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Bifurcations in Boolean Networks
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This paper characterizes the attractor structure of synchronous and asynchronous Boolean networks induced by bi-
threshold functions. Bi-threshold functions are generalizations of standard threshold functions and have separate
threshold values for the transitions 0 → 1 (up-threshold) and 1 → 0 (down-threshold). We show that synchronous
bi-threshold systems may, just like standard threshold systems, only have fixed points and 2-cycles as attractors.
Asynchronous bi-threshold systems (fixed permutation update sequence), on the other hand, undergo a bifurcation.
When the difference ∆ of the down- and up-threshold is less than 2 they only have fixed points as limit sets. However,
for ∆ ≥ 2 they may have long periodic orbits. The limiting case of ∆ = 2 is identified using a potential function
argument. Finally, we present a series of results on the dynamics of bi-threshold systems for families of graphs.
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1 Introduction
A standard Boolean threshold function tk,m : {0, 1}m −→ {0, 1} is defined by

tk,m(x1, . . . , xm) =

{
1, if σ(x1, . . . , xm) ≥ k and
0, otherwise,

(1.1)

where σ(x1, . . . , xm) =
∣∣{1 ≤ i ≤ m | xi = 1}

∣∣. This class of functions is a common choice in modeling
biological systems [Kauffman (1969); Karaoz et al. (2004)], and social behaviors (e.g., joining a strike or
revolt, adopting a new technology or contraceptives, spread of rumors and stress, and collective action),
see, e.g., [Granovetter (1978); Bulger et al. (1989); Macy (1991); Centola and Macy (2007); Watts (2002);
Kempe et al. (2003)].

A bi-threshold function is a function ti,k↑,k↓,m : {0, 1}m −→ {0, 1} defined by

ti,k↑,k↓,m(x1, . . . , xm) =

{
tk↑,m, if xi = 0,

tk↓,m, if xi = 1 .
(1.2)
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Here i denotes a designated argument – later it will be the vertex or cell index. We call k↑ the up-threshold
and k↓ the down-threshold. When k↑ = k↓ the bi-threshold function coincides with a standard threshold
function. Note that unlike the standard threshold function in (1.1) which is symmetric, the bi-threshold
function is quasi-symmetric (or outer-symmetric) – with the exception of index i, it only depends on its
arguments through their sum.

In this paper we consider synchronous and asynchronous graph dynamical systems (GDSs), see
[Mortveit and Reidys (2007); Macauley and Mortveit (2009)], of the form F : {0, 1}n −→ {0, 1}n in-
duced by bi-threshold functions. These are natural extensions of threshold GDSs and capture threshold
phenomena exhibiting hysteresis properties. Bi-threshold systems are also prevalent in social systems
where each individual can change back-and-forth between two states; Schelling states: “Numerous social
phenomena display cyclic behavior ...”, see (Schelling, 1978, p. 86). Among his examples is whether
pick-up volleyball games will continue through an academic semester or die (e.g., individuals regularly
choosing to play or not play). One can also look at public health concerns such as obesity, where an
individual’s back-and-forth decisions to diet or not—which are peer influenced, [Christakis and Fowler
(2007)], and therefore can be at least partially described by thresholds—are so commonplace that it has
a name: “yo-yo dieting” [Atkinson et al. (1994)]. When k↑ > k↓, a vertex that transitions from state 0
to state 1 is more likely to remain in state 1 than what would be the case in a standard threshold GDS.
For the state transitions from 1 to 0 the situation is analogous. This suggests that the cost to change back
to state 0 is great or that a change to state 0 will occur only if the conditions that gave rise to the 0 → 1
transition significantly diminish. A company that acquires and later divests itself of a competitor is such
an example. Examples where k↓ ≥ k↑ are commonplace. For example, [Schelling (1978)] states that he
often witnesses people who start to cross the street against traffic lights, but will return to the curb if they
observe an insufficient number of others following behind. Overshooting, whereby a group of individuals
take some action, and within a short time period, a subset of these pull back from it, is also of interest to
the sociology community [Bischi and Merlone (2009)] and is characterized by k↓ ≥ k↑.

