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We use Conway'&ractranlanguage to derive a functid®: Z+ — Z* of the form
R(n) =rin if n=i modd

whered is a positive integer, & i < d andrg,r1,...rg_1 are rational numbers, such that the famoxis- 3 conjecture
holds if and only if theR-orbit of 2" contains 2 for all positive integers We then show that thig-orbit of an arbitrary
positive integer is a constant multiple of an orbit that contains a power of 2. Finally we apply our main result to show
that any cycle{xo, ..., Xm_1} of positive integers for thexd+ 1 function must satisfy
3)-2 5]
—|= —|+k
21217212
whereO = {i: x isodd}, £ = {i: x is ever}, andk = |0|. The method used illustrates a general mechanism for
deriving mathematical results about the iterative dynamics of arbitrary integer function§ifactran algorithms.
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1 Introduction and Main Results

The famous 8+ 1 conjecture (cf. [[3][4]) states that for evenye Z* there existk € Z* such that
TK(n) = 1 where
T(n) = {

andTK=ToTo---oT denotes th&-fold composition ofT with itself. If we letTo (x) =  andTy (X) =
k

3x+ 3, then for anyn andk, T*(n) = Ty, _, o Ty, , 0+~ 0 Ty, (n) for somevo,...vi_1 € {0,1} andy; =

T'(n) mod 2. Several authors (cfl1[3]) have given explicit formulas for this composition, e.g.

n if nis even
n+31 if nis odd.

NIWNI-

3m k-1 3v,+1+ +Vg_1 k-1
Ty 0Ty ,0:-0Ty (N =% n—+ zov. wherem = Z)VI
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Compare this somewhat unwieldy expression with the much simpler one

3m

Ry 10Ry ;0 0Ry, (N) = x

n

whenRy (n) = %n andRy (n) = %n. With this example in mind, it is natural to ask if there is some function
of the form

ron if n=0 modd

rin if n=1 modd
R ={ . . (1.1)

rg—1n ifn=d—-1modd

wherery,...,rq_1 are rational numbers aral> 2 such that knowledge of certaRorbits would settle
the X+ 1 problem, i.e. is there an addition-free variant of tixe-3L function whose dynamics encode
the conjecture? We answer this question in the affirmative with the following result

Theorem 1 There are infinitely many functions R of the forfm](1.1) having the property tha&xthel
conjecture is true if and only if for all positive integers n the R-orbi2btontains2. In particular,

>

if11|n

if 15| n and NOTA
if 17| n and NOTA
if 5| n and NOTA
if 21| n and NOTA
if 13| n and NOTA
if 7| n and NOTA
if 4| nand NOTA
if 2| nand NOTA
otherwise

5 5 5 S

(1.2)

N
~ N|m-’>|$\m—'B“‘ﬁ@w»'ﬁ‘”"m@lﬁl'—‘
> 5 35 5

>

(where NOTA means “None of the Above” conditions hold) is one such funétiothermore, for any
nonnegative integer n the R-orbit 8 contains the subsequence

on 2T 2T2(n)7 2T3(m)

and these are the only powers of two that occur.

Note that the functiofR given in the theorem is of the forrp{1.1) if we take
d=1cm(11,15,17,5,21,13,7,4,2) = 1021020

since the first condition satisfied loywill also be the first condition satisfied - d j for any j.

Proof: The proof is a straightforward application of Conwaltactranlanguage and its mathematical
consequences. We refer the readerlto [2] for detailsFractran programconsists of a finite list of
positive rational numberss, ...ri]. The state of &ractran machineconsists of a single positive integer
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S. The exponents of the primes in the prime factorizatioB afe used as registers for storing nonnegative
integers. The program is executed by multiplyi®dpy the first rational number in the list for which

the product is a nonnegative integer (and halts if no such integer exists). Thudsraatthn program
corresponds to a function of the forn{1.1) where execution of the program corresponds to iteration of the
function.

