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TheP4—structure of a grap@ is a hypergrapt/ on the same vertex set such that four vertices form a hyperedie in
whenever they induceR, in G. We present a constructive algorithm which tests in polynomial time whether a given
4—uniform hypergraph is th,—structure of a claw—free graph and of (banner,chair,dart)—free graphs. The algorithm
relies on new structural results for (banner,chair,dart)—free graphs which are based on the cqrasptradctedness.

As a byproduct, we obtain a polynomial time criterion for perfectness for a large class of graphs properly containing
claw—free graphs.

Keywords: Claw-free graphs, reconstruction probleg;structure,p-connected graphs, homogeneous set, perfect
graphs.

1 Introduction

Let # = (V, E) be a 4-uniform hypergraph with verticesand hyperedge€. We consider theecon-
struction problemwhich asks for a grapts = (V, E) whosePs—structure is equal tg/. More precisely,
is there a grapl@ such that four vertices fror® induce aP, (that is, a chordless path on four vertices)
if and only if these four vertices induce a hyperedge#if? If the answer is yes, how can we find such
a graphG? This problem has been settled for several classes of graphs includingitrees [7, 10], bipartite
graphs 2], block graphsgi[4], line graphs of bipartite graphs [15] and line graphs [1].

In this paper we shall provide a polynomial-time algorithm which solves the reconstruction problem
for claw—free graphs (that are the graphs containing no induced copiaf)aand for BCD—free graphs
(that are the graphs containing no induced copy ladianer, achair, or adart) shown in Figurég] 1

Our algorithm relies on new structural properties of BCD—free graphs which are obtained by a thorough
study of theirP;—structure. The results are based on the conceptodnnectedness of graphs, which has
proved in the past as an extremely powerful tool for the purpose of graph decomposition and for the
structural and algorithmic study of graphs with a simplestructure (see e.g. the survey pajper [3]).
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Fig. 1: Claw, banner, chair, and dart

The original motivation for the reconstruction problem stems from results concerning the perfectness of
graphs. The need for a succinct certificate of perfectness and the observation that odd cycles have unique
P,—structure inspired Ctatal to conjecture that a graph is perfect if and only if it hasRhestructure of
a perfect graph]8]. This conjecture has been proved by Reed and is known as the Semi-—Strong Perfect
Graph Theorem[14].

As a byproduct, we will point out a consequence for the ctas$ graphs having th&,—structure of a
claw—free graph, the most interesting case of BCD—free graphs. First note that graphs beloggiegdo
not be claw—free. In fact; contains the complements of claw—free graphs (and thus is significantly larger
than the class of claw—free graphs). This follows from the observation that a graph and its complement
have the sam@&,—structure. However contains also many graphs such that neither the graph nor its
complement are claw—free.

Since claw—free graphs are not perfect in general, graphs belongihgeed not be perfect. However,
the Semi-Strong Perfect Graph Theorem implies that the g&aglC is perfect if and only if a claw—
free graphPs—isomorphic toG is perfect. Now, since the perfectness of claw—free graphs can be tested
efficiently [9], we obtain in this way a criterion for perfectness for graphS:iGivenG € C, construct the
hypergraph?{ representing thes—structure ofG, and then reconstruct a claw—free grapaving# as
its P4—structure and use the algorithm [n [9] for testing perfectness, @ind thus for testing perfectness
of G.

However, a problem remains open: To describe the graphs belongihgrtoat is, characterize graphs
Ps,—isomorphic to a claw—free graph. GrapgPs-isomorphic to a tree, a forest, a bipartite graph, a split
graph, respectively, are described(in(]56, 13].

In the next section we recall the notions pfconnected graphs and of homogeneous sets which are
important tools in our discussion. In Section 3 we study pheonnected components of BCD—free
graphs, which are of particular interest for the reconstruction problem. In Section 4 we develop the main
idea for the reconstruction gf—connected BCD—free graphs. In Section 5 we present the algorithm
as a whole. The first step consists of the identification of special types of graphs. The second step is an
incremental procedure which tries to find some suitable starting graph and successively adds the remaining
vertices.

2 Basics

We assume familiarity with standard graph—theoretical notions &slin [11]. In the followRgalavays
stands for arinduced pathon k vertices anck — 1 edges. Following12], a grapB = (V,E) is p-
connectedf for every partition ofV into nonempty disjoint sed¢, V- there exists &, containing vertices
from both sets in the partition. SuchRa is termed asrossingbetweenv; andV,. The p—connected
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componentsf a graph are the maximal inducedconnected subgraphs. Note that fheonnected com-
ponents are closed under complementation and are connected subgraphs®ahdi®. Furthermore,
it is easy to see that each graph has a unique patrtition infe-tisnnected components.

A p—connected graph is callsgparabléf its vertex se¥ can be partitioned into two nonempty disjoint
setsV; andV; in such a way that each crossiRg has its midpoints iV, and its endpoints iv,. This
partition is commonly written a8/1, V) and called theseparatiorof G. It is obvious that the complement
of a separabl@-connected graph is also separable. The separ@tiow,) of G becomeg\Vs,V;) in G.

A subsetH of V with 1 < |H| < |V| is calledhomogeneousf every vertex outsidéd is either adjacent
to all vertices fronH or to none of them. A homogeneous kets maximalif no other homogeneous set
properly containdd. The graphG* obtained from ap—connected grapt by shrinking every maximal
homogeneous set to one single vertex is calledcteracteristic graphof G. Clearly, G* is also p—
connected.

The notions ofp—connectedness and homogeneous set will be the basic tools for the studygpt the
structure of BCD—free graphs. If [2], this approach has already turned out to be very useful for recognizing
the Py—structure of bipartite graphs.

3 The structure of BCD—free graphs

We start with an observation about homogeneous sgiséonnected BCD—free graphs. It turns out that
these sets are of a very simple structure.

Proposition 3.1 Every homogeneous set in a p—connected BC—free graph is a clique.

Proof. LetH be a homogeneous set ipaconnected graph. We considePawhich is crossing between
H andV — H. Clearly, thisP, contains precisely one vertex frokh. If H contains two nonadjacent
vertices, then there is a chair (if tfg has an end—point ill), or a banner (if thé> has a mid—point in
H). This proves the claim. O

For further properties of BCD—free graphs, we need the notionspidef]. This is a graph consisting
of a clique of size at least two (thener vertices) and a stable set of equal size @héer vertices) such
that every vertex of the clique has precisely one neighbor in the stable set (each such pair of vertices is a
leg). Furthermore, there is one additional vertex, calledhiadof the spider, which is adjacent precisely
to the inner vertices (see Figure 2(a)).

