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A g-analog of Ljunggren’s binomial
congruence

Armin Straub'ff

YTulane University, New Orleans, LA, USA

Abstract. We prove a g-analog of a classical binomial congruence due to Ljunggren which states that

()=

modulo p* for primes p > 5. This congruence subsumes and builds on earlier congruences by Babbage, Wolsten-
holme and Glaisher for which we recall existing g-analogs. Our congruence generalizes an earlier result of Clark.

Résumé. Nous démontrons un g-analogue d’une congruence binomiale classique de Ljunggren qui stipule:

()= (:)

modulo p® pour p premier tel que p > 5. Cette congruence s’inspire d’une précédente congruence prouvée par
Babbage, Wolstenholme et Glaisher pour laquelle nous présentons les g-analogues existantes. Notre congruence
généralise un précédent résultat de Clark.
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1 Introduction and notation

Recently, g-analogs of classical congruences have been studied by several authors including (Cla93),
(And99), (SP07), (Pan07), (CP08)), (Dil08). Here, we consider the classical congruence

apy _ [(a 3
()-() =

which holds true for primes p > 5. This also appears as Problem 1.6 (d) in (Sta97). Congruence (1) was
proved in 1952 by Ljunggren, see (Gra97), and subsequently generalized by Jacobsthal, see Remark [6]
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Let[n], :=1+q+...q" % [n]y! := [n]y[n — 1], - [1], and

denote the usual g-analogs of numbers, factorials and binomial coefficients respectively. Observe that
[n]; = n so that in the case ¢ = 1 we recover the usual factorials and binomial coefficients as well.
Also, recall that the ¢-binomial coefficients are polynomials in ¢ with nonnegative integer coefficients.
An introduction to these g-analogs can be found in (Sta97).

We establish the following g-analog of (T)):

Theorem 1 For primes p > 5 and nonnegative integers a, b,

(Zi)q - (Z) q? a (bjf 1) (b—; 1) pQI; 1(qp - 1)? mod [p]z. 2)

The congruence (2)) and similar ones to follow are to be understood over the ring of polynomials in ¢ with
integer coefficients. We remark that p? — 1 is divisible by 12 for all primes p > 5.
Observe that (2) is indeed a g-analog of (I): as ¢ — 1 we recover ().

Example 2 Choosing p = 13, a = 2, and b = 1, we have

26
(13> =14+¢"% - 14" =1’ + (1 +q+...+¢)*f(9)
q

where f(q) = 14 — 41q + 41¢® — ... + ¢'3% is an irreducible polynomial with integer coefficients. Upon

setting ¢ = 1, we obtain (fg) = 2 modulo 133.

Since our treatment very much parallels the classical case, we give a brief history of the congruence (T}
in the next section before turning to the proof of Theorem|[I]

2 A bit of history

A classical result of Wilson states that (n — 1)! 4 1 is divisible by n if and only if n is a prime number.
“In attempting to discover some analogous expression which should be divisible by n?, whenever n is a
prime, but not divisible if n is a composite number”, (Bab19), Babbage is led to the congruence

(2p - 1) =1 modp? 3)
p—1

for primes p > 3. In 1862 Wolstenholme, (Wol62)), discovered (3] to hold modulo p3, “for several cases,

in testing numerically a result of certain investigations, and after some trouble succeeded in proving it to
hold universally” for p > 5. To this end, he proves the fractional congruences

1
Z n =0 modp?, 4)
i=1
p—1 1
Z == 0 modp (5)

=1
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for primes p > 5. Using (@) and (5) he then extends Babbage’s congruence (3)) to hold modulo p?:

2p—1
(p )El mod p? (6)
p—1

for all primes p > 5. Note that (6) can be rewritten as (2” ) = 2 modulo p?>. The further generalization of
(6) to (I, according to (Gra97), was found by Ljunggren in 1952. The case b = 1 of (I)) was obtained by
Glaisher, (Gla00), in 1900.

In fact, Wolstenholme’s congruence (6)) is central to the further generalization (I). This is just as true
when considering the g-analogs of these congruences as we will see here in Lemma 5]

A g-analog of the congruence of Babbage has been found by Clark (Cla95)) who proved that

apy _ [a 2

We generalize this congruence to obtain the g-analog (2)) of Ljunggren’s congruence (I)). A result similar
to (7) has also been given by Andrews in (And99).

