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Noncommutative Symmetric Hall-Littlewood
Polynomials

Lenny Tevlin

New York University, New York, NY, USA

Abstract. Noncommutative symmetric functions have many properties analogous to those of classical (commutative)
symmetric functions. For instance, ribbon Schur functions (analogs of the classical Schur basis) expand positively
in noncommutative monomial basis. More of the classical properties extend to noncommutative setting as I will
demonstrate introducing a new family of noncommutative symmetric functions, depending on one parameter. It
seems to be an appropriate noncommutative analog of the Hall-Littlewood polynomials.

Résumé. Les fonctions symétriques non commutatives ont de nombreuses propriétés analogues a celles des fonctions
symétriques classiques (commutatives). Par exemple, les fonctions de Schur en rubans (analogues de la base de
Schur classique) admettent des développements a coefficients positifs dans la base des mondmes non commutatifs.
La plupart des propriétés classiques s’étendent au cas non commutatif, comme je le montrerai en introduisant une
nouvelle famille de fonctions symétriques non commutatives, dépendant d’un parametre. Cette famille semble étre
un analogue non commutatif approprié de la famille des polynomes de Hall-Littlewood.

Keywords: symmetric functions

1 Introduction and Results.

Classical (commutative) Hall-Littlewood polynomials are well studied objects with applications rang-
ing from representation theory [Desarmenien et al.| (1994) to Bethe ansatz in math physics Kirillov and
Reshetikhin (1988)). While there have been several attempts to find an object in the algebra on noncom-
mutative symmetric function that would mimic some of the properties of the classical Hall-Littlewood
polynomials |Hivert| (1998)); Bergeron and Zabrocki (2005); Novelli et al.[(2010) each with its own merit, I
think it is worthwhile to continue the search. In particular, the new noncommutative symmetric functions
I will introduce in [5|enjoy the following properties

e they reduce to noncommutative ribbon Schur functions at ¢ = 0
o they reduce to noncommutative monomial functions at ¢ = 1

o coefficients of the expansion of ribbon Schur functions in the new basis are polynomials in ¢ with
positive integer coefficients;
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2 Operations on Compositions

To set the stage, I need some definitions, most of which are standard. Bases of the algebra of noncommu-
tative symmetric functions are labeled by compositions, which will be denoted by capital Latin letters.
Let I = (41,...,i,) be a composition, i.e. an ordered set of positive integers (i1, . .., i, ), called parts of
the composition I. The sum of all parts of a composition, its weight, is denoted by |I| and the number of
parts in the composition, its length — by ¢(I). Alternatively, given the weight of a composition I , it can
be specified by its descent set, D(I). If D(I) = {d;,...,d;} withd; < dy < ... <d, < |I| — 1, then
I =(dy,ds —dy,...,|I| —dg). A descent set can be defined for any word from an ordered alphabet as
the set of positions of letters, which are greater than their right neighbor.
Major index of a composition with n parts is maj(l) = >, (n — k)ix =), d;.

Two types of multiplication for compositions were defined in Gelfand et al.|(1995). For two composi-
tions I = (i1,...,%4r—1,4-) and J = (j1, jo2, - .., js) define

IvJ= (Z‘l,‘..,Z’r_l,Z‘T +j1,j2,...,js),
I-J= (7:17"'ai7‘aj17"'5j8)7

Reverse refinement order for compositions is defined as follows. Let I = (iy,...,%,),J = (J1,.--,Js)
|J| = |I|. Then J < [ if every part of J can be obtained from consecutive parts of I:

J=(14 . Fiplpt1 F e Flpgseeerlpy 41 T oo Fippse-esip, +oon+in)
for some nonnegative pi,...,ps. (The convention py = 0 will be implied below.) The composition
(p1,...,ps) will be denoted by I;.
Example 1 For instance, consider I = (3,3,2):
1(3,3,2)| =8 £(3,3,2) =3 D(3,3,2) ={3,6}
Also (3,3,2) = (3,14 2,2) < (3,1,2,2).

