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Projective subdynamics and universal shifts

Pierre Guillon12†

1CMM, Universidad de Chile
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We study the projective subdynamics of two-dimensional shifts of finite type, which is the set of one-dimensional
configurations that appear as columns in them. We prove that a large class of one-dimensional shifts can be obtained
as such, namely the effective subshifts which contain positive-entropy sofic subshifts. The proof involves some
simple notions of simulation that may be of interest for other constructions. As an example, it allows us to prove the
undecidability of all non-trivial properties of projective subdynamics.

Keywords: multidimensional symbolic dynamics, effective dynamics, tilings, simulation, undecidability

1 Introduction
Computation in dynamical systems has shown an increasing interest in the last decade. One of the ques-
tions that arises is the computational power of some models defined dynamically, where the computation
result is seen as the “trace” of the system evolution or (equivalently) as a smaller system that it dynam-
ically simulates. For cellular automata, this can be the limit set [Hur87, Maa95] or the column factors
[Kůr97, CFG07]. For general effective dynamical systems, this can be observation problems with respect
to some partitions [DKB05].

The setting of multidimensional symbolic dynamics is one of the most natural and elegant models with
full computational power, as suggested by more recent results [Hoc09a, DRS10, AS10]. These works can
be interpreted both as taking shifts of finite type as a model and subaction projections as a computing
process or sofic shifts as a model and projective subdynamics as a process.

Independently, [PS10] presents some realization constructions as well as impossibility results in the
weaker, yet natural case of projective subdynamics of shifts of finite type. Here, we also prove in this
setting the constructability of a large class of effective shifts. To achieve this, we connect the problem to
some simple notions of simulations over shifts.

Section 2 is devoted to the main definitions; Section 3 defines simulation and characterizes universality;
Section 4 defines the main concept of the article, that of projective subdynamics, and recalls the known
characterization in the sofic case; Section 5 introduces the intermediary notion of polyfactor, and gives a
construction of it in the SFT case; Section 6 simulates it as projective subdynamics of SFT; finally Section
7 presents an independent application of the construction by proving a “Rice theorem” over projective
subdynamics.
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2 Preliminaries
We note Ji, jK the set of integers i, i+ 1, . . . , j, and Ji, jJ= Ji, j − 1K. We also define N1 = N \ {0}.

Let A be an alphabet (with 2 ≤ |A| <∞) and d ∈ N1 the dimension. A shape is a subset K b Zd, i.e.,
K ⊂ Zd and |K| <∞. A pattern is a finite d-dimensional word u = (ui)i∈K ∈ AK , where K b Zd. A
configuration is an infinite one x = (xi)i∈Zd ∈ AZd

. For any K ⊂ Zd and any configuration x ∈ AZd

,
we note xK its restriction to K.

A dynamical system is a compact metric space X , on which some group G acts continuously. The full
Zd-shift on alphabet A is the set of d-dimensional configurations x ∈ AZd

, endowed with the product of
the discrete topology, and with the action σ of Zd defined for any c, i ∈ Zd by σc(x)i = xc+i. We will
mainly deal with subsystems of this, i.e., closed subsets Σ ⊂ AZd

such that σc(Σ) = Σ for any c ∈ Zd,
which will be refered to as Zd-shifts.

Equivalently, a Zd-shift is a set Σ ⊂ AZd

of configurations defined via a collection of finite forbidden
patterns F , in the sense that Σ =

{
x ∈ AZd

∣∣∣∀c ∈ Zd,∀K b Zd, σc(x)K /∈ F
}

. Σ is of finite type (SFT)
if F can be taken finite, effective if F can be taken recursively enumerable.

The topological closure of the orbit
⋃
c∈Zd σc(Z) of Z ⊂ AZd

will be denoted Z. For instance, in
dimension 1, a word u shall be seen as a map i 7→ ui from J0, |u| J to alphabet A. Then ∞u∞ will denote
the set

{
z ∈ AZ

∣∣ ∃k ∈ J0, |u| J,∀j ∈ Z, σk+j|u|(z)J0,|u|J = u
}

of configurations periodically equal to u.
If Σ is a Z-shift over alphabetA, its language of shapeK b Zd is the set LK(Σ) = {zK | z ∈ Σ} of ex-

tendable patterns for this shape. These languages completely characterize Σ; moreover, by compactness,
if Σ,Λ are two disjoint Z-shifts, then there exists a finite shape K b Zd such that LK(Σ) ∩ LK(Λ) = ∅.

