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Overlap-Free Symmetric D0L words†
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A D0L word on an alphabetΣ = {0,1, . . . ,q−1} is called symmetric if it is a fixed pointw = ϕ(w) of a morphism
ϕ : Σ∗ → Σ∗ defined byϕ(i) = t1 + i t2 + i . . . tm+ i for some wordt1t2 . . . tm (equal toϕ(0)) and everyi ∈ Σ; herea
meansa modq.

We prove a result conjectured by J. Shallit: if all the symbols inϕ(0) are distinct (i.e., ifti 6= t j for i 6= j), then the
symmetric D0L wordw is overlap-free, i.e., contains no factor of the formaxaxafor anyx∈ Σ∗ anda∈ Σ.
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1 Introduction
In his classical 1912 paper [15] (see also [3]), A. Thue gave the first example of an overlap-free infinite
word, i. e., of a word which contains no subword of the formaxaxafor any symbola and wordx. Thue’s
example is known now as theThue-Morse word

wTM = 01101001100101101001011001101001. . . .

It was rediscovered several times, can be constructed in many alternative ways and occurs in various fields
of mathematics (see the survey [1]).

The set of all overlap-free words was studied e. g. by E. D. Fife [8] who described all binary overlap-
free infinite words and P. Śeébold [13] who proved that the Thue-Morse word is essentially the only binary
overlap-free word which is a fixed point of a morphism. Nowadays the theory of overlap-free words is a
part of a more general theory of pattern avoidance [5].

J.-P. Allouche and J. Shallit [2] asked if the initial Thue’s construction of an overlap-free word could
be generalized and found a whole family of overlap-free infinite words built by a similar principle. This
paper contains a further generalization of that result; its main theorem was conjectured by J. Shallit [14].

Let us give all the necessary definitions and state the main theorem. Consider a finite alphabetΣ =
Σq = {0,1, . . . ,q−1}. For an integeri, let i denote the residue ofi moduloq. A morphismϕ : Σ∗

q → Σ∗
q is

calledsymmetricif for all i ∈ Σq the equality holds

ϕ(i) = t1 + i t2 + i . . . tm+ i,
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wheret1t2 . . . tm is an arbitrary word (equal toϕ(0)). Clearly, if t1 = 0, thenϕ has a fixed point, i. e., a
(right) infinite wordw = w(ϕ) satisfying

w = ϕ(w).

Without loss of generality we assume thatw starts with 0.
A symmetric morphism isgrowing if |ϕ(0)| ≥ 2. We shall call a fixed point of a growing symmetric

morphism asymmetric D0L word. For example, the Thue-Morse wordwTM is a fixed point of a symmetric
morphismϕTM:

{

ϕTM(0) = 01,
ϕTM(1) = 10.

Symmetric D0L words include also other useful examples, such as the Dejean word [7], the Keränen word
[11] and others (see Section 10.5 in [12], where in particular the term “symmetric” is introduced). Note
that the class of symmetric D0L words is included in a wider class of uniform marked D0L words whose
properties were studied e. g. in [10].

Note that an infinite wordw = w1w2 . . .wn . . ., wherewi ∈ Σ, is the fixed point of the symmetric mor-
phismϕ if and only if

∀k≥ 0∀i ∈ {1, . . . ,m} wkm+i = wk+1 + ti . (1)

Indeed, this equality means thatwkm+i is equal to theith symbol ofϕ(wk+1).
For everym> 1, let ϕm,q : Σ∗

q → Σ∗
q be the symmetric morphism defined byϕm,q(0) = 01 2. . .m−1.

Note thatϕTM = ϕ2,2. Let wm,q be the fixed point ofϕm,q starting with 0; then theith symbol ofwm,q for
eachi can also be defined assm(i), wheresm(i) is the sum of the digits in the base-m representation ofi.

J.-P. Allouche and J. Shallit proved the following generalization of Thue’s result:

Theorem 1 ([2]) The word wm,q is overlap-free if and only if m≤ q.

