Overlap-Free Symmetric DOL words ${ }^{\dagger}$

Anna E. Frid
Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
e-mail: frid@math.nsc.ru

received Sep 27, 2000, revised Oct 1, 2001, accepted Oct 15, 2001.

Abstract

A DOL word on an alphabet $\Sigma=\{0,1, \ldots, q-1\}$ is called symmetric if it is a fixed point $w=\varphi(w)$ of a morphism $\varphi: \Sigma^{*} \rightarrow \Sigma^{*}$ defined by $\varphi(i)=\overline{t_{1}+i} \overline{t_{2}+i} \ldots \overline{t_{m}+i}$ for some word $t_{1} t_{2} \ldots t_{m}$ (equal to $\varphi(0)$) and every $i \in \Sigma$; here \bar{a} means $a \bmod q$. We prove a result conjectured by J. Shallit: if all the symbols in $\varphi(0)$ are distinct (i.e., if $t_{i} \neq t_{j}$ for $i \neq j$), then the symmetric D0L word w is overlap-free, i.e., contains no factor of the form axaxa for any $x \in \Sigma^{*}$ and $a \in \Sigma$.

Keywords: overlap-free word, D0L word, symmetric morphism

1 Introduction

In his classical 1912 paper [15] (see also [3]), A. Thue gave the first example of an overlap-free infinite word, i. e., of a word which contains no subword of the form axaxa for any symbol a and word x. Thue's example is known now as the Thue-Morse word

$$
w_{T M}=01101001100101101001011001101001 \ldots
$$

It was rediscovered several times, can be constructed in many alternative ways and occurs in various fields of mathematics (see the survey [[]]).

The set of all overlap-free words was studied e. g. by E. D. Fife [8] who described all binary overlapfree infinite words and P. Séébold [13]] who proved that the Thue-Morse word is essentially the only binary overlap-free word which is a fixed point of a morphism. Nowadays the theory of overlap-free words is a part of a more general theory of pattern avoidance [5].
J.-P. Allouche and J. Shallit [2] asked if the initial Thue's construction of an overlap-free word could be generalized and found a whole family of overlap-free infinite words built by a similar principle. This paper contains a further generalization of that result; its main theorem was conjectured by J. Shallit [14]].
Let us give all the necessary definitions and state the main theorem. Consider a finite alphabet $\Sigma=$ $\Sigma_{q}=\{0,1, \ldots, q-1\}$. For an integer i, let \bar{i} denote the residue of i modulo q. A morphism $\varphi: \Sigma_{q}^{*} \rightarrow \Sigma_{q}^{*}$ is called symmetric if for all $i \in \Sigma_{q}$ the equality holds

$$
\varphi(i)=\overline{t_{1}+i} \overline{t_{2}+i} \ldots \overline{t_{m}+i}
$$

[^0]where $t_{1} t_{2} \ldots t_{m}$ is an arbitrary word (equal to $\varphi(0)$). Clearly, if $t_{1}=0$, then φ has a fixed point, i. e., a (right) infinite word $w=w(\varphi)$ satisfying
$$
w=\varphi(w) .
$$

Without loss of generality we assume that w starts with 0 .
A symmetric morphism is growing if $|\varphi(0)| \geq 2$. We shall call a fixed point of a growing symmetric morphism a symmetric DOL word. For example, the Thue-Morse word $w_{T M}$ is a fixed point of a symmetric morphism $\varphi_{T M}$:

$$
\left\{\begin{array}{l}
\varphi_{T M}(0)=01 \\
\varphi_{T M}(1)=10
\end{array}\right.
$$

Symmetric D0L words include also other useful examples, such as the Dejean word [团], the Keränen word [II]] and others (see Section 10.5 in [II2], where in particular the term "symmetric" is introduced). Note that the class of symmetric D0L words is included in a wider class of uniform marked D0L words whose properties were studied e. g. in [10].