We will actually essentially deal with Z2-shifts, but the generalization to higher dimensions is obvious.

3 Simulations
We define here some operations over shifts that can be seen as simulation rules, and which will help us to
make constructions in the next sections. Similar compositions of operations have been recently studied in
various settings [AS09, Hoc09b].

Let X and Y be dynamical systems corresponding to actions of the same group Zd, noted γc : X → X
and δc : Y → Y for c ∈ Zd. We note X �f Y if there is a factor map Φ : X → Y , i.e., an onto
continuous map such that Φγc = δcΦ for any c ∈ Zd; Y is then called a factor of X , and if Φ is bijective,
X and Y are called conjugate. We note X �i Y if the action δ on Y is conjugate to the action γk on
X for some power k ∈ Nd1, where (γk)c = γkc for any c ∈ Zd (and coordinatewise multiplication of
vectors). We note X �s Y if, up to conjugacy, Y ⊂ X and δ is the restriction of γ to Y .

Let Σ and Γ be Zd-shifts over alphabets A and B, respectively. The previously-defined simulations
can be visualized in a symbolic way. First note that Σ �i Γ means that Γ is essentially the bulking
Σ[K] =

{
(σKj(x)K)j∈Zd

∣∣x ∈ Σ
}

(with coordinatewise multiplication) of Σ for some interval product
K b Zd, which is a shift over alphabet AK . It can also be seen that for any nonempty K b Zd, Σ
is conjugate to its K-block representation Σ(K) =

{
(σi(x)K)i∈Zd

∣∣x ∈ Σ
}

, which is a Zd-shift over
alphabet AK . A particular class of shift factor maps is that of parallelizations Φ̃ : Σ → Γ of alphabet
projections Φ : A → B, i.e., Φ̃(x)i = Φ(xi) for any x ∈ Σ and i ∈ Zd. It is also known that Σ �f Γ

if and only if Γ = Φ̃(Σ(K)) for some shape K b Zd and some parallel application Φ̃ of some alphabet
projection Φ : AK → B.
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Γ is called a Zd-sofic if it is a factor of a Zd-SFT. Equivalently from the last point, it is sofic if and
only if it is the image of a Zd-SFT by some parallelization map. The classes of SFT, sofic shifts and
effective shifts are closed under conjugacy, bulking and block representations. By the characterization
above, that of sofic shifts is also closed under factor. On the contrary, �s does not preserve any relevant
property, which is why the simulation notion below will be very weak (it can be strengthened by taking the
intersection with some SFT [AS09]); this will allow us to deal with a rather simple notion of universality,
but will be compensated by the fact that our simulating shifts already have some structure (PSD in 9).

If z : I × J → A, for some intervals I and J of Z and i ∈ I , then we note πi(z) = (zi,j)j∈J . If
I = J0,mJ and J = Z, it gives a factor map πi from any Z-shift over alphabet Am onto some Z-shift
over alphabet A. We also note πI′(z) = ((zi,j)i∈I′)j∈J if I ′ ⊂ I .

The product X × Y of two sets X ∈ AZd

and Y ∈ BZd

will be abusively assimilated to the
set
{
w = (xi, yi)i∈Zd) ∈ (A×B)Z

d
∣∣∣ (xi)i∈Zd ∈ X and (yi)i∈Zd ∈ Y

}
(which is a Zd-shift if X and

Y are). We note X<1> = X and X<n+1> = X<n> × X for n ∈ N. Essentially, X<n> ={
y ∈ (An)Z

d
∣∣∣ ∀j ∈ J0, nJ, πj(y) ∈ X

}
. We note Σ �p Γ if Γ is conjugate to some subshift of Σ<n> for

some power n ∈ N.
Each of these relations are not that interesting intrinsically, but can be associated together; the com-

positions will be noted �ps, �ifs, �pfs, etc. . . We can see, thanks to some commutation properties, that
they are transitive whenever �i and �p are applied before �s.