For our purposes it suffices to study the case where the graph contains a stable set with at least three
vertices (the recognition of thiey—structure of triangle—free graphs has been solved in [2]; this immedi-
ately implies an algorithm for graphs containing no stable set with three vertices). Thereby, the following
variants of spiders will play a special role.sfider with a long legs a spider where one leg is replaced by
aPs or aPy. In other words, we subdivide one end—edge by one or two verticdsuble—spideconsists
of two spiders where certain pairs of outer vertices are identified (see Figdre 2(b)). Firgigyiais a
cycle consisting of six vertices and three chords which form a triangle.

Theorem 3.2 Let G be a p—connected BCD—free grapha{f5) > 3 then precisely one of the following
statements holds:

1 Graphs which are defined in a quite similar way and which are called thin and thick spiders play a crucial role in the theory of
p—connected graphs, see [3]
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(a) A spider (b) A double—spider

Fig. 2: Spiders and Double—Spiders

(i) G results from a 3—sun or from a headless spider with at least three legs, by replacing the vertices
by cliques;

(i) G results from a spider with a long leg or from a double—spider, by replacing the vertices by cliques
(the heads of the spiders may be missing);

(iii) G contains one of the graphs from Figdfe 3 as an induced subgraph.

Because of the long and technical proof, we will divide Theofem 3.2 into two Lemimas 337and 3.4
below, according to whether the graph contaif® ar not. Theoreni 3} 2 then follows from these lemmas
and Propositiof 3}.1.

Lemma3.3 Let G be a p—connected BCD—free graph va{l&) > 3. If G is B—free then Gis a headless
spider with at least three legs orZ-sun.

Proof. It easily follows from Propositiop 3.1 that(G*) > 3 (note that &, and a stable set i contain
not more than one vertex from each homogeneous set)S Henhote a maximum stable set akdhe
remaining vertices is*. Then|S > 3 holds.

We denote byB the bipartite subgraph d&* containing only the edges betwe&andK. By the
maximality ofS, every vertexx of K has at least one neighbor& Hence

1<dg(x) forall xeK, 1)

with ds(x) denoting the number of neighborsxfn S. On the other side, sind8* is connected, every
vertexa of Smust have at least one neighboini.e.

dk(a)>1 forallacsS (2)

Case 1. B is disconnected

First we show that
ds(x) =1 forall xe K. 3
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Fig. 3: The starting graphs for the reconstruction procedure

Otherwise letds(x) > 2 for a vertexx € K anda,b be two neighbors ok in S We denote byB; the
component oB containingx. Letc € Sbe a vertex belonging to a different compon8nt A shortest
path betweenx andc in G* consists of at most four vertices, otherwise there would be d&men the
other side, such a path consists of at least four vertices, othexwvselld be adjacent to a vertex from
Bj which implies a chair centered in Let xyzcbe a shortest path. Note thmis nonadjacent to bota
andb (because, b andc belong to different components Bj, andy must be adjacent to precisely one of
a,b (otherwiseG* would have a chair or a dart). We can assume w.l.0.g.lilzeidy are adjacent. Since
c € Bj andy € Bj, these vertices must be nonadjacent. This provides a contradiction sin@xypsis a
Psin G*.

HenceB consists of at least three components, each containing precisely one verteX f@onsider
one of these components, By and leta be the vertex fronB; N S. We claim that, inG*,

every vertexx € BiNK has at least one neighbor outsiBe 4)
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Otherwise leH contain all vertices fronB; without neighbors outsidB;. In particular,a belongs taH.
SinceG* contains no homogeneous sets there must be some vertex dditsdgz, which distinguishes
two vertices fronmH. It is clear thatz belongs tdB; and is adjacent ta and nonadjacent to another vertex
from H, sayx. Lety be a neighbor of outsideB; andc the neighbor ofyin S Thenxazycis aPs in G*,
which is a contradiction.

Now we show that, ilG*,

every vertexx € BiNK has a neighbor ieveryother componens;. (5)

Otherwise le be nonadjacent tB;. By (B) we know thak has at least one neighbpoutsideB;, say in
Bk. Leta andb be the neighbors of andy in Sand letc € B;jN'S. We consider a shortest path betwden
andc. Clearly, this must be By, saybyzc(wherey =y may be possible). Now a shortest path between
aandcin the graph induced bfa,b,c,x,y,y', z} contains &s. This is a contradiction.
Finally we prove that
dc(a)=1 forallaes (6)

Otherwise letH contain all neighbors of. SinceH is not a homogeneous set, there must be a vertex
outsideH, sayz, which distinguishes two vertices frohh. Letx,x' € H such thatz is adjacent toc and
nonadjacent ta. Suppose that, X' € B; andz < B;. By (8) we know thak’ must have a neighbgrin B.
Denote byb andc the neighbors of andzin S. Note thaty andz must be nonadjacent since otherwise we
obtain a chair centered in Now a shortest path betwebmndc in the graph induced b{a, b, c,x, Xy, z}
contains &%s. This is again a contradiction.

Hence every component Bfconsists of one vertex froand one vertex frorK. Now it follows from
(B) thatK is a clique and therefor@* is a headless spider with at least three legs.

Case 2. B is connected

First we show that
ds(x) > 2 forallx e K. @

Assume that there is a vertexe K with ds(x) = 1. We can assume that the neighlaoe S of x is

not adjacent to all vertices i (otherwise exchanga andx, i.e. setS:= (S—{a})U{x} andK =

(K —{x})uU{a}; note thatx is not adjacent to all vertices frold since otherwisga,x} would be a
homogeneous set; & should now be disconnected then we are in Case 1). We will separate the discussion
into two subcases, according to whether there B &Ps with x as an end—point. In each case we will get

a contradiction.

Case 2.1. B contains an inducegl arting at x.
Let xaybzde such &5 in B. Thenx,y,z€ K anda,b,c € S. Now,

y andz are adjacent
otherwiseaybzcwould be aPs in G*, and
X cannot be adjacent to boytandz,

otherwiseb, ¢, x,y,zwould induce a dart. Ik is adjacent t@then there is a banner induced &y, x,y, z.
If x is nonadjacent to bothandz thenxayzcis aPs. So we have

X is adjacent toy and nonadjacent to
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Now, as{a,x} is not homogeneous, there is a vertewhich distinguishes andx. If v is adjacent ta
thenv cannot be adjacent to bothandc. Otherwise there is a chair. Therefovds nonadjacent ta(else
xavzbor xavzcwould be aPs), and also nonadjacent yo(elsev, a, x,y,z would induce a dart). But then
vayzcis aPs (if v is nonadjacent t@), or xavczis a Ps (otherwise). This contradiction shows thais
adjacent tox. Again,v cannot be adjacent to bokthandc (else there is a chair &. Thereforey cannot
be adjacent ty (elsev must be adjacent tb andz becausés has no dart; but theczvxais aPs in G*),
and hencer is nonadjacent te (elsecvxybwould be aPs). Now, v,X,y,z ¢ induce a banner or. This
final contradiction settles Case 2.1.

