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We use Conway’sFractran language to derive a functionR : Z
+ → Z

+ of the form

R(n) = r in if n≡ i modd

whered is a positive integer, 0≤ i < d andr0, r1, . . . rd−1 are rational numbers, such that the famous 3x+1 conjecture
holds if and only if theR-orbit of 2n contains 2 for all positive integersn. We then show that theR-orbit of an arbitrary
positive integer is a constant multiple of an orbit that contains a power of 2. Finally we apply our main result to show
that any cycle{x0, . . . ,xm−1} of positive integers for the 3x+1 function must satisfy

∑
i∈E

⌊xi

2

⌋

= ∑
i∈O

⌊xi

2

⌋

+k.

whereO = {i : xi is odd}, E = {i : xi is even}, andk = |O|. The method used illustrates a general mechanism for
deriving mathematical results about the iterative dynamics of arbitrary integer functions fromFractranalgorithms.
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1 Introduction and Main Results
The famous 3x+ 1 conjecture (cf. [3],[4]) states that for everyn ∈ Z

+ there existsk ∈ Z
+ such that

Tk (n) = 1 where

T(n) =

{
1
2n if n is even
3
2n+ 1

2 if n is odd.

andTk = T ◦T ◦ · · · ◦T
︸ ︷︷ ︸

k

denotes thek-fold composition ofT with itself. If we letT0 (x) = x
2 andT1 (x) =

3
2x+ 1

2, then for anyn andk, Tk (n) = Tvk−1 ◦Tvk−2 ◦ · · · ◦Tv0 (n) for somev0, . . .vk−1 ∈ {0,1} andvi ≡
T i (n) mod 2. Several authors (cf. [3]) have given explicit formulas for this composition, e.g.

Tvk−1 ◦Tvk−2 ◦ · · · ◦Tv0 (n) =
3m

2k n+
k−1

∑
i=0

vi
3vi+1+···+vk−1

2k−i wherem=
k−1

∑
i=0

vi .
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Compare this somewhat unwieldy expression with the much simpler one

Rvk−1 ◦Rvk−2 ◦ · · · ◦Rv0 (n) =
3m

2k n

whenR0 (n) = 1
2n andR1 (n) = 3

2n. With this example in mind, it is natural to ask if there is some function
of the form

R(n) =







r0n if n≡ 0 modd

r1n if n≡ 1 modd
...

...
rd−1n if n≡ d−1 modd

(1.1)

wherer1, . . . , rd−1 are rational numbers andd ≥ 2 such that knowledge of certainR-orbits would settle
the 3x+ 1 problem, i.e. is there an addition-free variant of the 3x+ 1 function whose dynamics encode
the conjecture? We answer this question in the affirmative with the following result

Theorem 1 There are infinitely many functions R of the form (1.1) having the property that the3x+ 1
conjecture is true if and only if for all positive integers n the R-orbit of2n contains2. In particular,

R(n) =







1
11n if 11 | n

136
15 n if 15 | n and NOTA
5
17n if 17 | n and NOTA
4
5n if 5 | n and NOTA

26
21n if 21 | n and NOTA
7
13n if 13 | n and NOTA
1
7n if 7 | n and NOTA

33
4 n if 4 | n and NOTA
5
2n if 2 | n and NOTA

7n otherwise

(1.2)

(where NOTA means “None of the Above” conditions hold) is one such function. Furthermore, for any
nonnegative integer n the R-orbit of2n contains the subsequence

2n,2T(n),2T2(n),2T3(n) . . .

and these are the only powers of two that occur.

Note that the functionRgiven in the theorem is of the form (1.1) if we take

d = lcm(11,15,17,5,21,13,7,4,2) = 1021020

since the first condition satisfied byn will also be the first condition satisfied byn+d j for any j.
Proof: The proof is a straightforward application of Conway’sFractran language and its mathematical

consequences. We refer the reader to [2] for details. AFractran programconsists of a finite list of
positive rational numbers,[r1, . . . rt ] . The state of aFractran machineconsists of a single positive integer
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S. The exponents of the primes in the prime factorization ofSare used as registers for storing nonnegative
integers. The program is executed by multiplyingS by the first rational number in the list for which
the product is a nonnegative integer (and halts if no such integer exists). Thus, eachFractran program
corresponds to a function of the form (1.1) where execution of the program corresponds to iteration of the
function.

TheFractranprogram
[

1
11

,
136
15

,
5
17

,
4
5
,
26
21

,
7
13

,
1
7
,
33
4

,
5
2
,7

]

(1.3)

when started withS= 2n, will produceS= 2T(n) as the nextSpower of 2 in the orbit. To see this, consider
the flowchart for this program indicated in Figure 1. (In what follows we will only be concerned with an
initial state that is a power of 2, as required.)