We say that a Z-shift Σ is universal if it simulates any other Z-shift Γ in the sense that Σ �is Γ. This
property is easily understood in the sofic case: indeed, uncountable Z-sofic are exactly those that have
positive entropy, and they can be represented on a graph with a non-cyclic strongly connected component
(equivalently, they include some infinite transitive subshift).

Proposition 1 Let Σ be a Z-shift. The following statements are equivalent:

1. Σ includes some positive-entropy sofic subshift.

2. There are two words u and v with u0 6= v0, |u| = |v|, and ∞{u, v}∞ ⊂ Σ.

3. Σ �is {0, 1}Z.

4. Σ is universal.

Proof:

1⇒2 If Σ includes a positive-entropy sofic subshift, then the graph of this subshift contains a non-cyclic
strongly connected component, i.e., there exists a vertex from which two arcs leave with two distinct
labels, and which start paths that come back to the same vertex. Denoting ũ, ṽ the labels of these
two paths, we can see that u = ũ|ṽ| and v = ṽ|ũ| satisfy the wanted conditions.

2⇒3 The J0, |u| J-bulking of ∞{u, v}∞ is a subshift that includes the full shift over alphabet {u, v},
which is essentially {0, 1}Z.

3⇒1 Remark that a non-trivial full shift is sofic and has positive entropy, as well as any of its iterations.



126 Pierre Guillon

3⇒4 For any Z-shift Σ on some alphabet A, we have {0, 1}Z �i AZ �s Σ, since the letters of A are in
bijection with some subset of {0, 1}dlog|A|e. Hence the full shift itself is universal, and the notions
of simulation are transitive.

4⇒3 This is by definition of universality.

2

In particular, the class of universal shifts is preserved by closing factor maps. Note that dealing with
simulation �ifs instead may widen the notion of universality to other subshifts. For our purpose though,
this notion would be difficult to handle in the following.

Clock. Let Cn denote the n-cycle, i.e., the dynamical system J0, nJ on which Z acts by i 7→ i+c mod n
for any c ∈ Z.

We have seen a definition of simulation that involves temporal delay, and one that involves spacial
sprawl. The following lemma gives a transformation from the former to the latter.

Lemma 2 If Γ is a Z-shift,AZ a full shift and n ∈ N such that Γ[J0,nJ] �fs AZ, then Cn×Γ<n> �fs AZ.

Proof: Let Λ ⊂ Γ be closed and σn-invariant, and Φ : Λ → AZ such that Φσn = σΦ. Let Λ′ ={
(i, y) ∈ J0, nJ×Γ<n>

∣∣∀j ∈ J0, nJ, πj(y) ∈ σj−i mod n(Γ)
}

.

Ψ : Λ′ → AZ

(i, y) 7→ (Φ(σj(πi+j mod n(y)))0)j∈Z

is also a factor map, since for any (i, y) ∈ Γ′, we have:

Φ̃(i+ 1 mod n, σ(y)) = (Φ(σj+1(πi+1+j mod n(y)))0)j∈Z = σ(Φ̃(i, y0, . . . , yn−1)) .

Moreover, Ψ is onto AZ since, if z ∈ AZ, for 0 ≤ i < n, the surjectivity of Φ and σ gives some yi ∈ Y
such that Φ(σn(yi)) = (znj+i)j∈Z. By construction, for any j ∈ Z and any i ∈ J0, nJ, we have:

Ψ(0, σn(y0), σn−1(y1), . . . , σ(yn−1))nj+i = Φ(σnj+i(σn−i(yi)))0 = σj+1(Φ(yi))0 = znj+i .

2

Proposition 3 If Σ is a Z-shift, the following are also equivalent to universality (and to properties of
Proposition 1):

5. Σ �ps {0, 1}Z.