L]

L]

PN

Herepy =1, po =3, p3 =4,ie I;=(1,3,4)

3 Standard Bases for Noncommutative Symmetric Functions

The algebra NSym, introduced originally in|Gelfand et al.[(1995), is a noncommutative associative graded
algebra generated by noncommutative power sums (of the first kind) ¥, of degree k. Products of power
sums form a multiplicative basis:

U= -0
As in the classical (commutative) theory of symmetric functions, there is a number of useful bases of
NSym. Noncommutative monomial symmetric functions Tevlin|(2007) can be defined as

TR i
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Definition 1
(_1)2(1)—Z(J)

I _ ) gl
M e v

J=1 k=0
where s = £(J).
Example 2 Suppose the task is to obtain M3'2. There are four compositions J, such that J = 312:
312 with p1=1 p2=2 p3=3
32 with pr=1 py=3
42 with p1=2 py=3
6 with p1 =3
Therefore
M312 = % (% — U,y — %wg + ;wgqflxIJQ)

Noncommutative complete (homogeneous) symmetric function .S,, can be defined as

Definition 2
Sp=> M
| I|l=n
with a corresponding multiplicative basis functions
£(I)

st =] s
k=1

Finally, noncommutative ribbon Schur basis has been defined by |Gelfand et al.|(1995) as:

Definition 3
RI — Z(_]JZ(I)—@(J)SJ (2)

J=I

4 Transition between Different Bases.
4.1 Ribbon and Monomial.

Analogously to the situation on the commutative theory, where Schur functions expand positively in the
monomial basis, noncommutative ribbon Schur functions expand in the noncommutative monomial basis
with positive coefficients. This was proved in |Hivert et al.| (2009), who also provided the combinatorial
meaning of coefficients.

Proposition 1 (Hivert et al.|(2009)) The coefficient K j in the expansion
R = Z K M’
J

is equal to the number of packed words such that the descent set of u, D(u) = I and the word count
WC(u) =J.

In the following section I recall definitions of objects in this statement as the main results of the present
paper generalize this result.
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4.2 Compositions Associated to Packed Words.
Packed words are defined the following way:

Definition 4 The packed word u = pack(w) associated with a word w € A (A is an alphabet) is obtained
by the following process. If b1 < by < ... < b, are the letters occurring in w, v is the image of w by the
homomorphism b; — a;. A word u is said to be packed if pack(u) = u.

Example 3 Restricting A to the first five integers, the following is the list of words wy, such that pack(wy) =
13132:

wy = 13132, wy = 14142, w3 = 14143, wy = 24243, ws = 15152, wg = 15153,
wr = 25253, wg = 15154, wg = 25254, w1 = 35354

Put differently, these are words in which if each letter is replaced by a smaller one (respecting the order
1 < 2 < ...), one gets the word made out of smallest possible letters, u = 13132. A packed word is such
that cannot be simplified this way.

There are two ways to associate a composition to each packed word u:

1. First one considers a descent set of a word, D(u), and builds a corresponding composition. For
instance, if u = 2113, its the descent set {1}. Therefore the corresponding composition is (13); for
u = 3221, D(3221) = {1, 3}, which corresponds to (121).

2. Secondly, the word composition W C'(u) of w is the composition whose descent set is given by the
positions of the last occurrences of each letter in u. For example,

WC/(1543421323) = (23221)

Indeed, the descent set is {2,5,7,9,10} since the last 5 is in position 2, the last 4 is in position 5,
the last 1 is in position 7, the last 2 is in position 9, the last 3 is in position 10.

Finally, with each word one can associate a statistics sinv(u), called special inversion, that counts the
number of times the last occurrence (reading from left to right) of a smaller letter is to right of a larger
one [Novelli et al.|(2010). For example,

sinv(3221) =4

since the second 2 is to the right of 3, 1 is to right of both 2’s and 3.

4.3 Monomial and Complete.

In this section I will find the explicit formula for the coefficients ¢ 7 i in the following expansion

M7 =" 08"
K
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Consider two compositions I and J and take the first (largest) K such that K < Iand K < J. Put
differently, D(K) = D(I) N D(J). More precisely, let

I=(i1,...,in)
J = (1,5 1)
K= (ki,...,km) with m<n, m<s
K=(14...40p,-rip, 141+ ..+ in)
K=01+ .+ JrseesJrpat1 oo+ 01)

Proposition 2

(71)4(1)7[(J) Hse{l,l(J)}/{rk}(é(J) - S) H?:l (E(‘]) — Tk + ’ka)
|

QJ|1 = Z(J)

3)

Proof (sketch): The expansion of power sums in complete is known |Gelfand et al.| (1995). Inserting this
expansion in the definition of monomials above one gets a fairly ugly sum, which can be recognized as an
expansion of a certain determinant. Calculation of the determinant results in (3). o

Example 4 Consider 5312|122
K=2% (K)=m=2

p2=3 iy, =i3=1

J122¢{T1:2

T‘2:3

{1,2,3}/{2,3} =1
B3-1)-3-2+2)-3-34+1) 2-3-1

3! T

6212|122 =
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5 Noncommutative Hall-Littlewood Polynomials.