3·11
22

start

23·17
3·5

2·13
3·7

5
17

7
13

1
11

7

to start

to start

o

r

m

p

q
1
7

n

5
2

22

5

Fig. 1: A Fractran program forT

The edges of the flowchart are labeled in order of decreasing priority using a single arrow, double arrow,
and triangle respectively. At a given node, the current stateSis multiplied by the fraction labeling the edge
of highest priority for which the product is a positive integer. The powers of the primes 5,7,11,13,17 in
Scorrespond to the nodeso,q,n, r, p respectively, a positive exponent of one of the primes indicating the
program is at that node (and it is at nodem if it is at no other node). The exponents of 2 and 3 inSare
used as registers to computeT. We will refer to these exponents asα andβ respectively.

When the program is started withS= 2n at nodem, it will execute the loop between nodesm andn
exactlyq =

⌊
n
2

⌋
times, each time decreasingα by 2 and incrementingβ. This results inS= 2nmod23q.

If n is odd thenn = 2q+1 for some positive integerq and execution proceeds to nodeo where the state
becomesS= 3q5. The loop between nodeso and p then producesS= 23q5 which is then multiplied by
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22

5 to produce

S= 23q+2 = 2(6q+4)/2 = 2(6q+3+1)/2 = 2(3(2q+1)+1)/2 = 2(3n+1)/2 = 2T(n)

as required.
If n is even, then upon completion of themn loopS is multiplied by 7 moving execution to nodeq. The

loop between nodesq andr producesS= 2q7 which is then multiplied by 1/7 to produce

S= 2q = 2n/2 = 2T(n)

as required.
Iteration of the functionR given in the theorem starting with seed 2n corresponds exactly to execution

of this Fractran program (the sequence of states being theR-orbit of 2n). Since the choice of primes and
algorithm used in this program was arbitrary, there are infinitely many such programs, and thus infinitely
many such functions. This completes the proof. ✷

Theorem 1 shows the relationship between theR-orbits of two powers and the 3x+ 1 problem. One
might ask for its own sake† how the iterates ofR behave for arbitrary positive integer inputs. We answer
this question with the following result.

Theorem 2 Let R be defined as in (1.2). Then for all a,b,c,d,e, f ,g,h∈ N

1. for all m∈ Z
+ with gcd(m,2·3·5·7·11·13·17) = 1,

R
(

2a3b5c7d11e13f 17gm
)

= m·R
(

2a3b5c7d11e13f 17g
)

and
2. there exists k∈ N such that Rk

(
2a3b5c7d11e13f 17g

)
= 2 j for some j.

Thus if we iterateR starting with an arbitrary positive integern, the prime factors ofn that are greater
than 17 are left unchanged, and the iterates of the remaining factor eventually reach a two power (after
which the behavior proceeds as indicated in Theorem 1).

Proof: The proof of part (1) follows immediately from the definition ofR, since prime factors greater
than 17 are not affected when a positive integer is multiplied by any of the rational numbers listed in (1.3).

To prove part (2), letSbe the set of positive integers that are not divisible by a prime greater than 17.
Since no prime greater than 17 is a factor of the numerator of any fraction in (1.3),R maps elements ofS
to elements ofS.

Let S′ be the subset ofSconsisting of integers of the form 2a3b for somea,b∈ N. Let a,b∈ N. By the
definition ofR, R2

(
2a+23b

)
= 2a3b+1 so thatR2b

(
2a+2b

)
= 2a3b. Thus any element ofS′ is in theR-orbit

of a power of two. Since theR-orbit of 2a+2b contains infinitely many terms that are powers of two by
Theorem 1, so does theR-orbit of 2a3b for anya,b∈ N. Thus it suffices to show that theR-orbit of any
element ofScontains an element ofS′.

Defineα : S→ N by α (2e13e25e37e411e513e617e7) = ∑7
i=2ei . We argue by contradiction, and suppose

that we have an elementn of Sso that all iteratesRk(n) /∈S′. Then all terms in theR-orbit of n are divisible

† Thanks to the anonymous referee of an earlier draft of this paper for suggesting this line of inquiry.
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by some prime in{5,7,11,13,17}. Thus by the definition ofR, for all k≥ 1, Rk (n) = rkRk−1 (n) for some
rk ∈

{
1
11,

136
15 , 5

17,
4
5, 26

21,
7
13,

1
7

}
. For anyk∈ N, if rk+1 ∈

{
1
11,

136
15 , 4

5, 26
21,

1
7

}
then

α
(

Rk+1 (n)
)

= α
(

rk+1Rk (n)
)

< α
(

Rk (n)
)

and if rk+1 ∈
{

5
17,

7
13

}
then

α
(

Rk+1 (n)
)

= α
(

rk+1Rk (n)
)

= α
(

Rk (n)
)

.