6. For any subshift Γ, Σ �ps Γ.

Proof:

6⇒5⇒1 Positive entropy is preserved by product and supersystem, i.e., the entropy of a system is more than
that of any of its subsystems.

5⇒6 It is clear that every subshift can essentially be seen on an alphabet of the form {0, 1}n with n ∈ N,
that is to say as being included in ({0, 1}Z)<n>.
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3&2⇒5 One can verify that if u0 6= v0 and |u| = |v| = n, then ∞(uuv)∞ is a word of smallest period 3n,
and that ∞(uuv)∞ is then conjugate to C3n, which factors onto Cn. It is also clear that simulations
are compatible with the product of systems. It results that ∞(uuv)∞ × Γ<n> �f Cn × Γ<n> �fs
{0, 1}Z by Lemma 2 and, by hypothesis, ∞(uuv)∞ ⊂ Γ, which gives Γ<n+1> �fs {0, 1}Z.

2

4 Projective subdynamics
If y = (yk,i)k,i∈Z2 ∈ AZ2

is a configuration and k ∈ Z, then τk(y) = (yk,i)i∈Z will denote the projected
kth column. We note τ = τ0. The projective subdynamics (PSD) of some Z2-shift X is the Z-shift τ(X).
The (vertical) subaction is the dynamical system where X is seen as being acted on by the restriction of
σ to the subgroup {0} × Z (only shifting vertically). Note that the PSD is a factor of the subaction by the
map Φ defined by Φ(x)i = x0,i for x ∈ X and i ∈ Z.

The notions of PSD and subactions can of course be defined with respect to any dimension and any
direction (subgroups of Zd), and all the following results will be adaptable in the general setting, but, for
the sake of clarity, we will stick to the simple case of columns in bidimensional configurations.

If Σ ⊂ AZ is a Z-shift, let ΣZ denote the Z2-shift
{
x ∈ AZ2

∣∣∣∀j ∈ Z, τ j(x) ∈ Σ
}

. Remark that if

Σ is an SFT, then so is ΣZ. If Φ is a factor map between the Z-shifts Λ and Σ, then we can define a
parallelization Φ̃ from ΛZ onto ΣZ such that τk(Φ̃(x)) = Φ(τk(x)) for any x ∈ ΛZ and any k ∈ Z.

In the following sections, we will be interested in the PSD of Z2-SFT.

Proposition 4 The class of PSD of Z2-SFT is invariant by product, conjugacy, and by SFT factor preim-
ages, i.e., if Φ is a factor map from a Z-SFT Σ onto a Z-shift Λ and X a Z2-SFT with τ(X) ⊂ Λ, then
Φ−1(τ(X)) is the PSD of some Z2-SFT.

Proof:

• Clearly, the PSD of a product Z2-shift is the product Z-shift of their two PSD.

• Assume that Φ is a conjugacy between a Z-shift Σ and τ(X) for some Z2-SFTX , and Φ̃ : ΣZ → ΛZ

its parallelization such that ∀x ∈ ΣZ, τ(Φ̃(x)) = Φ(τ(x)). It is clear that Φ̃ is a conjugacy between
ΣZ and τ(X)Z, and that Y = Φ̃−1(X) is a Z2-SFT with τ(Y ) = Φ−1(τ(X) = Σ.

• Let Φ be as in the statement. As above, its parallelization Φ̃ : ΣZ → ΛZ satisfies that the preimage
Y = Φ̃−1(X) is a Z2-SFT, since ΣZ and X both are; by construction, τ(Y ) = Φ−1(τ(X)).

2

Before dealing further with the PSD of Z2-SFT, let us state what is known about PSD of Z2-sofic.

Proposition 5 Let Σ be a Z-shift. The following are equivalent.

1. Σ is the PSD of some Z2-sofic.

2. Σ is a factor of the PSD of some Z2-SFT.

3. Σ is the factor of the subaction of some Z2-SFT.
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Proof:

1⇒2 If Σ = τ(Φ̃(X)) ⊂ AZ for some Z2-SFT X over alphabet B and some factor map Φ̃ based on an
alphabet projection Φ : B → A, then Σ = Φ̃(τ(X)) if we define Φ̃(x)i = Φ(xi) for any i ∈ Z.