Note that an infinite word $w=w_{1} w_{2} \ldots w_{n} \ldots$, where $w_{i} \in \Sigma$, is the fixed point of the symmetric mor$\operatorname{phism} \varphi$ if and only if

$$
\begin{equation*}
\forall k \geq 0 \forall i \in\{1, \ldots, m\} \quad w_{k m+i}=\overline{w_{k+1}+t_{i}} \tag{1}
\end{equation*}
$$

Indeed, this equality means that $w_{k m+i}$ is equal to the i th symbol of $\varphi\left(w_{k+1}\right)$.
For every $m>1$, let $\varphi_{m, q}: \Sigma_{q}^{*} \rightarrow \Sigma_{q}^{*}$ be the symmetric morphism defined by $\varphi_{m, q}(0)=0 \overline{1} \overline{2} \ldots \overline{m-1}$. Note that $\varphi_{T M}=\varphi_{2,2}$. Let $w_{m, q}$ be the fixed point of $\varphi_{m, q}$ starting with 0 ; then the i th symbol of $w_{m, q}$ for each i can also be defined as $\overline{s_{m}(i)}$, where $s_{m}(i)$ is the sum of the digits in the base-m representation of i.
J.-P. Allouche and J. Shallit proved the following generalization of Thue's result:

Theorem 1 ([2]) The word $w_{m, q}$ is overlap-free if and only if $m \leq q$.
J. Shallit conjectured also that symmetric D0L words of a much wider class are overlap-free. We turn this conjecture into
Theorem 2 If $\varphi: \Sigma_{q}^{*} \rightarrow \Sigma_{q}^{*}$ is a growing symmetric morphism, and if all symbols occurring in $\varphi(0)$ are distinct, then the fixed point $w=w(\varphi)$ is overlap-free.
The remaining part of the paper is devoted to the proof of this result.

2 Proof of Theorem 2

Let us start with introducing some more notions and citing a result by J. Berstel and L. Boasson [4] which we shall need later.

A partial word is a word on the alphabet $\Sigma \cup\{\diamond\}$, where the symbol $\diamond \notin \Sigma$ is called the hole \ddagger. Each hole means an unknown symbol of Σ. A (partial) word $u=u_{1} \ldots u_{n}$, where u_{i} are symbols, is called (locally) p-periodic if $u_{i}=u_{i+p}$ for all $i \in\{1, \ldots, n-p\}$ such that $u_{i} \neq \diamond$ and $u_{i+p} \neq \diamond$.

The following result is a generalization of the classical Fine and Wilf's theorem [9, 6]:
Theorem 3 ([4]) Let u be a partial word of length n which is p-periodic and q-periodic. If u contains only one hole, and if $n \geq p+q$, then u is $\operatorname{gcd}(p, q)$-periodic.

Now let us start the proof of Theorem and first consider the easiest case:

[^1]Lemma 1 If the symmetric morphism φ is defined by $\varphi(0)=0 \bar{c} \overline{2 c} \ldots \overline{(m-1) c}$ for some integer $c>0$, and if all the symbols of $\varphi(0)$ are distinct, then the fixed point w of φ is overlap-free.
Proof. Let $S \subset \Sigma$ be the set of symbols occurring in w and q^{\prime} be its cardinality. Denote $\Sigma^{\prime}=\left\{0, \ldots, q^{\prime}-\underline{1}\right\}$ and define $h:\left(\Sigma^{\prime}\right)^{*} \rightarrow S^{*}$ as the symbol-to symbol morphism transforming each symbol $i \in \Sigma^{\prime}$ to $h(i)=\overline{c i}$. Since the cardinalities of S and Σ^{\prime} coincide, and since each symbol of S can be represented as $\overline{c i}$ for some i, h is a one-to-one mapping. But it can be easily checked that $\varphi h=h \varphi_{m, q^{\prime}}$. Since $w_{m, q^{\prime}}=\varphi_{m, q^{\prime}}\left(w_{m, q^{\prime}}\right)$, we have $h\left(w_{m, q^{\prime}}\right)=h\left(\varphi_{m, q^{\prime}}\left(w_{m, q^{\prime}}\right)\right)=\varphi\left(h\left(w_{m, q^{\prime}}\right)\right)$, so $h\left(w_{m, q^{\prime}}\right)$ is the fixed point of φ; it starts with 0 since $h(0)=0$. We see that $h\left(w_{m, q^{\prime}}\right)=w$, that is, w is obtained from $w_{m, q^{\prime}}$ by renaming symbols. It is overlap-free due to Theorem (1).