So theR-orbit of n has nonincreasing values ofα, i.e. the sequence

α (n) ,α (R(n)) ,α
(
R2 (n)

)
, . . . (1.4)

is a nonincreasing. Since none of the terms are a two power (by our assumption), (1.4) is a nonincreasing
sequence of positive integers whose terms are all less than or equal toα (n). Thus there must be some
h≥ 0 such thatα

(
Rk (n)

)
= α

(
Rh (n)

)
for all k ≥ h. So rk ∈

{
5
17,

7
13

}
for all k ≥ h. But multiplication

by these values ofrk decreases the exponent of either 13 or 17 in the prime factorization of an integer, so
that repeated multiplication by these fractions eventually produces a non-integer value. This contradicts
our assumption and completes the proof. ✷

Conway [1] used an argument similar to the proof of Theorem 1 to show that there exist functions of
the form (1.1) for which the fate of the orbit of an arbitrary positive integer is algorithmically undecidable.
In Theorem 1 we turn this method around to obtain a positive result, and now illustrate how this result can
be used to obtain mathematical results about the conjecture itself.

2 An Application
Let x0, . . . ,xn−1 be positive integers such thatxi = T (xi−1) for 0< i < n andx0 = T (xn−1) . In this situation
we say{x0, . . . ,xn−1} is aT-cycle.If the 3x+1 conjecture is true, then the onlyT-cycle of positive integers
is {1,2} (the existence of any other positive integer in aT-cycle being a counterexample). Thus it is of
interest to study the properties of positive integerT-cyles.

Suppose{x0, . . . ,xn−1} is a T-cycle of positive integers withxi = T (xi−1) for 0 < i < n and x0 =
T (xn−1) . Then by Theorem 1 theR-orbit of 2x0 is also cyclic and contains{2x0, . . . ,2xn−1} as a subset.
Thus there exists some positive integert such thatRt (x0) = x0. But each application ofR is simply
multiplication by one of the rational numbers in

{
1
11,

136
15 , 5

17,
4
5, 26

21,
7
13,

1
7, 33

4 , 5
2,7

}
so that we must have

x0 = Rt (x0) =

(
1
11

)a(
136
15

)b(
5
17

)c(
4
5

)d (
26
21

)e(
7
13

) f (
1
7

)g(
33
4

)h(
5
2

)i

7 jx0

for some nonnegative integersa,b,c,d,e, f ,g,h, i, j with a+b+c+d+e+ f +g+h+ i+ j = t. Collecting
prime factors on the right hand side and dividing byx0 gives us

23b+2d+e−2h−i3−b−e+h5−b+c−d+i7−e+ f−g+ j11−a+h13e− f 17b−c = 1.



52 Kenneth G. Monks

This yields the system of linear equations

3b+2d+e−2h− i = 0

−b−e+h = 0

−b+c−d+ i = 0

−e+ f −g+ j = 0

−a+h = 0

e− f = 0

b−c = 0

which is equivalent to the system

a = 2c+ i (2.1)

b = c

d = i

e= c+ i

f = c+ i

g = j

h = 2c+ i.

Now defineO = {i : xi is odd} and E = {i : xi is even} and letk = |O| so that|E | = n− k. Then as
explained in the proof of Theorem 1 we see that

i = k (2.2)

j = n−k

c = ∑
i∈O

⌊xi

2

⌋

a =
n−1

∑
i=0

⌊xi

2

⌋

Substituting (2.2) intoa = 2c+ i from (2.1) we obtain

n−1

∑
i=0

⌊xi

2

⌋

= 2∑
i∈O

⌊xi

2

⌋

+k. (2.3)

But ∑n−1
i=0

⌊ xi
2

⌋
= ∑i∈E

⌊ xi
2

⌋
+∑i∈O

⌊ xi
2

⌋
. Substituting this into (2.3) and simplifying proves

Corollary 1 If {x0, . . . ,xn−1} is a T-cycle of positive integers and

O = {i : xi is odd}andE = {i : xi is even}

then

∑
i∈E

⌊xi

2

⌋

= ∑
i∈O

⌊xi

2

⌋

+k.
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It should be noted that this formula can be proven directly from the known relationship

∑
i∈E

xi = ∑
i∈O

xi +k (2.4)

(obtained by noticing that{x0, . . . ,xn−1}= {T (x0) , . . . ,T (xn−1)} so that∑xi = ∑T (xi) and thus∑i∈E xi +

∑i∈O xi = ∑i∈O

3xi+1
2 +∑i∈E

xi
2 which can be solved to obtain (2.4)). However, the method used here re-

veals the results of the Corollary without specifically searching for those results. Thus this method pro-
vides a general approach for discovering new mathematical results by simply coding different algorithms
for computingT (or any other computable integer function) and solving a simple linear system.
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