It is convenient to introduce the quantity ∆ = k↓ − k↑. The first of our main results (Theorem 3.1)
characterizes limit cycle structure of synchronous bi-threshold GDS (also known as as Boolean networks).
Building on the proof for threshold functions in Goles and Olivos (1981), we prove that only fixed points
and periodic orbits of length 2 can occur for each possible combination of k↑ and k↓. Since we re-use
parts of their proof, and also since their proof only appears in French, a condensed English translation
is included in the appendix on page 43. The situation is very different for asynchronous bi-threshold
GDSs where a vertex permutation is used for the update sequence. Our second main result states that
when ∆ < 2, only fixed points can occur as limit cycles. However, for ∆ ≥ 2 there are graphs for
which arbitrary length periodic orbits can be generated. The case ∆ = 2 is identified using a potential
function argument and represents a (2-parameter) bifurcation in a discrete system, a phenomenon that to
our knowledge is novel. We also include a series of results for bi-threshold dynamics on special graph
classes. These offer examples of asynchronous bi-threshold GDSs with long periodic orbits, and may also
serve as building blocks in construction and modeling of bi-threshold systems with given cycle structures.

Paper organization. We introduce necessary definitions and terminology for graph dynamical systems
in Section 2. The two main theorems are presented in Sections 3.1 and 3.2. Our collection of results on
dynamics for graph classes like trees and cycle graphs follow in Section 4 before we conclude in Section 5.
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2 Background and Terminology
In the following we let X denote an undirected graph with vertex set v[X] = {1, 2, . . . , n} and edge set
e[X]. To each vertex v we assign a state xv ∈ K = {0, 1} and refer to this as the vertex state. Next, we
let n[v] denote the sequence of vertices in the 1-neighborhood of v sorted in increasing order and write

x[v] = (xn[v](1), xn[v](2), . . . , xn[v](d(v)+1))

for the corresponding sequence of vertex states. Here d(v) denotes the degree of v. We call x =
(x1, x2, . . . , xn) the system state and x[v] the restricted state. The dynamics of vertex states is governed
by a list of vertex functions (fv)v where each fv : Kd(v)+1 −→ K maps as

xv(t+ 1) = fv
(
x(t)[v]

)
.

In other words, the state of vertex v at time t + 1 is given by fv evaluated at the restricted state x[v] at
time t. An update mechanism governs how the list of vertex functions assemble to a graph dynamical
system map (see e.g. Mortveit and Reidys (2007); Macauley and Mortveit (2009))

F : Kn −→ Kn

sending the system state at time t to that at time t+ 1.
For the update mechanism we will here use synchronous and asynchronous schemes. In the former case

we obtain Boolean networks where

F(x1, . . . , xn) = (f1(x[1]), . . . , fn(x[n])) .

This sub-class of graph dynamical systems is sometimes referred to as generalized cellular automata. In
the latter case we will consider permutation update sequences. For this we first introduce the notion of
X-local functions. Here the X-local function Fv : Kn −→ Kn is given by

Fv(x1, . . . , xn) = (x1, x2, . . . , fv(x[v]), . . . , xn) .

Using π = (π1, . . . , πn) ∈ SX (the set of all permutations of v[X]) as an update sequence, the corre-
sponding asynchronous (or sequential) graph dynamical system map Fπ : Kn −→ Kn is given by

Fπ = Fπ(n) ◦ Fπ(n−1) ◦ · · · ◦ Fπ(1) . (2.1)

We also refer to this class of asynchronous systems as (permutation) sequential dynamical systems (SDSs).
The X-local functions are convenient when working with the asynchronous case. In this paper we will
consider graph dynamical systems induced by bi-threshold functions, that is, systems where each vertex
function is given as

fv = fv,k↑v ,k↓v := tv,k↑v ,k↓v ,d(v)+1 .

The phase space of the GDS map F : Kn −→ Kn is the directed graph with vertex set Kn and edge
set {

(
x,F(x)

)
| x ∈ Kn}. A state x for which there exists a positive integer p such that Fp(x) = x is a

periodic point, and the smallest such integer p is the period of x. If p = 1 we call x a fixed point for F.
A state that is not periodic is a transient state. Classically, the omega-limit set of x, denoted by ω(x), is
the accumulation points of the sequence {Fk(x)}k≥0. In the finite case, the omega-limit set is the unique
periodic orbit reached from x under F.
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Example 2.1 To illustrate the above concepts, take X = Circ4 as graph (shown in Figure 1), and choose
thresholds k↑ = 1 and k↓ = 3. For the synchronous case we have we have for example F(1, 0, 0, 1) =
(0, 1, 1, 0). Using the update sequence π = (1, 2, 3, 4) we obtain Fπ(1, 0, 0, 1) = (0, 0, 1, 0). The phase
spaces of Fπ and F are shown in Figure 1. Notice that Fπ has cycles of length 3, while the maximal cycle
length of F is 2.
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Fig. 1: The graph X = Circ4 (left), and the phase spaces of Fπ (middle) and F (right) for Example 2.1.