Case 2.2. There is no induceg iR B starting at x.
Among all neighbors oé in K choose a vertey with maximum|Ns(y)|.

AssumeNs(y) = S, and consider two verticdscin S—{a}. Note that andy are nonadjacent otherwise
there is a chair. Aga,x} is not a homogeneous set, there is a vevteshich distinguishes andx. Now,
v cannot be adjacent to bolhandc, otherwisea, b, ¢, v,x would induce a chair. Say,is nonadjacent to.
But thena, b, x,y,vinduce a dart (i is adjacent tg), or a chair or banner (otherwise). Thidg(y) # S

Letc be a vertex ir6— Ng(y), and consider & = xazcin B (recall that there is no longer induced path
in B betweenx andc). By the choice ofy, there exists a vertexin Sadjacent toy but nonadjacent ta.
We note that, irG*,

y andz are adjacent

otherwisebyazcwould be aPs, and
xis adjacent ty if and only if it is adjacent t,
otherwise there is a dart. Now, consider a vertexK — N(a). Then
v cannot be adjacent to bolthandc,

otherwisexaybvewould be aPs in B starting atx.

Case 2.2.1. vis nonadjacent to b and adjacent to ¢

In this casey cannot be adjacent to boyhandz, otherwisea, b,v,y,zwould induce a dart. On the other
hand,v must be adjacent tpor z, otherwisebyzcwvould be abs. If vis nonadjacent tathenb, c,y, zand
vinduce a banner. Thus we have

vis adjacent t@ and nonadjacent tp

Moreover,
v is nonadjacent tq,

otherwisex must be adjacent tp(elsebyaxvwould be &), hence also ta. But thenbyxvcis aPs. Now,
sinceG* has no homogeneous set, there is a var@dhich distinguishes andc.
Assume first thatv is adjacent ta. Then

w is nonadjacent ta,

otherwisew must be adjacent tp (elsey, z, ¢, v,w would induce a dart), and t@ (elseaywcvwould be a
Ps), and tob (elsebywcvwould be aPs). But thena, b, c,w andv induce a chair. Moreover,

w is nonadjacent ta,
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otherwisew is nonadjacent tb (elsea, b, c,w andv would induce a chair). But themc,y,zandw induce
aPs or a banner. Therefore,
w is nonadjacent tg,

otherwiseaywcvwould be aPs: But thenaybwcis aPs (if wis adjacent td, or byzcwis aPs (otherwise).
Thus, we must have
w is nonadjacent te and adjacent to.

Then
w is nonadjacent ta,

otherwisew must be adjacent taandy (elsea, c,v,z w ory,c,Vv,z,w would induce a dart), and to(else
bywvcwould be aPs). But thena, b, ¢c,v andw induce a chair. And

w is nonadjacent tg,

otherwisew must be adjacent tb (elseb,y, z, v,w induce a banner), and t(elsebwvzawould induce a
Ps). But thena, b, c, v andw induce a chair.

Now, byzvwis aPs (if w is nonadjacent td), or yowvcis aPs (otherwise). This final contradiction
settles Case 2.2.1. By symmetry, the case whiésedjacent td and nonadjacent tocannot occur.

Case 2.2.2. vis nonadjacent to both b and ¢
Letd be a neighbor of in S. If d is adjacent to botly andzthend, a,y, z, c induce a dart. Ifl is adjacent
to precisely one of,zthend,y,z b, cinduce a chair. Thus,

d is nonadjacent tg andz
Consider &, = xawdin B. We have seen that € K — {y,z}. Moreover,
w is nonadjacent tb andc,
otherwisexaybwdor xazcwdis aPs in B starting atx, and
w is adjacent toy andz,

otherwisebyawdor czawdwould be aPs in G*. Now we are in the Case 2.2.1 by replacingy d andz
byw. Case 2.2.2 is settled, arfd (7) is completely proved.
Now we show that

no two vertices fronK have the same neighborhoodSn (8)

Let H denote the set of all vertices frokhwhich have the same neighborsSnif |H| > 2 then, sinceéd
is not a homogeneous set, there must exist a vertaksideH which distinguishes two verticesandy
from H, sayzis adjacent toc and nonadjacent tg. If zis nonadjacent to two vertices Ms(x) = Ns(y)
then there is a banner or a dart. Thoi nonadjacent to at most one verteXNg(x). If zis nonadjacent
to the vertexa € Ng(x) then|Ns(x)| = |Ns(y)| = 2, otherwise two vertices iNs(x) — {a} together with
x,z,awould induce a dart. By[[7) is adjacent to a further vertexc S— Ng(x). But thenaybzcis aPs
whereb is the vertex ilNg(x) — {a}. Thus,z must be adjacent to all verticesy(x). Sincez ¢ H, there
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must be a vertex iB— Ns(x) adjacent ta. This vertex together witl, x and two vertices itfNs(x) induce
a dart. This contradiction proveg (8).
Next we prove that

every two vertices fronK have a common neighbor & 9)

Assume the contrary and kety € K with disjoint neighborhoods i8. Consider,b € Ns(x), c,d € Ng(y).
SinceG* contains no chairx andy are nonadjacent. Sin€&* contains nd, a shortest path betweean
andy consists of three or four vertices. Assume first tkiatis a shortest path. Themmust be adjacent to
exactly one vertex fronja, b}, sayb (otherwise there is a chair or a dart), and to exactly one vertex from
{c,d}, sayc (by the same reason). But n@xzydis aPs. Hence a shortest path is of the forz?y. If z
or Z belongs tdS, sayz, thenZ must be adjacent taor b (else there is a chair). But then there is a banner.
Thus,zandZ both belong t&K. Now, if ais adjacent t& thenZ must be adjacent toandd (otherwise
xaZyc or xaZyd would be aPs). But thenx,a, Z,c andd induce a chair. Henca b are nonadjacent B,
and so,z must be adjacent to bothandb (otherwiseaxzzy or bxzzy would be aPs). But thena,b,x,z
andZ induce a dart. This contradiction provék (9).
Finally, we claim that
ds(x) = 2 for allx € K. (10)

Assumeds(x) > 3 for somex € K. As G* is p—connected, there is some veriex K — {x}. Moreover,
by @) and [P)Ns(x) N Ns(y) # 0, and at least one dfis(x) — Ns(y), Ns(y) — Ns(x) is nonempty. Thus, if
[Ns(x) N Ns(y)| > 2 then there is a banner {ifandy are nonadjacent) or a dart (otherwise)|Ng(x) N
Ns(y)| = 1 then bothNs(x) — Ns(y) and Ns(y) — Ns(x) are nonempty where the first one contains, by
assumption, at least two vertices. But then there is a chair. This pioves (10).