2⇒1 Assume Σ = Φ(τ(X)) for some factor map Φ and some Z2-SFT X . Then the parallelization
Φ̃ : τ(X)Z → ΣZ is such that τ(Φ̃(X)) = Φ(τ(X)) = Σ, and Φ̃(X) is sofic as a factor of a
Z2-SFT.

2⇒3 The PSD is a factor of the subaction, and the relation of factor is transitive.

3⇒2 Let Φ be a factor map from the vertical subaction of X onto Σ for some Z2-SFT X . By a standard
uniform-continuity argument, some block representation ofX will (while still being SFT) transform
Φ into a simple projection to the central cell.

2

As a consequence of this, the class of PSD of Z2-sofic is invariant by factor; it actually admits the
following elegant characterization.

Let us define for any Z-configuration x ∈ AZ the Z2-configuration A(x) by τ j(A(x)) = x, for any
j ∈ Z. If Σ is a Z-shift over alphabet A, then A(Σ) is a Z2-shift.

Theorem 6 ([DRS10, AS10]) The following are equivalent (and are thus also equivalent to the state-
ments in Proposition 5).

4. Σ is effective.

5. A(Σ) is sofic.

The problem of finding a similar characterization of Z-shifts that can be obtained as PSD of Z2-SFT
remains. It is clear that this class contains all Z-SFT. In [CFG10], some constructions are given of cellular
automata defined over Z-SFT and that have specific ultimate traces, which actually give projective sub-
dynamics of some Z2-SFT: in particular, all positive-entropy sofic subshifts can be obtained that way. On
the other hand, [GR10] gives some impossibility results in that particular subsetting. In [PS10], both more
constructions and impossibility results are presented, in the general setting. In particular, a full characteri-
zation of Z-sofic PSD of Z2-SFT is given, emphasizing moreover on the difference between the so-called
stable and unstable PSD. Note that the Z2-SFT can realize strictly fewer Z-shifts than Z2-sofic do. There
are even Z-sofic that are not realizable as PSD of Z2-SFT, such as the shift of the configurations having
state 0 everywhere except for at most one cell. The next two sections are devoted to realizing some class
of Z-shifts that goes further than the sofic case.

5 Polyfactors
The polyfactor of some Z2-shift X over alphabet Am, with m ∈ N1, is the union

◦
τ (X) =⋃

0≤i<m πi(τ(X)), which can be seen as the projective subdynamics of some system which is invari-
ant by some powers of the shift, but not by the whole action (periodic local constraints). Note that the
notion of polyfactor depends on the interpretation of the alphabet as a power of another alphabet. In
particular, the projective subdynamics of some shift is also its polyfactor (if we interpret m = 1).

Let us see conditions on the subshift that allow it to be the polyfactor of some SFT.
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Lemma 7 If Σ is a Z-shift and X a Z2-shift such that Σ �ps τ(X) �f Σ, then Σ is the polyfactor of
some Z2-shift Y conjugate to X .

Proof: Let n ∈ N be such that τ(X) ⊂ Σ<n>, Ψ be a factor map from τ(X) onto Σ, and Ψ̃ its
parallelization, i.e., ∀x ∈ X, τ(Ψ̃(x)) = Ψ(τ(x)). The product Y = Ψ̃(X)×X is conjugate to X (they
are linked by maps Ψ × id and π1). Moreover, it can be seen as a Z2-shift with 1 + n columns; the first
one is equal to Σ, and the other n are included in it. 2

The interest of introducing polyfactors of Z2-SFT is that their class is more robust than that of their
projective subdynamics, as illustrated by the following remarks (all of which are not useful for our main
construction).

Proposition 8 The class of polyfactors of Z2-SFT is invariant by projection union (if the alphabet is a
power), product, union, conjugacy, weak iteration (reading every n letters), and by SFT factor preimages
(see Proposition 4).