This section contains one the most important results of this paper. Below I will define what seems to be
an appropriate noncommutative analog of Hall-Littlewood Polynomials. Classical Hall-Littlewood poly-
nomials Pj(t) enjoy the following properties Macdonald| (1995) (please refer to this book for notations):

1.

P,\(O) = Sx
2.

P)‘(l) = Mmx
3.

sx =Y Kax(t)Pa(t),

where Kostka-Foulkes polynomials K (t) are polynomials in ¢ with positive integer coefficients,
whose combinatorial meaning is well-understood |[Lascoux and Schutzenberger| (1978), |Kirillov
(1998).

Polynomials P’ (t) to be introduced below have the following properties

1.
PY(0) = R!

PI(1) =M’

R' ="K, (t)P’(t),
J

where K ;(t) are polynomials in ¢ with positive integer coefficients, whose meaning will be ex-
planed below.

4. Moreover in the commutative limit noncommutative Hall-Littlewood polynomials for hook compo-
sitions I = n1* reduce to classical Hall-Littlewood polynomials Qx (t) where A = n1*.

I will define noncommutative Hall-Littlwood polynomials through their expansion in complete basis.
Once again for two compositions I and J select the first (largest) K < I, K < J (i.e. D(K) = D(I)N
D(J) ) and let

I=(i1,...,ipn)
J=(1,--,7Js)
K= (k1,...,kyn) with m<n, m<s
K=(0G14+...Fipseerip, 141+ -+ in)
K=01+ .+ Jrsee s Jrpm g+l T oot s)



921

Definition 5

P(t) = un(t)S[, where
T

L= ) [T, (1= #)mt)
[E(J)L! ’

w1l r} (
o (t) = (_1)8(1)7€(J)t|1|72k:1zpk s€{L,(J)}/{rx} 4)

Notice that for a given J each polynomial ¢;;(¢) has the same top degree

()I) = 1)

J
2

The first two properties of noncommutative Hall-Littlewood functions follow directly from the definition.
The last part of the formula involving products is a direct ¢-generalization of (3) and insures that

The first part of the formula with the power of ¢ ensures that at ¢ = 0 only the terms corresponding to
I < J survive since in that and only that case K = I and )", i;,, = |I|. This ensures that

P’(0) = R’
Further, if one denotes

Q7(t) = [¢())] P/ (1)

then the statement is that in the commutative limit it is these function that for hook compositions reduce
to classical Hall-Littlewood polynomials.
Consider an example of @) for J = 122
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Example 5

2
QU () = —§14\122511 + 21211229212 + S121]1225121 + S122)1225122 — $22]122.522 — S31]1225931
— §13]122513 + S4)122.54
Guapiza = (1 — £971F)(1 = @=2F1)(1 = @=341) — (1 - 4)(1 = 2)(1 — &%)
K =122 iy, =1,ip, =iy, =1; rp=k; s={0}
Gotzjian = (1 — 47 1)(1 = F72F2) (1 = 47541 = (1 g)(1 = £2)(1 - £7)
K=2% i, =2i,=1 rn=2rn=3 s={1

P1 D2

Gaipzz = (L- 7)1 =77 (A - 279 = (1-)*(1 - %)
K=13; ip =1ldp, =1 rm=1r=3; s={2}
Si22)122 = (1 _ t3_1+1)(1 _ t3_2+1)(1 _ t3_3+2) — (1 _ t2)2(1 _ t3)
K=1%2; i, =iy me=k s={0}
Sozj120 = (1 _ t371)(1 _ t372+2)(1 _ t373+2) _ (1 _ t2)2(1 _ tB)
K=2% i, =21i,=2 r=2r=3 s={1}
Gz = (1 —"H(1 =271 - 373 = (1 - 1)*(1 - 1?)
K=4;, i,=1 mn=3 s={1,2}
qgjize = (1 =721 =27 (1 = £77989) = (1 — ) (1 — £%)?
K=13; ip =1ip,=3; rm=1r,=3; s={2}
Gpze = (1 ="HA =71 -7 = (1 - )1 - %) (1 — 1Y)
K=4; ip,=4 rmn=3 s={1,2}
Q2(t) = —t(1 — ) (1 — ) (1 — £3)S% + t(1 — £)(1 — £2)(1 — £3) Sz + £2(1 — £)2(1 — £3)S101+
+ (1 =121 = t3)S129 — (1 —t3)2(1 — t3)Sp2 — t3(1 — t)2(1 — t2)S31 — (1 — t)(1 — t3)2S 3+
+(1=t)(1 -1 —tYS,

