞ nextGreater
−∞ −∞ −∞ −∞ 1 1 1 3 4 4 7 8 9 9 12 previousLesser
0 1 1 2 0 0 0 1 2 0 0 0 - - - labelNextGreater
- - - - 0 0 0 1 2 2 0 1 2 2 0 labelPreviousLesser

15 12 12 13 15 15 15 12 13 - 15 15 - - - terminal

(a) Fields of Example Time Chain

Fig. 14: Example Time Chain. The proper edges are bold.

1. By Theorem 2,distance(b,a) = ‖ngTraversal(a,b)‖. Since a is outside a proper edge region,
ngTraversal(a,b) is exactly the path induced bysourceDistance(b,a). This is because the source is also
outside a proper edge region and so there is a discrete number of proper edges between the source and
a. So in this case the number of< edges inngTraversal(a,b) is equal tosourceDistance(b,a). Thus,
distance(b,a)= sourceDistance(b,a).

2. If b < nextGreater(startProperEdge(a)), there can be no< edge (u,v) such that a ≤
u < v ≤ b by the covering assumption; otherwise(u,v) would subsume the< edge
(startProperEdge(a),nextGreater(startProperEdge(a))). So,distance(b,a) =0.

3. (a) By Theorem 2, distance(b,a) = ‖ngTraversal(a,b)‖. In addition, the path in-
duced by sourceDistance(b,a) has one < edge that is not present inngTraversal(a,b)
(the other < edges are all in common between the two paths), namely the< edge
(startProperEdge(a),nextGreater(startProperEdge(a))). This is because this edge is on
ngTraversal(source,b) and it is not onngTraversal(source,a) nor is it on any path beginning at
a. Thus,distance(b,a) = sourceDistance(b,a)−1.

(b) i. A. Assume the antecedent holds, Theorem 3 (i) applies.
Let first(labelNextGreater(a)) = ℓa and letlast(labelPreviousLesser(b)) = ℓb. Essentially
what must be shown is that ifℓa ≤ ℓb, thenhead(e′j)≤ b≤ head(ej+1)−1 for somej, and
from this,distance(b,a) = sourceDistance(b,a)=j. Assume thatℓa ≤ ℓb.

b is inside a proper edge region: Assume thatb is outside a proper edge region. Now,b
cannot be directly after the head of a proper edge. This is because ifb were directly after
the head of a proper edge, thenℓb would be 0; so only whenℓa is 0, is it possible that
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ℓa ≤ ℓb. But ℓa 6= 0 as there is a non-proper edgee leaving the same proper edge region
thata is in such thattail(e)≥ a. As well, if we assume thatb is directly after the head of
a non-proper edge such thatℓa ≤ ℓb and(u,v) is a< edge whereu= previousLesser(b),
then head(e′j) ≤ v ≤ b ∗∗. This is because the outgoing edges of each proper edge
region are labelled in ascending tail order by Claim (Lemma) 2. But sinceb is outside
a proper edge region,head(e′j) is also outside a proper edge region by the covering
assumption (tail(e′j) is in the proper edge region ofej so tail(e′j) < head(e′j) ≤ b). So
b≥ terminal(a) contradicting our assumption thatb<terminal(a). Thereforeb is inside
a proper edge region, i.e.tail(ej+1)+1≤ b≤ head(ej+1)−1 for somej.

head(e′j) ≤ b for some j: Assume thatb is inside a proper edge region andhead(e′j) > b.
However, the incoming edges of each proper edge region are labelled in ascending head
order by Claim (Lemma) 2. For this to be the case and forhead(e′j) > b, ℓa > ℓb

‡ but
this contradicts the assumption thatℓa ≤ ℓb. Therefore,head(e′j) ≤ b.