J. Shallit conjectured also that symmetric D0L words of a much wider class are overlap-free. We turn
this conjecture into

Theorem 2 If ϕ : Σ∗
q → Σ∗

q is a growing symmetric morphism, and if all symbols occurring inϕ(0) are
distinct, then the fixed point w= w(ϕ) is overlap-free.

The remaining part of the paper is devoted to the proof of this result.

2 Proof of Theorem 2
Let us start with introducing some more notions and citing a result by J. Berstel and L. Boasson [4] which
we shall need later.

A partial word is a word on the alphabetΣ∪{⋄}, where the symbol⋄ /∈ Σ is called thehole‡. Each hole
means an unknown symbol ofΣ. A (partial) wordu = u1 . . .un, whereui are symbols, is called(locally)
p-periodic if ui = ui+p for all i ∈ {1, . . . ,n− p} such thatui 6= ⋄ andui+p 6= ⋄.

The following result is a generalization of the classical Fine and Wilf’s theorem [9, 6]:

Theorem 3 ([4]) Let u be a partial word of length n which is p-periodic and q-periodic. If u contains
only one hole, and if n≥ p+q, then u isgcd(p,q)-periodic.

Now let us start the proof of Theorem 2 and first consider the easiest case:

‡ This definition slightly differs from the one given in [4].
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Lemma 1 If the symmetric morphismϕ is defined byϕ(0) = 0c 2c. . .(m−1)c for some integer c> 0,
and if all the symbols ofϕ(0) are distinct, then the fixed point w ofϕ is overlap-free.

Proof. Let S⊂ Σ be the set of symbols occurring inw andq′ be its cardinality. DenoteΣ′ = {0, . . . ,q′−1}
and defineh : (Σ′)∗ → S∗ as the symbol-to symbol morphism transforming each symboli ∈ Σ′ to h(i) = ci.
Since the cardinalities ofSandΣ′ coincide, and since each symbol ofScan be represented asci for some
i, h is a one-to-one mapping. But it can be easily checked thatϕh = hϕm,q′ . Sincewm,q′ = ϕm,q′(wm,q′),
we haveh(wm,q′) = h(ϕm,q′(wm,q′)) = ϕ(h(wm,q′)), so h(wm,q′) is the fixed point ofϕ; it starts with 0
sinceh(0) = 0. We see thath(wm,q′) = w, that is,w is obtained fromwm,q′ by renaming symbols. It is
overlap-free due to Theorem 1. ✷

A blockis an image of symbol under a morphism. LetS(m) denote the class of all symmetric morphisms
onΣ of block lengthmwith all the symbols in a block distinct. We assume also that the image of 0 always
starts with 0, so that all the morphisms ofS(m) admit fixed points. Clearly, the classS(m) is non-empty
only if m≤ q.

Our goal is to prove that, for any fixedm, all the fixed points of morphisms ofS(m) are overlap-free.
Suppose the opposite and consider the minimal counter-example, i. e., a morphismϕ ∈ S(m) and its fixed
pointw containing an overlapv= axaxaof minimal length (so that overlaps occurring in other fixed points
of morphisms ofS(m) are not shorter). Herea∈ Σ andx∈ Σ∗; we denote the length|ax| by l , and thus
have|v| = 2l + 1. Let us fix an occurrence ofv to w and its position with respect to blocks ofϕ: we
considerv as a word obtained fromϕ(s), wheres is a factor ofw, by erasingα −1 symbols from the left
andm−β symbols from the right, where 1≤ α,β ≤ m. So,v starts with the symbol numberedα of a
block and ends with the symbol numberedβ.

Claim 1 The inequality l≥ m holds.