We remark that graph dynamical systems generalize concepts such as cellular automata and Boolean
networks, and can describe a wide range of distributed, nonlinear phenomena.

3 ω-Limit Set Structure of Bi-Threshold GDS
This section contains the two main results on dynamics of synchronous and asynchronous bi-threshold
GDSs.

3.1 Synchronous Bi-Threshold GDSs
Let K = {0, 1} as before, let A = (aij) be a real-valued symmetric matrix, let (k↑i )ni=1 and (k↓i )ni=1 be
vertex-indexed sequences of up- and down-thresholds, and define the function F = (f1, . . . , fn) : Kn −→
Kn by

fi(x1, . . . , xn) =


1 if xi = 0 and

n∑
j=1

aijxj ≥ k↑i

0 if xi = 1 and
n∑
j=1

aijxj < k↓i

xi otherwise.

(3.1)

The following theorem is a generalization of Theorem A.1 (see appendix) to the case of bi-threshold
functions.

Theorem 3.1 If F is the synchronous GDS map over the complete graph of order n with vertex functions
as in Equation (3.1), then for all x ∈ Kn, there exists s ∈ N such that Fs+2(x) = Fs(x).

The proof builds on the arguments of the proof from Goles and Olivos (1981) for standard threshold
functions (see page 43 of the appendix). Note that we can use Lemma A.2 in its original form, but
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for Lemma A.3 changes are needed to adapt for bi-threshold functions. The position is marked [Cross-
reference for bi-threshold systems] in the the proof of Lemma A.3 on page 44. Before starting the proof
of the theorem above, we first introduce the notion of bands and give a result on their structural properties.
This is essential in the extension of the original result.

As in the proof of Goles and Olivos (1981) in the appendix, let zi ∈ S and assume that γi ≥ 3 (the
period of the ith component of z). We set

supp(zi) =
{
l ∈ {0, 1, 2, . . . , T − 1} : zl = 1

}
;

and use their partition C = {C0, C1, C2, . . . , Cp}. By the assumption γi ≥ 3, we are guaranteed that
p ≥ 1. The bi-threshold functions require a more careful structural analysis of the elements of C than in
the case of standard threshold functions. We say that C ∈ C is of type ab if C = (l, l+2, l+4, . . . , k) and
zl−1 = a and zk+1 = b where all indices are modulo T . Here we write mab = mab(C) for the number of
elements of C of type ab.

We claim thatm01 = m10. Before we prove this, observe first that the sequence
(
zi(0), zi(1), . . . , zi(T−

1)
)

can be split into contiguous (modulo T ) sub-sequences (bands) whose states contain only isolated 0s,
where the end points have state 1, and where bands are separated by sub-sequences of lengths ≥ 2 whose
state consist entirely of 0s. By the construction of C, each element C ∈ C must be fully contained in a
single band. Our claim above is now a direct consequence of the following lemma:

Lemma 3.2 A band either (i) contains no element C of type 01 or 10, or (ii) contains precisely one
element C of type 01 and precisely one element C ′ of type 10.

Proof: Fix a band B and let C ∈ C be the partition containing the first element of B. There are now two
possibilities. In the first case, C also contains the final element of B. Then C has type 00, and any other
partition element contained in B is necessarily of type 11. In the second case, C terminates before the
end of B. The configuration at the end of C must then be as

( ...00j1
|
1

|
1

|
...

|
1

|
0

| 
...1j00... )1 1

C

C0

and C is of type 01. The element C ′ containing the index after the last element of C either goes all the
way to the end of B, in which case it is of type 10, or it terminates before that in which case the situation
is as in the diagram above and C ′ is of type 11. By repeated application of this argument, the band B is
eventually exhausted with an element C ′′ of type 10. All other elements of C within B not included in the
sequence of partitions C, C ′ and so on, must be of type 11, and the proof is complete. 2

Corollary 3.3 m01(C) = m10(C)

Proof (Theorem 3.1): Claim: If γi ≥ 3 for zi ∈ S then
∑n
j=1 L(zi, zj) < 0.
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We can write

n∑
i=1

L(zi, zj) =

p∑
k=0

( n∑
j=1

aij
∑
l∈Ck

(
zj(l + 1)− zj(l − 1)

))
=

p∑
k=0

Ψik ,

where

Ψik =

n∑
j=1

aij
∑
l∈Ck

(
zj(l + 1)− zj(l − 1)

)
=

n∑
j=1

aijzj(lk + 2qk + 1)−
n∑
j=1

aijzj(lk − 1) .