A block is an image of symbol under a morphism. Let $S(m)$ denote the class of all symmetric morphisms on Σ of block length m with all the symbols in a block distinct. We assume also that the image of 0 always starts with 0 , so that all the morphisms of $S(m)$ admit fixed points. Clearly, the class $S(m)$ is non-empty only if $m \leq q$.

Our goal is to prove that, for any fixed m, all the fixed points of morphisms of $S(m)$ are overlap-free. Suppose the opposite and consider the minimal counter-example, i. e., a morphism $\varphi \in S(m)$ and its fixed point w containing an overlap $v=$ axaxa of minimal length (so that overlaps occurring in other fixed points of morphisms of $S(m)$ are not shorter). Here $a \in \Sigma$ and $x \in \Sigma^{*}$; we denote the length $|a x|$ by l, and thus have $|v|=2 l+1$. Let us fix an occurrence of v to w and its position with respect to blocks of φ : we consider v as a word obtained from $\varphi(s)$, where s is a factor of w, by erasing $\alpha-1$ symbols from the left and $m-\beta$ symbols from the right, where $1 \leq \alpha, \beta \leq m$. So, v starts with the symbol numbered α of a block and ends with the symbol numbered β.

Claim 1 The inequality $l \geq m$ holds.
Proof. Suppose that $l<m$. The 1 st, $(l+1)$ th, and $(2 l+1)$ th symbols of v are equal and thus must lie in three different blocks. So, v contains a complete block. But this block must be l-periodic since v is l-periodic; hence it must contain two equal symbols since $l<m$. A contradiction.
Claim 2 The block length m does not divide l.
Proof. Suppose the opposite: let $l=m k$. Then the length of the "inverse image" s of v is equal to $2 k+1$. Since v is an overlap, its $(m i+1)$ th symbol is equal to the $(m(i+k)+1)$ th one for any $i \in\{0, \ldots, k\}$; they are symbols numbered α of respectively the $(i+1)$ th and the $(i+k+1)$ th blocks of $\varphi(s)$. Since the morphism φ is symmetric, each block is uniquely determined by its α th symbol, so $(i+1)$ th and $(i+k+1)$ th symbols of s are equal. Thus, s is an overlap in w shorter than v, a contradiction.

For every word $u=u_{1} u_{2} \ldots u_{n+1} \in \Sigma^{n+1}$, where $u_{1}, \ldots u_{n+1} \in \Sigma$, let us define the word $r(u) \in \Sigma^{n}$ as obtained from u by subtraction of consecutive symbols:

$$
r(u)=\overline{u_{2}-u_{1}} \overline{u_{3}-u_{2}} \ldots \overline{u_{n+1}-u_{n}}
$$

Clearly, u can be reconstructed from its first symbol u_{1} and the word $r(u)=r_{1} \ldots r_{n}$, where $r_{1}, \ldots, r_{n} \in \Sigma$:

$$
\begin{equation*}
u=u_{1} \overline{u_{1}+r_{1}} \overline{u_{1}+r_{1}+r_{2}} \ldots \overline{u_{1}+r_{1}+\ldots+r_{n}} \tag{2}
\end{equation*}
$$