Thus,head(e′j) ≤ b≤ head(ej+1)−1 anddistance(b,a)= sourceDistance(b,a) = j.
B. Given the antecedent, Theorem 4 applies. Essentially what must be shown is that if

ℓa > ℓb, then head(ej) ≤ b ≤ head(e′j)− 1 for some j and from thisdistance(b,a) =
sourceDistance(b,a)−1= j −1. Sincehead(e′j) ≤ b≤ head(ej+1)−1 andhead(ej) ≤ b≤
head(e′j)−1 for somej completely define the places thatb can be under the assumptions
of the antecedent of this case, it suffices to prove that ifℓa > ℓb, it is not the case that
head(e′j) ≤ b ≤ head(ej+1)−1. Suppose thathead(e′j) ≤ b ≤ head(ej+1)−1. But then

taking(u,v) to be a< edge whereu = previousLesser(b), we havehead(e′j) > v‡ through
the assumption thatℓa > ℓb and the sorted ascending order of incoming edges expressed
in Claim (Lemma) 2. Note that we must also havehead(e′j) > b through the definition of
previousLesser; otherwisehead(e′j) would bev. So, there is a contradiction of the assump-
tion thathead(e′j) ≤ b ≤ head(ej+1)−1. Thus,head(ej) ≤ b ≤ head(e′j)−1 for somej
anddistance(b,a)= sourceDistance(b,a)−1 = j −1.

ii. A. Assume the antecedent holds. Also, to computedistance(terminal(a),a),
terminal(a) is used as b′. Thus, Theorem 3 (ii) applies. As a result,
distance(terminal(a),a) = sourceDistance(terminal(a),a). Since terminal(a) is out-
side a proper edge region asstartProperEdge(terminal(a)) = ∞, distance(b, terminal(a))=
sourceDistance(b, terminal(a)) by Case 1 of this theorem. Sinceterminal(a) is
not in a region of a< edge contained inngTraversal(a,b) by the definition of
terminal(a) (terminal(a) is a head of the last< edge in the nonProperPath(a)),
Corollary 1 applies. Thus, the distances are summed to getdistance(b,a)=
distance(terminal(a),a)+ distance(b, terminal(a)) = sourceDistance(terminal(a),a) +
sourceDistance(b, terminal(a)) = sourceDistance(b,a).

B. • Assume the antecedent holds. As before, Theorem 3(ii) applies and
distance(terminal(a),a) = sourceDistance(terminal(a),a). Since terminal(a)
is in the same proper edge region thatb is in through the fact that
startProperEdge(terminal(a)) 6= ∞ andb< nextGreater(startProperEdge(terminal(a))),
distance(b, terminal(a)) = sourceDistance(b, terminal(a)) = 0 by Case 2 of this
theorem. Again, Corollary 1 holds. As such, the distances are summed to

∗∗ The label ofe′j includesℓa and unlesse′j = (u,v), the label of(u,v) does not includeℓa by Claim 5.
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get distance(b,a) = distance(terminal(a),a) = sourceDistance(terminal(a),a) =
sourceDistance(b,a).

• Assume the antecedent holds. As before, Theorem 3(ii) applies and
distance(terminal(a),a)= sourceDistance(terminal(a),a). b is not in the proper edge
region thatterminal(a) is in and there is no non-proper edgee leaving the proper edge
region thatterminal(a) is in such thattail(e) ≥ terminal(a). This is due to the fact that
startProperEdge(terminal(a))6= ∞ andb≥ nextGreater(startProperEdge(terminal(a))).
Thus, distance(b, terminal(a)) = sourceDistance(b, terminal(a))−1 by Case 3(a) of
this theorem. Again, Corollary 1 applies. Hence, the distances are summed to get
distance(b,a) = distance(terminal(a) ,a)+distance(b, terminal(a)) = sourceDistance(
terminal(a) ,a)+sourceDistance(b, terminal(a))− 1= sourceDistance(b, a)−1. ✷