I now turn to the multiplication rule for noncommutative Hall-Littlewoods.
Proposition 3

Pt PI(t)= 3 gmad (L) + (14D { [ﬁ(l) +€(J)} PE (1) + [E(I) +€(J) - 1} PKDJ(t)} 7

K=I

Proof: The proof is by induction. O

It is worth noticing that this formula interpolates between multiplication formulas for noncommutative
ribbon Schur functions (at ¢ = 0)

RIRJ — RI>J+RI>J



923

and monomial (att = 1)

MM =Y (6(12&_{[;(‘]))MK“](1§) n («I) + i((J) - 1) MK ()

6 Expansion of Ribbon Schur in the Hall-Littlewood Basis.

Finally I would like to address the last property of noncommutative Hall-Littlewood symmetric functions,
namely the expansion of ribbon Schur in this basis.

Proposition 4
R' ="K (t)P’(t), (6)
J

where K1 ;(t) are polynomials in t with positive coefficients. More precisely,

Ky (t) = Z tmaj(J)fsinv(u) 7
u=pack(u), D(u)=I, WC(u)=J

The proof of this statement requires two steps. First — the expression for the expansion of homogeneous
basis in terms of Hall-Littlewood.; second — explicit expression for (7).

6.1 Relative Decomposition of Two Compositions.

Consider a decomposition of composition J relative to composition I, i.e. a filling of composition J with
sub-compositions of weight (i1, 42, ...,4,). Denote by hy the row of J that contains the last cell of 7.
Rows will be labeled from bottom up starting from zero. Call the sequence (which is actually a partition
with some zero parts) of (hy,...,h,) relative decomposition of .J with respect to I. (Compare with a
related notion in|Gelfand et al.|(1995)). For instance, consider a decomposition of J = 1323 with respect
to I = 1422:

% %
s st | st | s st | st
ES S ES S ES S ES
RARA sk
I = 7 | 7S J — 2Nl N
% |k | | %
7S

where I have marked all rows of I with different symbols so that one can see where they end up within

J.
Thus the decomposition of J = 1323 with respect to I = 1422 is h(J,I) = (3,1,0,0) Given such a
decomposition h(.J, I), form a product:

oI)—1

enr= 11 [ik;h’f} , ®)
. q

k=1
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Soif J = 1323 and I = 1422 as in the example above, then
¢ _|14+3 4+1 240
1422|1323 — 1 4 )
q q q

Proposition 5

oI-1

Z(—l)e(m*‘(’) ]}—[ |:Zk;‘;hk] _ Z o) )
=1

1=K q u=pack(u), D(u)=K, WC(u)=J

Example 6 Let K = 121 and J = 212, then I; = 121, I = 31,13 = 13,1, = 4
1+2| [2+1 1+2 3+1
S121j212 — &31j212 — &13j21z + Sap212 = [ 1 ] { 9 } - { 1 } - [ 3 ] +1
q q q q

——
R(212]121)=(2,1) R(212]13)=(2,0)  h(212]31)=(1,0)
=¢*(1+q+¢°)

The corresponding packed words are: 2132, 3132, 3231 and the number of inversions of these words:
mw(2132) = 2, inv(3132) = 3, inv(3231) =4
i.e. the right-hand side is ¢*> + ¢° + ¢*

The proof of () will be published separately[Tishbi and Tevlin| (2010).

6.2 Special Inversion Statistics and the Expansion of Ribbon Schur Functions.

By induction one can establish the following expansion of noncommutative complete symmetric function
in noncommutative Hall-Littlewood basis:

Proposition 6
St = ZPIJHJ(t)a
J

where
o)1

; ik + R
= ¢mai(J) K 10
prJ E i |, (10)
Note, that prj may be thought of as noncommutative t-supernomial coefficents, compare with Schilling
(2002).

Using the definition of ribbon Schur functions (2) and (9) the statement (6) is immediate.

7 Comments.

Obviously one would like to know if there is a representation-theoretic and/or geometric interpretation of
the above results. In that context it would be interesting to see if there is a noncommutative analog of the
plethystic substitution and, therefore, an appropriate analog of modified Hall-Littlewood functions.

Also, the question of specialization of noncommutative Hall-Littlewood functions and g-series identities
implied by, for instance, multiplication rule, has not been explored.
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