TheFractran program

1 136 5 426 7 1335
ﬁaE71_77gaﬂ7E7?aZ7§77 (13)

when started witts= 2", will produceS= 27" as the nexBpower of 2 in the orbit. To see this, consider
the flowchart for this program indicated in Figdie 1. (In what follows we will only be concerned with an
initial state that is a power of 2, as required.)

n p
311 2317
22 ‘1 35 5
11 17
start >— to start
m 5 2°
2 0 5
7
1
q 7
to start
213
37 A
13

r

Fig. 1. A Fractran program for

The edges of the flowchart are labeled in order of decreasing priority using a single arrow, double arrow,
and triangle respectively. At a given node, the current Satenultiplied by the fraction labeling the edge
of highest priority for which the product is a positive integer. The powers of the prin¥%e$513,17 in
Scorrespond to the nodesq, n,r, p respectively, a positive exponent of one of the primes indicating the
program is at that node (and it is at naaéf it is at no other node). The exponents of 2 and Fiare
used as registers to computteWe will refer to these exponents asandf3 respectively.

When the program is started wih= 2" at nodem, it will execute the loop between nodesandn
exactlyq = | 3] times, each time decreasingby 2 and incrementin§. This results ifS= 2nmod23q

If nis odd them = 29+ 1 for some positive integerand execution proceeds to nodlerhere the state
becomesS= 395. The loop between nodesand p then produce$ = 2395 which is then multiplied by
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2—52 to produce

S— 23a+2 _ o(Ba+4)/2 _ 5(6a+3+1)/2 __ o(3(2a+1)+1)/2 _ 5(3n+1)/2 _ T (n)

as required.
If nis even, then upon completion of thenloop Sis multiplied by 7 moving execution to nodg The
loop between nodegandr producesS= 297 which is then multiplied by A7 to produce

S=20=2v2_ 2T

as required.
Iteration of the functiorR given in the theorem starting with see®l @rresponds exactly to execution
of this Fractran program (the sequence of states beingRkabit of 2"). Since the choice of primes and
algorithm used in this program was arbitrary, there are infinitely many such programs, and thus infinitely
many such functions. This completes the proof. O
TheorenT]l shows the relationship betweenRaerbits of two powers and thex3+ 1 problem. One
might ask for its own salfehow the iterates oR behave for arbitrary positive integer inputs. We answer
this question with the following result.

Theorem 2 Let R be defined as if{1.2). Then for albac,d,e, f,g,he N
1. for all me Z* withged(m,2-3-5-7-11-13-17) =1,

R (26‘3}’5"7"11913f 179m> —m-R (2?"3b5C7"11613f 179)

and
2. there exists k N such that R (223°567911°137179) = 2! for some |

Thus if we iterateR starting with an arbitrary positive integay the prime factors o that are greater
than 17 are left unchanged, and the iterates of the remaining factor eventually reach a two power (after
which the behavior proceeds as indicated in Thediem 1).

Proof: The proof of part (1) follows immediately from the definition Rf since prime factors greater
than 17 are not affected when a positive integer is multiplied by any of the rational numbers ligted in (1.3).

To prove part (2), leEbe the set of positive integers that are not divisible by a prime greater than 17.
Since no prime greater than 17 is a factor of the numerator of any fractipnjin RIn®8ps elements &
to elements o&.

Let S be the subset & consisting of integers of the forn?2° for somea,b € N. Leta,b € N. By the
definition of R, R? (22+23P) = 233°+1 50 thatR? (22+2%) = 233 Thus any element & is in theR-orbit
of a power of two. Since th&-orbit of 22 contains infinitely many terms that are powers of two by
Theoren(ll, so does tHeorbit of 223° for anya,b € N. Thus it suffices to show that tHeorbit of any
element ofScontains an element &.

Definea : S— N by o (2213%25%7%11%13%17%) = 5/ ,6. We argue by contradiction, and suppose
that we have an elemenbf Sso that all iterateR<(n) ¢ S. Then all terms in th&-orbit of n are divisible