Proof:

• If Σ =
◦
τ (X) where X is a Z2-SFT over alphabet (Am)n, with m,n ∈ N1, then

⋃
0≤i<m πi(Σ) is

also the polyfactor of X , seen as a Z2-SFT over alphabet Amn.

• Assume Σ =
◦
τ (X) ⊂ AZ and Γ =

◦
τ (Y ) ⊂ BZ, i.e., there are m,n ∈ N such that

τ(X) ⊂ Σ<m> and τ(Y ) ⊂ Γ<m>. Then Σ × Γ can be seen as the polyfactor of the
Z2-shift {z| ∃x ∈ Σ, y ∈ Γ,∀i ∈ J0,mJ,∀j ∈ J0, nJ, πi+jm(z) = (πi(x), πj(m)} over alphabet
(A×B)mn.

• The previous two points give the union.

• If a Z-shift Σ over alphabet A is conjugate to
◦
τ (X) for some Z2-SFT over alphabet Am for some

m ∈ N, then it is clear that this conjugacy can be parallelized into a conjugacy Φ̃ : Σ<m> → ◦τ
(X)<m>; by Proposition 4, Φ̃−1(τ(X)) can be obtained as τ(Y ) for some Z2-SFT Y . One can see
that

◦
τ (Y ) =

⋃
0≤i<m πi(Φ̃

−1(τ(X))) =
⋃

0≤i<m Φ−1(πi(τ(X))) = Φ−1(
◦
τ (X)) = Σ.

• Invariance by SFT factor preimage comes from 4 in the same way as conjugacy.

• If K b Zd and X is a Z2-SFT, then the bulking X [K] is one also; its polyfactor
◦
τ (X [K]) consists

exactly of all weak iterations of
◦
τ (X).

2

Proposition 9 If Σ �ps Λ �fs τ(X) �f Σ for some Z-SFT Λ and some Z2-SFT X , then Σ is the
polyfactor of some Z2-SFT.

Proof: Let n ∈ N be such that Λ ⊂ Σ<n>, Γ ⊂ Λ and Φ : Γ → τ(X) a factor map, which can actually
be extended to Λ. Then Φ−1(τ(X)) is the PSD of some Z2-SFT Y thanks to Proposition 4. We obtain
Σ �ps Λ �s τ(Y ) and τ(Y ) �f τ(X) �f Σ, which gives Σ �ps τ(Y ) �f Σ; Lemma 7 allows to
conclude. 2
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Corollary 10 If Σ is an effective Z-shift and contains some positive-entropy sofic subshift, then it is the
polyfactor of some Z2-SFT.

Proof: It is enough to use Proposition 9 with Λ some full shift simulated by Σ (see Proposition 1) and X
some Z2-sofic whose projective subdynamics is Σ (see Theorem 6). 2

6 Projective subdynamics of SFT
Let us see a construction that turns the polyfactor of some SFT into the projective subdynamics of a
modified SFT.

Consider a Z-shift S over alphabet Am for some m ∈ N. S is marking if S0 ∩ Si = ∅ for 0 < i < m
and Si =

{
w ∈ (A2m−1)Z

∣∣πJi,i+mJ(w) ∈ S
}

. By compactness, we have that S is marking if and only
if there exists some length l ∈ N such that the languages LJ0,lJ(Si) are pairwise disjoint for i ∈ J0,mJ.

This definition can be seen as the impossibility to interpret a two-dimensional configuration into two
distinct juxtapositions of stripes of S. Of course, any subshift of a marking shift is also marking.

Here are two classes of examples of marking shifts.

Example 11 If Γ and Λ are two disjoint Z-shifts over alphabet A and m ∈ N, then the following set is
marking:

SmΓ,Λ =
{
w ∈ (A2m+2)Z

∣∣∀i ∈ Jm, 2mK, πi(w) ∈ Γ and π2m+1(w) ∈ Λ
}
.

Example 12 If u and v are two distinct words with same length over alphabet A and m ∈ N, then the
following set is marking:

Smu,v =
{
w ∈ (A2m+2)Z

∣∣∃j ∈ J0, |u|K,∀i ∈ Jm, 2mK, πi(w) = σj(∞u∞) and π2m+1(w) = σj(∞v∞)
}
.