Our proof of the g-analog proceeds very closely to the history just outlined. Besides the g-analog
of Babbage’s congruence (3) we will employ g-analogs of Wolstenholme’s harmonic congruences (4)) and
() which were recently supplied by Shi and Pan, (SPO7):

Theorem 3 For primes p > 5,

gy p—1 -1 2
i, = 2z @D Ty @ Dl modll, ®
i=1
as well as L
P~ -1Lp-5
2T~ _%@ ~1)* mod [p],. ©

This generalizes an earlier result (And99) of Andrews.

3 A g-analog of Ljunggren’s congruence

In the classical case, the typical proof of Ljunggren’s congruence starts with the Chu-Vandermonde
identity which has the following well-known g-analog:

= . . q .
( ko J, z]: J) \k=3/,

We are now in a position to prove the g-analog of ().

Theorem 4

Proof of Theorem [T} As in (Cla95) we start with the identity

ap p p P PY1<i<a (=i —X1<i<j<a %)
_ q (10)
(bp>q Z (cl>q<02>q <Ca)q

c1+...4+cqa=bp
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which follows inductively from the g-analog of the Chu-Vandermonde identity given in Theorem[d] The
summands which are not divisible by [p]3 correspond to the c; taking only the values 0 and p. Since each
such summand is determined by the indices 1 < j; < jo < ... < Jp < a for which ¢; = p, the total
contribution of these terms is

P Ge—1) =P (5) — Pk — (@
Z P Tima U (5 _ Z g Tk ie — )

1<ji<...<jp<a 0<ir<...<ip<a—b

This completes the proof of (7)) given in (Cla95)).

To obtain (2) we now consider those summands in l| which are divisible by [p]i but not divisible by
[p]g. These correspond to all but two of the ¢; taking values 0 or p. More precisely, such a summand is
determined by indices 1 < j; < jo < ... < Jp < jp+1 < @, two subindices 1 < k < £ < b+ 1, and
1 < d < p— 1such that
d for i = jp,

p —d fori = jy,
pfori € {ji,..., jor1}\{jk,Je}
0 for: ¢ {jl, . 7jb+1}-

For each fixed choice of the j; and k, ¢ the contribution of the corresponding summands is

p—1
Z<Z> ( pd) qpZlgiga,(i71)6i721<i<_7‘<a,cicj
p—
q q

d=1

C; =

which, using that ¢” = 1 modulo [p] , reduces modulo [p]z to

p

. p D 2p
2
(d) (p — d) Jd ( p) [Q]qu.
d=1 q q q
We conclude that

(Zi)q - (Z)q " (bi 1) (b; 1) ((?)q - mw) mod [p- (an

The general result therefore follows from the special case a = 2, b = 1 which is separately proved next.
O

4 A g-analog of Wolstenholme’s congruence

We have thus shown that, as in the classical case, the congruence can be reduced, via (11)), to the case
a = 2, b = 1. The next result therefore is a g-analog of Wolstenholme’s congruence ().

Lemma 5 For primesp > 5,

() = -t -2 moa

P 12
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Proof: Using that [an], = [a] . [n], and [n +m], = [n], + ¢" [m], we compute

(%), - Bl e B 4 i)

p [ply lp =1, -+ 1, p—1],! k=1

which modulo [p]g reduces to (note that [p — 1] ! is relatively prime to [p]g)

[Q}qp q(pfl)ijq(p*?)p Z @Jrq(p%)p Z mq []'3]'1 ] (12)
P

1<i<p—1 []q 1<i<j<p—1 [Z}q [J]q

Combining the results (8) and (O) of Shi and Pan, (SP07), given in Theorem 3] we deduce that for primes
P =95,

Z ‘1‘ E(p_l)(p_Q)(q—l)Q mod[p]

. (13)
1<iS52,1 g Ll 6 !
Together with (B) this allows us to rewrite 1) modulo [p]g as
(b-Dp . o(r-2) ‘- 2
9 p—1)p p— _ P _1q P _1q
2 (a0 g (2 -+ P - 1)
1)(p—2
Using the binomial expansion
"= (@ =D+ =30 ()@ - Df
- k
to reduce the terms ¢""? as well as 2] , = 1 + ¢” modulo the appropriate power of [p], we obtain
2 —1)p—1
( p) =2+p®—-1)+ w(q” —1)> mod [p]z.
P/, 12
Since ( 0
p p
2z =2+ p(¢" = 1) + ———(d" 1)”  mod [p],
the result follows. O

Remark 6 Jacobsthal, see (Gra97), generalized the congruence to hold modulo p3+r where r is the

p-adic valuation of
a a b+1
ab(a—b)(b>—2a(b+1)< 5 )

It would be interesting to see if this generalization has a nice analog in the g-world.
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