T Thanks to the anonymous referee of an earlier draft of this paper for suggesting this line of inquiry.
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by some prime i{5,7,11,13,17}. Thus by the definition oR, for allk > 1, R¢(n) = ryR<"1 (n) for some
1 136 5 4 26 7 1 ; 1 136 4 26 1
e € {{1, 50> 2 8+ 50 1305 |- Foranyk e N, if req € {55, 52,5, 52, 3 } then

o (Rk”(n)) =a (rk+1Rk(n)> <a (Rk(n)>
and ifry1 € {3, %} then

a (F%k“(n)) = (rkHRk(n)) = (Rk(n)) :
So theR-orbit of n has nonincreasing values @fi.e. the sequence
a(n),a(R(n),a (R(n)),... (1.4)

is a nonincreasing. Since none of the terms are a two power (by our assumption), (1.4) is a nonincreasing
sequence of positive integers whose terms are all less than or equéh)o Thus there must be some
h > 0 such that (R¢(n)) = a (R"(n)) for all k> h. Sory € {2, 45} for all k > h. But multiplication
by these values af decreases the exponent of either 13 or 17 in the prime factorization of an integer, so
that repeated multiplication by these fractions eventually produces a non-integer value. This contradicts
our assumption and completes the proof. |

Conway [1] used an argument similar to the proof of Theofem 1 to show that there exist functions of
the form (T:1) for which the fate of the orbit of an arbitrary positive integer is algorithmically undecidable.
In TheorenTIl we turn this method around to obtain a positive result, and now illustrate how this result can
be used to obtain mathematical results about the conjecture itself.

2 An Application

Letxo,...,X,—1 be positive integers such that="T (x_1) for 0 <i <nandxo =T (Xn—1) . In this situation
we say{Xo,...,Xn—1} is aT -cycle.If the 3x+1 conjecture is true, then the orlycycle of positive integers
is {1,2} (the existence of any other positive integer ifi&ycle being a counterexample). Thus it is of
interest to study the properties of positive integecyles.

Suppose{xo,...,Xn—1} is @ T-cycle of positive integers witl = T (x;_1) for 0 <i < nandxy =
T (Xn—1) . Then by Theorenfi]1 thB-orbit of 2% is also cyclic and contain&2%, ... ,2%-1} as a subset.
Thus there exists some positive integesuch thatR! (xg) = Xo. But each application oR is simply

multiplication by one of the rational numbers{r};, 43¢, 2 & 28 .0 1 33 '3 73 50 that we must have

R = (1)) (EN (4 () (T (1) (38 (5
o=Ro=1n) \15) \17) \5) \21) \13) \7) \7) \2) "™
for some nonnegative integaad, c,d, e, f,g,h,i, j witha+b+c+d+e+ f+g+h+i+ j=t. Collecting

prime factors on the right hand side and dividing¥gygives us

23b+2d+e—2h—i 3—b—e+h5—b+c—d+i 778 f—g+ij 11—a+h 13- f 17b—c -1
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This yields the system of linear equations

3Bb+2d+e—-2h—i=0

—b—e+h=0
—b+c—d+i=0
—e4+f-g+j=0
—a+h=0
e—f=0
b-c=0
which is equivalent to the system
a=2c+i (2.1)
b=c
d=i
e=c+i
f=c+i
g=]
h=2c+i.

Now defineO = {i: xisodd; and E£ = {i : X is ever} and letk = |O| so that|Z| = n—k. Then as
explained in the proof of Theorefh 1 we see that
i=k (2.2)
j=n-k

c=5 3]

a3 3]

Substituting [Z12) int@ = 2c+i from (Z-1) we obtain

n-1 Xi

Xi
21=2Y 2| +k (2.3)
3 12)=23 3]
But Y4 %] = Sicx | 5]+ Tico| %] . Substituting this into[(2}3) and simplifying proves
Corollary 1 If {x,...,Xn—1} is a T-cycle of positive integers and

0= {i:x isoddrandE = {i : x; is ever
then X X

2 {zJ =2 {zJJFk'

i€E i€eo
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It should be noted that this formula can be proven directly from the known relationship

ZXi: ZXi+k (2.4)
icE icO

(obtained by noticing thétxg, . .., X1} ={T (X0),..., T (Xn—1)} sothaty x, =3 T (x;) and thuSy jc£ X +

YicoXi = Yico % +ier X—z' which can be solved to obtai.4)). However, the method used here re-
veals the results of the Corollary without specifically searching for those results. Thus this method pro-
vides a general approach for discovering new mathematical results by simply coding different algorithms
for computingT (or any other computable integer function) and solving a simple linear system.
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