For x ∈ (Am)Z
2

, we define the m-unbulking of x with shift i ∈ Z as the configuration y = �im(x)
over alphabet A defined by τ Ji+km,i+(k+1)mJ(y) = τk(x). For X a Z2-shift over alphabet Am, we
define the m-unbulking of X as the Z2-shift �m(X) =

⋃
i∈J0,mJ�

i
m(X) over alphabet A. It flattens

the configurations by alternating the layers (like the contrary of a J0,mJ×{0}-bulking). In particular,
τ(�m(X)) =

◦
τ (X). If X is an SFT, then �m(X) need not be so, but this is where marking shifts is

useful.

Lemma 13 Let X be a Z2-SFT over alphabet Am for some m ∈ N, such that τ(X) is marking. Then
�m(X) is a Z2-SFT over alphabet A, and τ(�m(X)) =

◦
τ (X). Moreover, its local constraints can be

effectively computed from that of X .

Proof: Since the Si =
{
w ∈ (A2m−1)Z

∣∣πJi,i+mJ(w) ∈ τ(X)
}

are disjoint for i ∈ J0,mJ, by compact-
ness they actually differ on patterns of a bounded height. Hence some local constraints can impose patterns
of this height to cycle through the Si. Moreover, for each i, it is easy to check locally the constraints of
X (that may have a larger range) with respect to this unique interpretation. 2

Lemma 14 LetX be a Z2-SFT over alphabetAm, and Y,Z two nonempty Z2-SFT over alphabetA such
that τ(Y )∩ τ(Z) = ∅. ThenX ′ = �2m+2(X×Y <m+1>×Z) is a Z2-SFT. It is empty ifX is, otherwise

τ(X ′) =
◦
τ (X) ∪ τ(Y ) ∪ τ(Z). Moreover, its local constraints can be effectively computed from that of

X,Y, Z.
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Proof: The PSD τ(X ′) is included in Smτ(Y ),τ(Z), which is marking by Example 11. Hence Lemma 13
gives the result. It is clear that everything is effective. 2

Proposition 15 Let Σ be the polyfactor of some Z2-SFT X over alphabet Am for some m ∈ N1, and
Y, Z two nonempty Z2-SFT over alphabet A such that τ(Y ) ∩ τ(Z) = ∅. Then Σ ∪ τ(Y ) ∪ τ(Z) is the
PSD of some Z2-SFT over A.

Proof: If Σ 6= ∅, then Lemma 14 gives the result; otherwise we can apply the same lemma while fixing
m = 0. 2

The interesting case will actually be when τ(Y ) and τ(Z) are contained in Σ.

Theorem 16 Any effective Z-shift including some positive-entropy sofic subshift is the PSD of some Z2-
SFT.

Proof: This directly comes from Proposition 15, Corollary 10, and the fact that any positive-entropy
Z-sofic contains two disjoint periodic orbits, which are trivially realizable as PSD of periodic Z2-SFT. 2

Any effective universal Z-shift is then realizable in that sense, and note that their class is preserved by
closing maps.

Another consequence of this construction is the following.

Corollary 17 Let (Xi)0≤i<m be a finite family of Z2-SFT among which two have disjoint PSD, say
τ(X0) ∩ τ(X1) = ∅. Then

⋃
0≤i<m τ(Xi) is the PSD of some Z2-SFT.

Proof: By Proposition 8,
⋃

2≤i<m τ(Xi) is the polyfactor of some Z2-SFT. Then Proposition 15 gives
the result. 2

The simple cases of application of this corollary are in the case of two PSD which are either disjoint or
contain two distinct periodic orbits. We can be more precise: by using Example 12 in Lemma 14, we can
reprove [PS10, Proposition 5.3]: if (Xi)0≤i<m is a finite family of Z2-SFT such that Σ =

⋃
0≤i<m τ(Xi)

contains two distinct periodic configurations, then Σ is the PSD of some Z2-SFT. This is not a direct
corollary of the previous statement, since the two distinct periodic configurations could here be in the
same non-uniform periodic orbit.