Let us consider the word $r(v)=r($ axaxa $)$. Its length is equal to $2 l$, and it is l-periodic as well as v. Since φ is symmetric, the word $r(\varphi(i))$ does not depend on the symbol $i \in \Sigma$; we denote $r(\varphi(i))=b=b_{1} \ldots b_{m-1}$,
where $b_{1}, \ldots, b_{m-1} \in \Sigma$. Since v starts with the symbol number α of a block and ends with the symbol number β, we have

$$
r(v)=b_{\alpha} \ldots b_{m-1} c_{1} b c_{2} b \ldots b c_{n} b_{1} \ldots b_{\beta-1},
$$

where $|s|=n+1$ and $c_{1} \ldots c_{n}$ are symbols of Σ depending on pairs of consecutive blocks in $\varphi(s)$; if $\alpha=m$, then $r(v)$ just starts with c_{1}, and if $\beta=1, r(v)$ just ends with c_{n}. Let n^{\prime} be the last number such that $c_{n^{\prime}}$ is situated in the first occurrence of $r($ axa $)$ in $r(v)$. Since $r(v)$ is l-periodic, for all $i \in\left\{1, \ldots, n^{\prime}\right\}$ the symbol c_{i} is equal to the symbol of $r(v)$ situated at distance l from it. Due to Claim $Z, l \neq 0(\bmod m)$, and thus all these symbols are equal to $b_{l^{\prime}}$, where $l \equiv l^{\prime}(\bmod m)$. So, the word $r($ axa $)$ (equal to the prefix of length l of $r(v)$) is m-periodic:

$$
r(a x a)=b_{\alpha} \ldots b_{m-1}\left(b_{l^{\prime}} b\right)^{n^{\prime}-1} b_{l^{\prime}} b_{1} \ldots b_{\gamma-1},
$$

where $\gamma-\alpha \equiv l(\bmod m), \gamma \in\{1, \ldots, m\}$.
Let us consider the prefix of $r(v)$ of length $m+l$. It exists due to Claim \square and is equal to

$$
r(\text { axa }) b_{\gamma} \ldots b_{m-1} c_{n^{\prime}+1} b_{1} \ldots b_{\gamma-1} .
$$

Subsituting the unknown symbol $c_{n^{\prime}+1}$ by a hole \diamond, we obtain a partial word

$$
b_{\alpha} \ldots b_{m-1}\left(b_{l^{\prime}} b\right)^{n^{\prime}} \diamond b_{1} \ldots b_{\gamma-1}
$$

which is l-periodic as well as $r(v)$. But at the same time, it is m-periodic; thus, due to Theorem 3 it is p periodic, where $p=\operatorname{gcd}(l, m)$. Consequently, $b=r(\varphi(0))$ is also p-periodic: $b=\left(b_{1} \ldots b_{p}\right)^{m^{\prime}-1} b_{1} \ldots b_{p-1}$, where $m^{\prime}=m / p$. Let us return to $\varphi(0)$ and denote $g_{1}=0, g_{k}=\overline{b_{1}+b_{2}+\ldots+b_{k-1}}$ for $k \in\{2, \ldots, p\}$, and $c=\overline{b_{1}+b_{2}+\ldots+b_{p}}$; due to (2), we see that $\varphi(0)$ is of the form

$$
\begin{equation*}
\varphi(0)=g_{1} \ldots g_{p} \overline{g_{1}+c} \ldots \overline{g_{p}+c} \ldots \overline{g_{1}+\left(m^{\prime}-1\right) c} \ldots \overline{g_{p}+\left(m^{\prime}-1\right) c} . \tag{3}
\end{equation*}
$$