Now leta,b,c € Sandx,y € K such thai is adjacent ta, b andy is adjacent td,c. It is clear thaix
andy must be adjacent, otherwise there iBsa Note that there must be further verticesdh, otherwise
G* is not p—connected. It follows fronT[8) andi](9) that there are either vertigels< i < k, each being
adjacent td and some verteg; € S, or precisely one vertexwhich is adjacent t@ andc. Now both
{X,y,z1,...,%} and{x,y,z} must induce a clique, otherwise there is agais.aln the first cas&* is not
p—connected since there is Rp containingb. In the second case we obtain a 3—sun. O

Lemma 3.4 Let G be a p—connected BCD—free graph. If G contains an indugelde® precisely one of
the following statements holds.

(i) G*is a spider with a long leg, or a double—spider;
(i) G contains one of the graphs from Figure 3.

We will make use of the following observation in proving Lemma 3.4.

Observation 3.5 Let m> 5 be a fixed integer. Let H be a BCD—free graph having no homogeneous set.
Let P=wvyv>---vy be an arbitrary induced path in H. Then precisely one of the following statements
holds.

(i) H contains one of the graphs from A, Az, A4, A7, Ag, Ag and A3 from Figure[B;
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(i) For any vertex v outside P and ary< k < m—1, {v,v} is not a homogeneous set in the graph
H[P+ V] induced by RJ{v}. Moreover, if H has no R;1 then{v, v} is not a homogeneous set in
H[P+v] for all k.

Proof. (of Observation 3]5) Assume that (i) is false. Suppose there is $osueh that{v,v} is a
homogeneous set H[P+V]. Then, sincéd has no homogeneous set, there is a vestextsideH [P+ V]
which distinguishes andvk. We may assume thatis adjacent tai and nonadjacent ta

First, consider the cade= 1, i.e. vis adjacent tor, and nonadjacent to alfj, j > 3. Thenv must be
adjacent tos, otherwisev, vy, V2, vs, v4 would induce a chair. Nowy cannot be adjacent t& otherwise
there is aPy, 1 starting atv (if w is nonadjacent to any;, j > 4), or a chair (ifw is adjacent to &; for
somej > 5), or anA; or A4 induced byvs,...,vs andw (if w is adjacent to/, and nonadjacent tas).
Thereforew is nonadjacent t@, otherwise there is a dart, and wads also nonadjacent te, otherwise
V,Vy,...,V4 andw would induce am,. SinceH does not contain By 1, there is a smallegt 5< j <m,
such thatv is adjacent tovj. Thenj =5 otherwise there is afi; or Ag or A1. Now, if m> 6 then there is
a chair (ifw is nonadjacent twg) or anAg (otherwise). Thereforen= 5. But thenvviwvsVaVvs is aPmy1.
This final contradiction shows thdt, v} cannot be a homogeneous seHfP +v]. By symmetry, the
casek = mis also settled.

Consider the cade= 2. Note thatv andv, are adjacent otherwise there is a bannerHAsas no dart,
w must be adjacent to at least onevgfandvs. Assume first thatvwv; andwvs both are edges dfi. Then
w must be adjacent tey otherwise there is a banner, and nonadjacemt toy the same reason. But then
vi,...,Vs andw induce anA;. Next, assume that is adjacent tos; but nonadjacent tez. Thenw is
nonadjacent tw, otherwise there is a chair (W is nonadjacent t@s) or anAg (if w is adjacent tovs).
But thenw, v1,V,v3,v4 andv, induce am;. Finally, assume that is nonadjacent te; but adjacent tos.
Thenw is adjacent tav4 otherwise there is a dart. But therv,, w,v4, vs andvs (if wis adjacent tass), or
vi,...,Vs andw (otherwise) induce af;. The casé&k = 2, and by symmetry, also the cdse- m— 1 is
settled. Now, consider the case<k < m— 2. Again,v andvi are adjacent otherwise there is a banner.
w must be adjacent to at least onevpf; andvy 1 otherwise there is a dart, sayi_1 € E(H). Thenw
must be adjacent ta_, otherwise there is a dart. By the same reasois, nonadjacent toy, 2, hencew
is also nonadjacent ta, 1 otherwise there is a banner. But th&wvy_1,V, k. 1, Vk:2 andvg induce ar;.
This contradiction completes the proof of the Observation. O

Proof. (of Lemma[31) Assume (ii) is false. We will prove that (i) holds. Note that the assumption
implies thatG* also does not contain a graph from Fig{ire 3 becd&ises (isomorphic to) an induced
subgraph ofa.

LetP =wviv,-- vy be a longest induced path @i. By the assumption, 8 m< 7. If G* = P thenG*
is a spider with a long leg (ifn # 7), or a double—spider (ih = 7), and we are done. SuppoGé # P.
Then, sinceG* is connected, there exists a vertex@h— P adjacent to a vertex iR. We first note that,
for every vertex outsideP,

if Np(v) # 0 then 2< |Np(v)| < 3. (12)

OtherwiseG* would have &1 or a chair (if|[Np(v)| = 1), or anAg, Az, Ay, As (if [Np(V)| = 4), or a dart
or a chair (if[Np(v)| > 5). Next, assuméNp(v)| = 2. ThenNp(v) # {v1,v2} andNp(V) # {Vm-1,Vm}.
Otherwise{v,v1}, respectively{v,vn} would be a homogeneous set in the graph induce® by{v},
contradicting Observatidn 3.5. MoreoverNs(v) = {v1,vn} thenm=5 otherwiseG* would have ar\;
or anAg. Furthermore, iNp(v) # {v1,Vm} then the two vertices fromip(v) must be adjacent otherwise
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G* would have a banner. Np(v) = {Vk, Vk+1} thenk = 2 ork = m— 2, otherwiseG* would have arAs.
In summary, we have:

If INp(V)| = 2 thenNp (V) = {Vv2,v3} Or {Vm_2,Vm-1}, orm=5andNp(v) = {v1,Vs}. (12)