Note that the cases in the formal version of the query algorithm correspond exactly to those
cases described in the overview. We are aware that Case 1 is actually a special case of Case
3(b)(i)A and 3(b)(ii)A when the opening condition of Case 3(b) thatstartProperEdge(a) 6= ∞ and
b ≥ nextGreater(startProperEdge(a)) is omitted. This is true because proper edges have a la-
bel of [0,0]. Since the numbers in the labels are all positive, it is always the case that
first(labelNextGreater(a)) ≤ last(labelPreviousLesser(b)), if a is outside a proper edge region. Thus,
distance(b,a) = sourceDistance(b,a) no matter whereb is before terminal(a). Sincea is outside a
proper edge region so isterminal(a), and consequentlystartProperEdge(terminal(a)) = ∞. If b is at
or after the head of the last proper edge which isterminal(a) in this instance, it is still the case that
distance(b,a) = sourceDistance(b,a). However, it serves an illustrative purpose to keep these cases sep-
arate.

Observe that it is not essential thatfirst(labelNextGreater(a)) is used as opposed to some
other number in the range oflabelNextGreater(a) as long aslast(labelPreviousLesser(b)) is uti-
lized. Label ranges of different non-proper paths present in the same proper edge region are non-
overlapping by Claim 5 and sinceb < terminal(a), a non-proper edge of thenonProperPath(a)
is present in the proper edge region thatb is in. In addition, the sizes of ranges of< edges
of the nonProperPath(a) may increase but not decrease in the direction from the source to the
sink. As a result, iffirst(labelNextGreater(a)) ≤ last(labelPreviousLesser(b)), then we also have
last(labelNextGreater(a)) ≤ last(labelPreviousLesser(b)). However,first(labelNextGreater(a)) is used
for consistency reasons.

Corollary 2 Either distance(b,a) = sourceDistance(b,a) or distance(b,a)= sourceDistance(b,a) − 1.

Proof: This is a direct consequence of Theorem 5.✷

Theorem 6 The querying algorithm expressed in Theorem 5 runs in O(1) time.

Proof: Each of the three steps of the query algorithm involves the look up and comparison of a constant
number of fields, and thus the query algorithm also takes constant time.✷

6 Extensions to the MAX DIST Problem
Two basic extensions to the MAX DIST problem have been considered, namely the 2-value MAX DIST
problem and the ramifications of updates to the chain on the structures of the problem solved in the
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previous section. It is interesting to note that the solution of the MAX DIST problem applies to the
variant of the problem where< edges have a weight of a positive numberw1. Naturally, every occurrence
of “1” in the query algorithm must be changed tow1. This is called the 1-value MAX DIST problem.
Extending further to the 2-value MAX DIST problem, we allow two possible weights for< edges,w1

andw2. We have developed an O(1) query algorithm given an O(n) preprocessing step for some restricted
cases of the 2-value MAX DIST problem. Updates to the chain that include adding a vertex, along with
the insertion and deletion of certain restricted edges have been provided for with a cost in terms of time
of O(lg n) per operation. Then, querying is also degraded to O(lg n) time. See [Gr̈u99] for details of this
and an elaboration of the allowed updates.

7 Conclusion and Open Problems
In this paper, we have seen how an O(1) time solution to the MAX DIST problem can be achieved
after O(n) preprocessing. The query algorithm has been explained in detail. In addition, the necessary
preprocessing that includes the labelling algorithm has also been explicated in some depth. These findings
are significant, since the MAX DIST problem may be relevant to important applications ranging from crew
scheduling to production optimization in manufacturing and product synthesis.

Here is a list of some areas of future research concerning matters mentioned in this paper:

• What other real world applications of the MAX DIST problem exist?

• Can the labelling scheme characterized in this paper be applied to other problems?

• Is there also a way to solve the 2-value MAX DIST problem for every case and with no error bound in
O(1) time after O(n) preprocessing time? Can this be done for thek-value MAX DIST problem as well?

• Is it possible to increase the scope of allowed updates while maintaining O(lg n) time complexity?

• Is it possible to answer queries about the maximum distance or to put it differently, the longest weighted
path between two vertices, in a series-parallel graph or even a local graph in O(1) time after O(n) prepro-
cessing time?
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