Here $g_{1}=0$ since φ has a fixed point, and $m^{\prime}=m / p$. The words of the form $\overline{g_{1}+i c} \ldots \overline{g_{p}+i c}$, where $i \in\left\{0, \ldots, m^{\prime}-1\right\}$, will be called subblocks. Note that for all $k \in\{1, \ldots, p\}$, a subblock is uniquely determined by its k th symbol, and that w consists of consecutive subblocks.
Let w_{i} denote the i th symbol of the fixed point w of φ, i. e., let $w=w_{1} \ldots w_{n} \ldots$, where $w_{i} \in \Sigma$. Consider the arithmetical subsequence

$$
w^{\prime}=w_{1} w_{p+1} w_{2 p+1} \ldots w_{n p+1} \ldots
$$

Claim 3 The word w^{\prime} is the fixed point of a morphism $\varphi^{\prime} \in S(m)$.
Proof. Let us define the symmetric morphism φ^{\prime} by

$$
\varphi^{\prime}(0)=g_{1} \overline{g_{1}+c} \ldots \overline{g_{1}+\left(m^{\prime}-1\right) c} g_{2} \overline{g_{2}+c} \ldots \overline{g_{2}+\left(m^{\prime}-1\right) c} \ldots g_{p} \overline{g_{p}+c} \ldots \overline{g_{p}+\left(m^{\prime}-1\right) c}
$$

Since $\varphi^{\prime}(0)$ is obtained from $\varphi(0)$ by permuting symbols, and all the symbols of $\varphi(0)$ are distinct, so are the symbols of $\varphi^{\prime}(0)$. Since $g_{1}=0$, and φ^{\prime} is symmetric by definition, $\varphi^{\prime} \in S(m)$. So we must prove only that w^{\prime} is its fixed point, i. e., that

$$
\begin{equation*}
\forall k \geq 0 \forall i \in\{1, \ldots, m\} w_{k m+i}^{\prime} \text { is equal to the } i \text { th symbol of } \varphi^{\prime}\left(w_{k+1}^{\prime}\right) \tag{4}
\end{equation*}
$$

where w_{k}^{\prime} is the k th symbol of $w^{\prime}=w_{1}^{\prime} w_{2}^{\prime} \ldots w_{n}^{\prime} \ldots$

Clearly, each $i \in\{1, \ldots, m\}$ can be uniquely represented as $i=j m^{\prime}+\delta$, where $j \in\{0, \ldots, p-1\}$ and $\delta \in\left\{1, \ldots, m^{\prime}\right\}$. Since by definition of w^{\prime} for all v we have $w_{v}^{\prime}=w_{p(v-1)+1}$, for any $k \geq 0$

$$
w_{k m+i}^{\prime}=w_{k m+j m^{\prime}+\delta}^{\prime}=w_{p\left(k m+j m^{\prime}+\delta-1\right)+1}=w_{(p k+j) m+p(\delta-1)+1}
$$

By Equality (11), $w_{(p k+j) m+p(\delta-1)+1}$ is equal to the $(p(\delta-1)+1)$ th symbol of $\varphi\left(w_{p k+j+1}\right)$, that is, to $\overline{(\delta-1) c+w_{p k+j+1}}$ (recall that $g_{1}=0$). In its turn, $w_{p k+j+1}$ is the $(j+1)$ th symbol of the subblock starting with $w_{p k+1}=w_{k+1}^{\prime}$. It is equal to $\overline{w_{k+1}^{\prime}+g_{j+1}}$, and thus, $w_{k m+i}^{\prime}=\overline{w_{k+1}^{\prime}+(\delta-1) c+g_{j+1}}$. By the definition of φ^{\prime}, it is equal to the symbol numbered $j m^{\prime}+\delta=i$ of $\varphi^{\prime}\left(w_{k+1}^{\prime}\right)$. We have proved (4) and Claim [3].