We now consider verticaswith [Np (V)| = 3. First,Np(v) cannot form a subpatly_1 Vi1 of P otherwise
{Vv, vk} would be a homogeneous set in the graph induce@lbyv}, contradicting Observatidn 3.5. Thus,
we have:

If INp(V)| =3 thenm= 5 andNp(v) = {v1,Vs,Vs}, orm=6 andNp(v) = {v1,Vo,Vs},

orm=7 andNp(Vv) = {v,v3,v7}. (13)

OtherwiseG* would have am, A4 or a banner. For convenience, we will use the following notion: For
I C{1,...,m} let M, denote the set of all verticasin G* such thatNp(v) = {v; | i € | }. We also write
Myz6 instead oMy 56y, €tc. With this notion, we have:

|\/|237 Mm—Z;m—L M126, Misg and Mo37 induce Cliques. (14)

OtherwiseG* would have a dart. We now discuss three subcases according to the possibtities of

Casel. m=5

That is,G has noPs. Assume that there is a vertewith Np(v) = {v1,vs}. ThenPU{v} induces &Cs
C and by applying Observatidn B.5 for tRg's onC it follows thatG* = C. Thus,G* is a double—spider.
Hence we may assume thdts = 0. Then, [I]1), [T2) and{13) yields:

If Np(v) # 0thenNp(v) = {vo,v3}, or Np(V) = {V3,Va}.
SinceG* has noAs and noPs,
if M23 # 0 thenM34 = 0, and vice versa

By symmetry, we may assume thHdps # 0. Now, we are going to show th&"* is a spider with a long

leg. By (1%),

at most one vertex iM23 has no neighbor iG* — (PUM23),

otherwise these vertices would form a homogeneous $gt.iMoreover,
every vertex inV23 has at most one neighbor @i — (PUM23),

for, if x € M3 has two neighborg’, X" in G* — (PUM>3) then{x,x"} would be a homogeneous set of the
graph induced by thBs = x'xvsv4vs andx”, contradicting Observatidn 3.5. Furthermore,

no two vertices irM23 have a common neighbor & — (PUM3y3),

For, if x1,X2 € Ma3 are adjacent ty € G* — (PUMz3) then{x1,X>} would be a homogeneous set of the
graph induced by thBs = yx;v3v4Vvs andxp, contradicting Observatidn 3.5.

Let N be the set of vertices iB* — (PUMy3) adjacent to a vertex iN»3. SinceG* has noPs, the facts
above show tha¥ (G*) =V (P) UM23UN, and no two vertices ilN are adjacent. That i&* is a spider
with a long leg. Case 1 is settled.
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Case 2. m=6
In this caseG* is P,—free. By [TIL), every vertex outsidehas exactly 0, 2 or 3 neighbors i) and by

(L2),
if [Np(V)| =2 thenNp(v) = {vo,v3} or Np(v) = {va,Vs}.

By (I3),

if INp(V)| =3 thenNp(v) = {v1,Vs,Ve} Or Np(V) = {v1,V2,Vg}.
SinceG* has noA;g and noA4, we have:

If M2z # 0 thenMys = 0 and vice versa (15)

Furthermore,
if M126# 0 thenM;56= 0 and vice versa (16)

For, if there existy € M1ssandv € Mysgthenvandv are adjacent otherwisg* would have &4 induced
by vi,v2,v3, Ve, vandv. Butthen{v,v;} is a homogeneous set in the graph induced byghe vsv'vivovs
andv, contradicting Observatidn_8.5. This showg (16). Next we have

if M23 # 0 thenM;,6= 0 and vice versa a7

For, if there existsy € M3 andw € M1z then G* would have aP; = vwvavsvgwvyy (if v andw are
nonadjacent) or a dart (otherwise). The fa¢i$ (15), (16) gfd (17), and the symmetry allow us to assume
thatMs5 = 0 andMq,6 = 0. Now,

no vertex inM15¢ has a neighbor i6* — (PUMjsg), (18)
otherwiseG* would have a chair. By[(14) an@{18),
IM1sg| < 1,
otherwiseM;s6 would be a homogeneous set@i. Furthermore,
if [M156| = 1 then no vertex iM23 has a neighbor i6* — (PUMa3),

because, i € M3 has a neighbov € G* — (PUMa3) then, by [IB)V ¢ M1s6 and is nonadjacent to the
vertexw of Mysg. But thenG* has aPy = V'vsvavswvy. Thus,

if [M1s6| = 1 then|Mgs| < 1,

otherwiseMy3z would be a homogeneous set@i. It follows that if |[M1s¢| = 1 thenV(G*) =V (P)U
M23UM3156 and hencés* is a double—spider.
If [M1s56| = 0 then, as in the casa= 5, by using Observation 3.5, one can see that

every vertex irMy3 has at most one neighbor @& — (PUM33), and no two vertices
in M23 have a common neighbor & — (PUMz3).

SinceMz3 induces a clique,

at most one vertex iV23 has no neighbor iG* — (PUM23),
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otherwise these vertices would form a homogeneous $gt.in

Let N be the set of all vertices i6* — (PUM23) adjacent to a vertex iN»3. As in the casen= 5, one
can see that no two verticeshhare adjacent, and(G*) =V (P) UM»3UN. That isG* is a spider with a
long leg. Case 2 is settled.

Case3. m=7
In this case we have, for every vertenutsideP such thalNp(v) # 0,

if INp(V)| = 2 thenNp(v) = {v2,v3} or Np(v) = {vs,Vs}, and if [Np(v)| = 3 then
Np (V) = {V1,V5,Ve} OF Np(V) = {V2,v3,V7}.

Recall that, by[(1l4), the seky3, Mss, M156, andMz37 induce cliques. We now are going to show tit
is a double—spider.
First, we have

Mse U M3156 andMa3 U Mas7 induce clique
(elseG* would have a dart), and
no vertex fromMsg U Mjs6 is adjacent to every vertex froMaz U Mas7
(elseG* would have arA;g or a chair). Next,
no vertex fromMisg has a neighbor iG* — (PUMsgUMis6)
(elseG* would have a chair), hence
[M156) < 1
(elseM;56 would be a homogeneous setG). By symmetry, we also have
|[M237] < 1, and the vertex d¥l,37 (if any) has no neighbor iG* — (PUMz3).

Now, as in the casm = 5, we can see th&"* is a double—spider, wheds3UMy37U {V2,Vv3} is the set
of inner vertices of one spider atdks UM;56U {Vvs,Vs} is the set of inner vertices of the other spider.

4 The reconstruction technique

In this section assume thaf is connected. We want to find@-connected BCD—free graghsuch that
the Py—structure ofG is equal to#. In the following we study the most interesting case whérbas
stability number at least three and is none of the special graphs from Thgotem 3.2 (i)—(ii).