Proof. Suppose thatl < m. The 1st,(l + 1)th, and(2l + 1)th symbols ofv are equal and thus must lie
in three different blocks. So,v contains a complete block. But this block must bel -periodic sincev is
l -periodic; hence it must contain two equal symbols sincel < m. A contradiction. ✷

Claim 2 The block length m does not divide l.

Proof. Suppose the opposite: letl = mk. Then the length of the “inverse image”s of v is equal to 2k+1.
Sincev is an overlap, its(mi+ 1)th symbol is equal to the(m(i + k) + 1)th one for anyi ∈ {0, . . . ,k};
they are symbols numberedα of respectively the(i + 1)th and the(i + k+ 1)th blocks ofϕ(s). Since
the morphismϕ is symmetric, each block is uniquely determined by itsαth symbol, so(i + 1)th and
(i +k+1)th symbols ofs are equal. Thus,s is an overlap inw shorter thanv, a contradiction. ✷

For every wordu = u1u2 . . .un+1 ∈ Σn+1, whereu1, . . .un+1 ∈ Σ, let us define the wordr(u) ∈ Σn as
obtained fromu by subtraction of consecutive symbols:

r(u) = u2−u1 u3−u2 . . .un+1−un.

Clearly,u can be reconstructed from its first symbolu1 and the wordr(u) = r1 . . . rn, wherer1, . . . , rn ∈ Σ:

u = u1u1 + r1 u1 + r1 + r2 . . .u1 + r1 + . . .+ rn. (2)

Let us consider the wordr(v) = r(axaxa). Its length is equal to 2l , and it isl -periodic as well asv. Since
ϕ is symmetric, the wordr(ϕ(i)) does not depend on the symboli ∈Σ; we denoter(ϕ(i)) = b= b1 . . .bm−1,
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whereb1, . . . ,bm−1 ∈ Σ. Sincev starts with the symbol numberα of a block and ends with the symbol
numberβ, we have

r(v) = bα . . .bm−1c1bc2b. . .bcnb1 . . .bβ−1,

where|s|= n+1 andc1 . . .cn are symbols ofΣ depending on pairs of consecutive blocks inϕ(s); if α = m,
thenr(v) just starts withc1, and ifβ = 1, r(v) just ends withcn. Let n′ be the last number such thatcn′ is
situated in the first occurrence ofr(axa) in r(v). Sincer(v) is l -periodic, for alli ∈ {1, . . . ,n′} the symbol
ci is equal to the symbol ofr(v) situated at distancel from it. Due to Claim 2,l 6≡ 0 (modm), and thus all
these symbols are equal tobl ′ , wherel ≡ l ′ (modm). So, the wordr(axa) (equal to the prefix of lengthl
of r(v)) is m-periodic:

r(axa) = bα . . .bm−1(bl ′b)n′−1bl ′b1 . . .bγ−1,

whereγ−α ≡ l (modm), γ∈ {1, . . . ,m}.
Let us consider the prefix ofr(v) of lengthm+ l . It exists due to Claim 1 and is equal to

r(axa)bγ . . .bm−1cn′+1b1 . . .bγ−1.

Subsituting the unknown symbolcn′+1 by a hole⋄, we obtain a partial word

bα . . .bm−1(bl ′b)n′ ⋄b1 . . .bγ−1,

which is l -periodic as well asr(v). But at the same time, it ism-periodic; thus, due to Theorem 3 it isp-
periodic, wherep= gcd(l ,m). Consequently,b= r(ϕ(0)) is alsop-periodic:b=(b1 . . .bp)

m′−1b1 . . .bp−1,
wherem′ = m/p. Let us return toϕ(0) and denoteg1 = 0, gk = b1 +b2 + . . .+bk−1 for k ∈ {2, . . . , p},
andc = b1 +b2 + . . .+bp; due to (2), we see thatϕ(0) is of the form

ϕ(0) = g1 . . .gp g1 +c. . .gp +c. . .g1 +(m′−1)c. . .gp +(m′−1)c. (3)

Hereg1 = 0 sinceϕ has a fixed point, andm′ = m/p. The words of the formg1 + ic . . .gp + ic, where
i ∈ {0, . . . ,m′ − 1}, will be calledsubblocks. Note that for allk ∈ {1, . . . , p}, a subblock is uniquely
determined by itskth symbol, and thatw consists of consecutive subblocks.