Claim 4 The word w^{\prime} contains an overlap of length $2 l^{\prime}+1$, where $l^{\prime}=l / p$.
Proof. Let our occurrence of the overlap v to w start with the k th symbol of a subblock, i. e., let $\alpha \equiv k \quad(\bmod p)$, where $k \in\{1, \ldots, p\}$. It means that $v=w_{j p+k} w_{j p+k+1} \ldots w_{\left(j+2 l^{\prime}\right) p+k}$ for some $j \geq$ 0 ; since v is an overlap, $w_{(j+v) p+1}=w_{\left(j+v+l^{\prime}\right) p+1}$ for all $v \in\left\{1, \ldots, l^{\prime}\right\}$. But we have also $w_{j p+k}=$ $w_{\left(j+l^{\prime}\right) p+k}$, and since a subblock is uniquely determined by its k th symbol, $w_{j p+1}=w_{\left(j+l^{\prime}\right) p+1}$. So, the word $w_{j p+1} w_{(j+1) p+1} \ldots w_{\left(j+2 l^{\prime}\right) p+1}$ is l^{\prime}-periodic, and it is the needed overlap in w^{\prime}.

As it follows from Claims 3 and 4 , we have found a fixed point of a morphism of $S(m)$ containing an overlap of length $l^{\prime}=l / p$. But if $p>1$, this contradicts to the minimality of our counter-example. On the other hand, if $p=1$, then it follows from (3) that

$$
\varphi(0)=0 \bar{c} \overline{2 c} \ldots \overline{(m-1) c}
$$

But a fixed point of such a morphism cannot be a counter-example according to Lemma 1 . A contradiction. Theorem Z is proved.

Acknowledgements

I thank J. Shallit for introducing me to the problem, J.-P. Allouche for useful comments, and the referee for correcting the proof of Claim 1 .

References

[1] J.-P. Allouche and J. Shallit. The ubiquitous Prouhet-Thue-Morse sequence. In C. Ding, T. Helleseth and H. Niederreiter, eds., Sequences and Their Applications, Proceedings of SETA'98, SpringerVerlag, 1999, 1-16.
[2] J.-P. Allouche and J. Shallit. Sums of digits, overlaps, and palindromes. Discr. Math. Theoret. Comput. Sci. 4 (2000), 1-10.
[3] J. Berstel. Axel Thue's work on repetitions in words. In P. Leroux and C. Reutenauer, eds., Séries Formelles et Combinatoire Algébrique, no. 11 in Publications du LACIM, Université du Québec à Montréal, 1992, 65-80.
[4] J. Berstel and L. Boasson. Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci. 218 (1999), no. 1, 135-141.
[5] J. Cassaigne. Unavoidable patterns. In M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, to appear.
[6] C. Choffrut and J. Karhumäki. Combinatorics on words. In G. Rozenberg and A. Salomaa, eds., Handbook of Formal Languages, v. 1, chapter 6. Springer-Verlag, 1997.
[7] F. Dejean. Sur un théorème de Thue. J. Combin. Theory. Ser. A. 13 (1972), 25-36.
[8] E. D. Fife. Binary sequences which contain no BBb. Trans. Amer. Math. Soc. 261 (1980), 115-136.
[9] N. J. Fine and H. S. Wilf. Uniqueness theorem for periodic functions. Proc. Amer. Math. Soc. 16 (1965), 109-114.
[10] A. Frid. Applying a uniform marked morphism to a word. Discr. Math. Theoret. Comput. Sci. 3 (1999), 125-140.
[11] V. Keränen. Abelian squares are avoidable on 4 letters. In Automata, Languages and Programming, Proceedings of ICALP'92 Lecture Notes in Comput. Sci.; V. 700, Berlin: Springer, 1992, 41-52.
[12] G. Lallement. Semigroups and Combinatorial Applications, Wiley, 1979.
[13] P. Séébold. Sequences generated by infinitely iterated morphisms. Discrete Appl. Math. 11 (1985), 255-264.
[14] J. Shallit, private communication.
[15] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1-67. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, ed., Universitetsforlaget, Oslo, 1977, 413-478.

[^0]: ${ }^{\dagger}$ Supported in part by INTAS (grant 97-1001) and RFBR (grant 01-01-06018).

[^1]: \ddagger This definition slightly differs from the one given in [4]