A vertexv is said to have g@artnerin a P, sayX, if v together with three vertices froi induces a
P;. By checking all possible adjacencies between a vertex dPdima BC—free graph (see Figure 4)
one easily realizes that there are four configurations where a vertex has precisely one partner (namely in
cases (iv), (v), (vii) and (viii)), and one configuration where it has more than one partner (in case (vi)).
We say that has a partner in a graph if this graph contai® avhich has a partner for. The following
statement will be crucial for the reconstructiongfconnected BCD—free graphs, but we formulate it here
in a slightly more general way.
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Fig. 4: All adjacencies between a vertex andgifPa BC—free graph

Lemma4.1l Let G be a graph in which every homogeneous set inducesfee graph, and let Gbe a
p—connected proper induced subgraph in G. 1fisnot separable then there exists a vertex v outside G
such that v has a partner in’GIn particular, G U {v} is p—connected.

Proof. SinceG' contains &4 (as it is p—connected), it cannot be a homogeneous sé&. dflence there
exists a vertex outsideG’ adjacent to some vertex and nonadjacent to some verték im particular,
the setsS; = Ng/(v), $ = G' — §; are nonempty. A€’ is p-connected, there isRy crossingS, andS,.
As G’ is nonseparable, there isPa P crossingS, and$; such that if two mid—points o are inS; then
one of the end—points ¢fis also inS;. Now, the graph induced by andv has aP, containingv. That is,
P is a partner irG' for v. O

Now we show that, in a BC—free graph, the adjacencies of a verteRtoan be determined in a unique
way from the partial knowledge of the adjacencies andhstructure. LeX be aP, andv a vertex from
outsideX. We shall say that

X is of type Oif v has no partner iX (see cases (i), (ii) and (iii) of Figuié 4);

X'is of type 1if v has one partner iK and the three vertices froiwhich induce &, with vinduce
aPs (see cases (iv) and (v) of Figufe 4);

X is of type 2if v has one partner iK and the three vertices frowhich induce &, with vinduce
aPs (see cases (vii) and (viii) of Figufé 4);

X is of type 3if v has more than one partnerXn(see case (vi) of Figurg 4).
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More precisely, we prove the following:

Lemma4.2 Let X be aRin a BC—free graph and v a vertex outside X. If the adjacencies of v with respect
to three vertices from X are known, then the adjacency to the fourth vertex from X can be determined from
the R—structure of XU {v}.

Proof. Let{w,x,y,z} be the vertex set of and assume that the adjacencies tf x, y andz are known.
We have to find out whetherandw are adjacent or not.

Clearly, the type oX can be determined from tH&—structure ofX U {v}. Assume first thaX is of
type 0. Ifv has no neighbors ifix,y, z} thenv must be nonadjacent t@ (this corresponds to case (i)). If
v has one neighbor ifix,y,z} thenv must be adjacent tw (this is case (ii)). Ifv has two neighbors in
{x,y,z} thenv is nonadjacent twv (again case (ii)). Finally, i7 has three neighbors ifx,y,z} thenv is
adjacent taw (this is case (iii)).

Assume now thaK is of type 1. Therv has at most two neighbors ix,y,z}. If v has no neighbor
in {x,y,z} thenv must be adjacent tov (see case (iv)). I has two neighbors ifix,y, z} thenv must be
nonadjacent tav (see case (v)). N has one neighbor ifix,y, z} then we have to distinguish two cases: If
X has edgewx, xy andyz, i.e.wis an endpoint oK, thenv is adjacent tav if and only if v is adjacent to
x. If X has edgezw, wyandyz, i.e.wis a midpoint ofX, thenv is adjacent tav if and only if vis adjacent
to x and{v,w,y,z} induces &;.

If X is of type 2 therv has two or three neighbors {x,y,z}. In the first casey must be adjacent ta,
in the second casemust be nonadjacent t@ (see cases (vii) and (viii)).

Finally, if X is of type 3 thernv has one or two neighbors {ix,y,z}. In the first casey must be adjacent
tow, in the second casemust be nonadjacent t@ (see case (vi)). O

Note that the previous two lemmas do not hold for arbitrary graphs.

Now we sketch the principle of the reconstruction procedure. First we try to find startang graph
G/, whereG' is a BCD—free graph realization of a subhypergraphof #. This graph should have the
property that the adjacencies of all vertices outsEdevith respect toG' can be determined in a unique
way from theP,—structure. Furthermor&'’ should not be separable. The details how to find such a graph
are spelled out later. Then we repeatedly extend the starting @api a vertex which has a partner
in the current subgraph. & is not separable then, by Proposition] 3.1 and Leminia 4.1, such a vertex
always exists (otherwise there is no realizatiortois a BCD—free graph). Moreover, by Lemmd 4.2, the
adjacencies of a newly added vertex with respect to all the previously added vertices can be determined in
a unique way (otherwise, again, there is no realizatiof/afs a BCD—free graph).

More precisely, levy, ..., vk be a numbering of the vertices fro@— G’ such that each; induces a
P4 with some three vertices fro®' U {vi,...,vi_1}. We want to find out the neighbors gf in G'U
{v1,...,vj_1}. For that purpose we first determine the neighbors;ah G’ (which is possible by the
above assumption). Now assume inductively that all neighbokg of G' U {v1,...,vi_1} are already
known (with 1<i < j). We consider &4, say{a,b,c,v;}, with three vertices,b,c € G U{vy,...,vi_1}.

By Lemma[4.P, it can be determined from fg-structure whethey; is adjacent ta; or not.

It remains to find some suitable starting graph. The choice of the starting graph is crucial. Not every
graph is suitable in the sense that the adjacencies of the vertices outside are uniquely determined by the
Ps—structure. We consider the collection of graphs depicted in Figure 3. Note that these graphs are
connected, have stability number at least three and none of them is separable. Furthermore, as shown in
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Theoreni3]2, at least one of them occurs as an induced subgr&ia now prove that all these graphs
have the desired property.

Lemma4.3 Let G be any of the graphs from Figufé 3 and let v be a vertex from outsideT&en, in
a BCD-free graph, the adjacencies of v with respect tc#@h be determined in a unigue way from the
Ps—structure of GU {v}.