Let wi denote theith symbol of the fixed pointw of ϕ, i. e., letw= w1 . . .wn . . ., wherewi ∈ Σ. Consider
the arithmetical subsequence

w′ = w1wp+1w2p+1 . . .wnp+1 . . . .

Claim 3 The word w′ is the fixed point of a morphismϕ′ ∈ S(m).

Proof. Let us define the symmetric morphismϕ′ by

ϕ′(0) = g1g1 +c. . .g1 +(m′−1)c g2g2 +c. . .g2 +(m′−1)c. . .gpgp +c. . .gp +(m′−1)c.

Sinceϕ′(0) is obtained fromϕ(0) by permuting symbols, and all the symbols ofϕ(0) are distinct, so are
the symbols ofϕ′(0). Sinceg1 = 0, andϕ′ is symmetric by definition,ϕ′ ∈ S(m). So we must prove only
thatw′ is its fixed point, i. e., that

∀k≥ 0∀i ∈ {1, . . . ,m} w′
km+i is equal to theith symbol ofϕ′(w′

k+1), (4)

wherew′
k is thekth symbol ofw′ = w′

1w′
2 . . .w′

n . . ..
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Clearly, eachi ∈ {1, . . . ,m} can be uniquely represented asi = jm′ + δ, where j ∈ {0, . . . , p−1} and
δ∈ {1, . . . ,m′}. Since by definition ofw′ for all ν we havew′

ν = wp(ν−1)+1, for anyk≥ 0

w′
km+i = w′

km+ jm′+δ = wp(km+ jm′+δ−1)+1 = w(pk+ j)m+p(δ−1)+1.

By Equality (1), w(pk+ j)m+p(δ−1)+1 is equal to the(p(δ− 1) + 1)th symbol ofϕ(wpk+ j+1), that is, to

(δ−1)c+wpk+ j+1 (recall thatg1 = 0). In its turn, wpk+ j+1 is the ( j + 1)th symbol of the subblock
starting withwpk+1 = w′

k+1. It is equal tow′
k+1 +g j+1, and thus,w′

km+i = w′
k+1 +(δ−1)c+g j+1. By

the definition ofϕ′, it is equal to the symbol numberedjm′ +δ = i of ϕ′(w′
k+1). We have proved (4) and

Claim 3. ✷

Claim 4 The word w′ contains an overlap of length2l ′ +1, where l′ = l/p.

Proof. Let our occurrence of the overlapv to w start with thekth symbol of a subblock, i. e., let
α ≡ k (modp), wherek ∈ {1, . . . , p}. It means thatv = w jp+kw jp+k+1 . . .w( j+2l ′)p+k for some j ≥
0; sincev is an overlap,w( j+ν)p+1 = w( j+ν+l ′)p+1 for all ν ∈ {1, . . . , l ′}. But we have alsow jp+k =
w( j+l ′)p+k, and since a subblock is uniquely determined by itskth symbol,w jp+1 = w( j+l ′)p+1. So, the
wordw jp+1w( j+1)p+1 . . .w( j+2l ′)p+1 is l ′-periodic, and it is the needed overlap inw′. ✷

As it follows from Claims 3 and 4, we have found a fixed point of a morphism ofS(m) containing an
overlap of lengthl ′ = l/p. But if p > 1, this contradicts to the minimality of our counter-example. On the
other hand, ifp = 1, then it follows from (3) that

ϕ(0) = 0c 2c. . .(m−1)c.

But a fixed point of such a morphism cannot be a counter-example according to Lemma 1. A contradiction.
Theorem 2 is proved. ✷
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