7 Undecidability
The transformation of polyfactors into projective subdynamics allows the following theorem à la Rice.
This is largely inspired by [CG07, CFG10], but note that it is not a direct corollary of the corresponding
result on traces of cellular automata, since we deal here with more non-trivial properties.

Theorem 18 For any property P satisfied by the PSD of some Z2-SFT over alphabet {0, 1}, but not all
of them, the following problem is undecidable:

Input: a Z2-SFT over alphabet {0, 1}.
Problem: τ(X) ∈ P?
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Proof: Assume that the full shift {0, 1}Z satisfies P (otherwise consider the complement of P); let Y be
some Z2-SFT such that τ(Y ) does not satisfy P , and w ∈ {0, 1}J0,lJ2 a forbidden pattern for Y , with
l ∈ N. We can consider the (periodic) Z-SFT ∞w∞ over alphabet Al, as a periodic vertical superposition
of these blocks w. Let us prove that, if the problem above was decidable, then we could decide the
emptiness of binary Z2-shifts. Indeed, let us be given an arbitrary Z2-shift X over alphabet {0, 1}. We
can compute the Z2-SFT X ′ = (∞w∞)Z ×X ×{0, 1}Z2

, that we must see over alphabet {0, 1}l+2, with
l layers representing periodic superpositions of blocks w, a layer representing X and a layer with a full
shift. Then from Lemma 14, we can compute the Z2-SFT X ′′ = �2l+6(X ′ × {∞0∞}<l+3> × {∞1∞}).
Now, since pattern w appears periodically in configurations of X ′′, we have that Y ′ = Y tX ′′ is still a
Z2-SFT. If X is empty, then so is X ′, and so is X ′′, hence Y ′ = Y and τ(Y ′) = τ(Y ) /∈ P . Otherwise,
τ(Y ′) ⊃ τ(X ′′) ⊃ ◦τ (X ′) ⊃ {0, 1}Z, hence τ(Y ′) = {0, 1}Z ∈ P . As a consequence, if we could
decide whether the PSD of the Z2-SFT Y satisfied P or not, then we would be able to decide whether
X is empty. Yet, this problem is known to be undecidable (see [Ber66] for a proof on Wang tile model,
which can easily be simulated effectively by binary Z2-SFT). 2

Taking Y sofic instead of SFT allows the same statement for Z2-sofic.

8 Conclusion
We have presented a construction of SFT that have a given PSD among a large class. It is clear that it
could be adapted to PSD corresponding to dimensions higher than 2, codimensions higher than 1, and
other subgroups than vertical columns.

However, this construction leaves as open problems a general characterization of PSD of SFT. Some
effective positive-entropy shifts may not include positive-entropy sofic subshifts. A difficult case is also
the case of null-entropy shifts. It was well understood by [PS10] in the sofic case; this construction can be
thought of as some kind of simulation, and maybe Proposition 9 could involve simulations performed by
non-universal shifts. Impossibility results are also lacking outside the sofic one-dimensional case [PS10].

What could be interesting too is to study the case of deterministic SFT (or, equivalently, with some
given expansiveness directions). But it is already difficult to understand the case of deterministic sofic
(for instance whether the construction of [AS10] could be “determinized”). Cellular automata (which
correspond to deterministic SFT with additional regularity properties, or seen as actions of N × Z rather
than Z2) have been the subject of independent works, still far from characterizations, be it the limit set
(PSD orthogonal to the expansiveness direction) [Hur87, Maa95] or the trace (parallel) [CFG07, CFG10].

Another question was asked by E. Jeandel and R. Pavlov [Pav10, Question 2]: in a similar flavor to
Theorem 6, what can we say about the class of Z-shifts Σ such that ΣZ is a Z2-sofic? It is clear that Σ is
SFT if and only if ΣZ is, showing that this kind of dimension increase leaves much less freedom than A.
It seems there are no example of non-sofic Σ with ΣZ sofic.
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