Proof. Consider first &5 in an arbitrary of the graph& from Figure[B. Once the adjacencies/dd such
aPs are known, we can proceed similarly as this has been proposed above. We extensitteessively
to the whole subgraph; by adding a vertex which has a partner in the current subgraph and determine
whetherv is adjacent to this vertex or not. In this way we obtain all adjacencigswith respect to;.
Denote the vertices of thg; in the natural order bg, b, c,d,e. Let furtherX andY be thePys induced
by {a,b,c,d} resp.{b,c,d, e} andv be a vertex from outside. Assume first tiais of type 0. IfY is also
of type 0 therw must be nonadjacent to tiig (note that in a dart—free graph a vertex cannot be adjacent
to all vertices of a%). If Y is of type 1 therv must induce &, together withc,d,e. In this casev is
either adjacent tb,c or toeonly. If Y is of type 2 theny must induce &, with b,d,e. This means that
v is either adjacent ta,b,c,d or tob,c,e. We can find out the correct alternative by checking whether
{a,v,d, e} induces &, or not. Clearly¥ cannot be of type 3.
Assume now thaX is of type 1 ands induces &, with a, b, c (in the following we omit the symmetric
cases which only exchange the roleXoandY). If Y is also of type 1 then is adjacent ta ande. If Y
is of type 2 therv is adjacent ta,d,e. AgainY cannot be of type 3. IK is of type 1 ands induces &4
with b, ¢, d thenY can only be of type 1 or 3. ¥ is of type 1 therv is either adjacent ta,b or tod,e. If
Y is of type 3 thervis adjacent ta, b, e.
Assume thaX is of type 2 andsinduces &, with a,b,d. If Y is of type 2 and{b,v,d, e} induces &4
thenv is adjacent td, c,d. On the other side, ¥ is of type 2 and b, c,v, e} induces &, thenv is adjacent
to a,c,d,e. Assume thaK is of type 2 andv induces & with a,c,d. If Y is of type 2 and{b,v,e,d}
forms aP4 thenvis adjacent t@, b, c,e. If {c,b,v,e} forms aP, thenv is adjacent t@, b,d,e. Clearly, in
both case¥ cannot be of type 3. Finally, the case where bétandY are of type 3 cannot occur.
We have shown that the neighborsvofvith respect to th&; can be determined from tH&—structure
with the exception of three cases, namely where

(i) vis adjacent eithertb,cortoe
(i) vis adjacent either taortoc,d
(i) vis adjacent either ta,b or tod,e.

We can find out the correct alternatives by considering also the remaining vertices of the sukgraph
Consider the graph; and letf be the sixth vertex which is adjacentdam, c,d. In order to decide (i)
note that in both of the two possible casasust be nonadjacent to If {v,b, f,d} induces &, thenv is
adjacent tdy, ¢, otherwise tce. For (ii) note that in the first casemust be nonadjacent tig in the second
casev must be adjacent tb. If {v,a, f,d} induces &, thenv is adjacent t@, otherwise tcc,d. In (iii)
we obtain that in the first casemay be adjacent td or not, in the second casanust be nonadjacent to
f. If {v,a, f,c} induces &, thenv is adjacent ta,b. If this is not the case and {fv, f,d,e} forms aP4
thenv is adjacent t@, b, f, otherwise tal, e.
In A, the sixth vertexf is adjacent t@, b, e. For (i) note that in the first casemust be nonadjacent ti
in the second casemust be adjacent té. If {v,b, f,e} induces &, thenv is adjacent td, c, otherwise to
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e. For (ii) verify that in both casesmust be nonadjacent fo If {v,a, f,e} induces &, thenv is adjacent
to a, otherwise ta,d. In (i) we obtain that in the first casemust be adjacent té, in the second case

may be adjacent té or not. If {c,b, f,v} induces &, thenv is adjacent tal, e, f. If this is not the case
and if{b, f,e v} forms aP, thenv is adjacent tal, e, otherwise ta, b.

In Az the sixth vertexf is adjacent t@, b,d,e. For (i) we see that in both casesnust be nonadjacent
to f. If {v,b, f,d} induces &, thenv is adjacent td, c, otherwise te. For (ii) again in both casesmust
be nonadjacent té. If {v,a, f,e} induces &, thenv is adjacent t@, otherwise tac,d. In (iii) we obtain
that in both cases must be adjacent tb. Now, if {v, f,d,c} is aPs thenv is adjacent t@, b, otherwise
tod,e

Finally, in A4 the sixth vertexf is adjacent t@, c,d. In order to decide (i) note that in both of the two
possible caseg must be nonadjacent th Clearly, if {v,b,a, f} induces &; thenv is adjacent td,c,
otherwise tce. For (ii) note that in both casesmust be adjacent tb. If {v, f,d, e} induces &, thenv is
adjacent ta, otherwise tac,d. In (iii) we obtain that in the first casemay be adjacent t6 or not, in the
second case must be nonadjacent th If {v, f,d,e} is aP4 thenvis adjacent ta, b, f. If this is not the
case and ifv,a, f,c} is aP4 thenvis adjacent t@, b, otherwise tal, e.

For the remaining graphs we have to use a slightly more involved argumentation (recall that we only
want to find out the adjacencies wfvith respect to @&s). Consider the graphAs and letf andg be the
vertices which are adjacent byc resp.c,d. For (i) we obtain that, in the first casemust be adjacent
to f whereas the adjacency ¢pis open. In the second casés adjacent to at most one dfandg. If
{v, f,c,g} induces &, then the second case is the correct one{v]f,g,d} induces &, then we are
in the first case. If neither of the twieys exists then we are in the second case if and onfy,& d, g}
induces &,. The decision of (ii) follows by a symmetry argument. In (ii)is adjacent to at most one of
f andg. If {v,g,d, e} induces &, then the first case is the correct one{dfv,g,c} induces &, then the
second case is correct. If neither of the s exists then we are in the first case if and onlpib, ¢, g}
induces &.

In Ag let f be the vertex which is adjacent ¢écandg the vertex which is adjacent d. In the first
case of (i) the vertex is adjacent to at most one dfg. In the second case must be adjacent té
and may also be adjacentgo If {b,c,g,v} induces &, then we are in the second case. Otherwise, if
{v,g,d,e} does not induce & then we are in the first case. Finally,{ib,c,g,v} does not induce &
and{v,g,d, e} induces &, then we are in the first case if and only{l§,v,g,d} induces &;. For (ii) note
that in the second casemust be adjacent tg. If {b,c,v, f } induces &, then we are in the second case.
If {b,a,v, f} induces &, then we are in the first case. If bdflss do not exist then the second case is the
correct one if and only ifv,d, e, f} induces &. In (iii), if {v,g,d,e} induces &, then we are in the first
case. Assume now that,d,g,e} is noPs. If {v,b,c,g} does not induce & then we are in the second
case. If{v,g,d,e} is not aP, and{v,b,c,g} is aP, then the second case is the correct one if and only if
{c,g,v,e} induces ;.

In Ag let f be adjacent te andg adjacent t@, b andh adjacent te, f,g. For (i) note that in the second
casev must be adjacent té andh. If {v,g,b,c} is aP, then we are in the second case. Otherwise, if
{v,h,g,a} is not aP, then we are in the first case. Otherwise{¥fh,g,b} is a P, then we are in the
second case. For (i) note that, in both casegjsfadjacent td then it is also adjacent @ If {v,a,g,h}
induces &, then we are in the first case. Otherwise{\fg,b,c} is not aP, then we are in the second
case. Finally, iffa,v,h,e} or {v,g,h,e} is aP4 then the first case is the correct one. In the first case of (jii)
vertexv must be adjacent tg. If {v,d,e, f} or {v,d,e h} is aP, then we are in the first case. Otherwise,
if {v,g,h, f} or {v,g,h,e} is not aP then we are in the second case. Otherwise, the second case is true if
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and only if{c,d,v, f } induces &;.

In App let f be the vertex adjacent # g the vertex adjacent th,c andh the vertex adjacent td, e. In
the first case of (i) the vertexmust be adjacent tg, in the second casemust be adjacent té. In both
casesv has at most one further neighbor.{M,d,e, f} or {v,h,e, f} induce aP4 then we are in the first
case. Otherwise, ifv,c,d,h} does not induce B4 then we are in the second case{¥fc,d,h} induces
a P, then the second case is correct if and onlydfh,v, f} is aP4. In (i), if {v,g,c,d} is aP, then we
are in the first case. Otherwise{¥,a,b, g} is not aP, then we are in the second case{\fg,c,d} is not
aP; and{v,a,b,g} is aP4 then the second case is the correct alternative if and odly,d,v,d} is aPy.
Finally, (iii) can be decided by a symmetry argument from (i).

In A1 let f be adjacent te andg adjacent tof andh adjacent tay. For (i) note that in the second case
v must be adjacent tb. If one of {d,c,v, f}, {d,c,v,g} or {d,c,v,h} induces &, then we are in the first
case. If one ofd,e v,g} or {d,e v,h} induces & then we are in the second case. If none of Rpe
exists then we are in the second case if and onfy,if,g,h} induces &4. In (i), if one of {b,a v, f},
{b,a,v,g} or {b,a,v,h} induces aP, then we are in the first case. If one fib,c,v,f}, {b,c,v,g} or
{b,c,v,h} induces &, then we are in the second case. If none of e exists then the second case is
correct if and only if{v,d, e, f } induces &. In (jii), if one of {c,b,v, f}, {c,b,v,g} or {c,b,v,h} induces
aP4 then we are in the first case. If one{af,d,v, f}, {c,d,v,g} or {c,d,v,h} induces &, then we are in
the second case. If no one of tRes exists then the second case is correct if and orly, & f, g} induces
aPg.

For A7 andAg case (i) is analogous to case (i) of&n The decision of case (ii) follows by a symmetry
argument from (i). Case (iii) is again completely analogous to case (iii) 8fan O

5 The algorithm

If # is not connected then we consider the connected componernifssefparately and, for each com-
ponent, we try to find g—connected BCD—free graph with the correspondipestructure. If all these
BCD-free graphs exist then their disjoint union (or their disjoint sum) is a realizatidi.oflence we
can assume tha& is connected.

The algorithm for the reconstruction of BCD—free graphs consists of three parts. In the first part, we
check whether there is a graph with stability number less than three Wgesgucture is equal tdg{.

This is done using a method described (in [2]. Then we consider the types of graphs which appear in
Theoren{3]2 (i)—(ii). If there is suchspecialgraph withP,—structure equal té¢{ then we are done (the
recognition of theP4—structure of these special graphs is easy and left to the reader; for details see also
[m]). Otherwise, we have to apply the technique described in the previous section.

Note that for a 3—sun or a headless spider with at least three legs (and with the allowed replacements of
vertices by cliques) a vertex—by—vertex extension in the sense of L&€mima 4.1 is not possible, since all the
p—connected induced subgraphs are separable. Moreoérisitthe P,—structure of one of these graphs
or of one of the graphs from Theordm]3.2 (ii) then the underlying graph is in general not unique (i.e., there
are different realizations). [& is a graph from Theorefn 3.2 (ii) ai@l is ap—connected induced subgraph
of G (take as a simple exampldPg, Ps or P;) then the adjacencies of vertices outd&levith respect tas’
may not be uniquely determined. For these reasons the reconstruction technique of the previous section
cannot be applied to the graphs from Theoferm 3.2 (i) and (ii).

In order to find a starting graph for the reconstruction procedure we examine all sgfisets{ of
six, seven and eight vertices and check whethéiis the P;—structure of one of the grapls, ..., As1.
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Note that, if #" is the Py—structure of a graply, then the realization might not be unique: e.gfif is
the P4—structure of am\1g then there are two possible realizations since the two midpoints d%thee
not uniquely determined. Moreovet{’ may be thePs—structure of different graph;: e.g. the graphs
Az andA4 have the samBy—structure; the graphs has the samB,—structure as a paty, etc. Hencall
realizations must be considered as possible starting graphs (and can be found by a “brute force” approach,
in a similar way as described ial [2]). Note, however, that the number of possible starting graphs remains
polynomial in the size of.

Here is an informal description of the algorithm as a whole.

Al gori t hm Check-P4—structure

Input: A connected 4—uniform hypergragh
Output: A BCD—free grapls with P4—structure?’
or the answer “No” if no such graph exists

1. Check whethef{ is thePs—structure of a grapt with a(G) < 2.
If such a graplG exists then outpu® and STOP.
2. Check whethe# is theP,—structure of a special grajh
If such a graplG exists then outpu® and STOP.
3. For all subhypergraphg” C # with 6 < |#H’| < 8 do:
Fori=1to 11 do:
If #" is thePs—structure of the graph; then:
Start the reconstruction procedure for each realizatiaiof
If it produces a grapks then check whethe® is BCD—free and
H is thePy—structure ofG. If yes then outpuG and STOP.
4. Output “No”.

It is easy to see that the algorithm can be performed in time polynomial in the size of the hypergraph
H. Therefore we have shown:

Theorem 5.1 The R—structure of BCD—free graphs can be recognized in polynomial time. O
Corollary 5.2 The RB-structure of claw—free graphs can be recognized in polynomial time.

Proof. Claw—free graphs are BCD—free. In Step 3 of the algorithm, instead of che€king being
BCD-free one has just to chetkfor being claw—free. O
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