We need to consider Ψik for the four types of partition elements. As in the original proof, note that Ψi0 =
0.

Ck is of type 00: in this case zi(lk − 1) = 0, zi(lk) = 1, zi(lk + 2qk + 1) = 0 and zi(lk + 2qk + 2) = 0,
which is only possible if

n∑
j=1

aijzj(lk − 1) ≥ k↑i and
n∑
j=1

aijzj(lk + 2qk + 1) < k↑i ,

which implies that Ψik < 0.

Ck is of type 11: this case is completely analogous to the 00 case, and again we conclude that Ψik < 0.

Ck is of type 10: here zi(lk − 1) = 1, zi(lk) = 1, zi(lk + 2qk + 1) = 0 and zi(lk + 2qk + 2) = 0. This
implies that ∑

j=1

aijzj(lk − 1) ≥ k↓i and
∑
j=1

aijzj(lk + 2qk + 1) < k↑i ,

leading to Ψik < k↑i − k
↓
i .

Ck is of type 01: this case is essentially the same as the 10 case, but here Ψik < k↓i − k
↑
i .

Using the above four cases, we now have

n∑
j=0

L(zi, zj) =

p∑
k=0

Ψik < 0 +m00 · 0 +m11 · 0 +m10(k↑i − k
↓
i ) +m01(k↓i − k

↑
i ) = 0 ,

where the last equality follows by Corollary 3.3. Clearly, this leads to the same contradiction as in the
proof of Theorem A.1. 2

An immediate consequence of Theorem 3.1 is the following:

Corollary 3.4 A synchronous bi-threshold GDS may only have fixed points and 2-cycles as limit sets.
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3.2 Asynchronous Bi-Threshold GDSs
Theorem 3.5 Let X be a graph, let π ∈ Sx and let (fv)v be bi-threshold functions all satisfying ∆(v) =
k↓v − k↑v ≤ 1. The sequential dynamical system map Fπ only has fixed points as limit sets.

As before, the graph X is finite. Note also that the per-vertex thresholds k↑ and k↓ need not be uniform
for the graph.

Proof: The proof uses a potential function based on a construction in Barrett et al. (2006), but see
also Goles-Chacc et al. (1985). For a given state x ∈ Kn we assign to each vertex the potential

P (v, x) =

{
k↓v , xv = 1

d(v) + 2− k↑v , xv = 0 .

Note that the quantity d(v)+2−k↑v is the smallest number of vertex states in the local state x[v] that must
be zero to ensure that xv remains in state zero. Similarly, an edge e = {v, v′} is assigned the potential

P (e = {v, v′}, x) =

{
1, xv 6= xv′

0, xv = xv′ .

For book-keeping, we let ni = ni(v;x) denote the number of vertices adjacent to v in state i for i = 0, 1
and note that n0 +n1 = d. The system potential P (x) at the state x is the sum of all the vertex and all the
edge potentials. For the theorem statement it is clearly sufficient to show that each application of a vertex
function that leads to a change in a vertex state causes the system potential to drop.

Consider first the case where xv is mapped from 0 to 1 which implies that n1 ≥ k↑v . Since a change in
system potential only occurs for vertex v and edges incident with v, we may disregard the other potentials
when determining this change. Denoting the system potential before and after the update by P and P ′,
we have P = d+ 2− k↑v + n1 and P ′ = k↓v + n0 which implies that

P ′ − P = k↓v + n0 − d− 2 + k↑v − n1 = k↓v + k↑v − 2n1 − 2

≤ −(k↑v − k↓v)− 2 = ∆(v)− 2 ,

and this is strictly negative whenever ∆ = k↓ − k↑ ≤ 1. Similarly, for the transition where xv maps from
1 to 0 one must have n1 + 1 ≤ k↓v − 1 or n1 ≤ k↓v − 2. In this case we have

P ′ − P = [d+ 2− k↑v + n1]− [k↓v + n0] = 2n1 + 2− k↓v − k↑v
≤ 2k↓v − 4 + 2− k↑v − k↓v = ∆(v)− 2

as before, concluding the proof. 2

3.3 Bifurcations in Asynchronous GDS
A natural question now is what happens in the case where ∆ = k↓ − k↑ = 2 since periodic orbits are
no longer excluded by the arguments in the proof above. The following proposition shows that there are
graphs and choices of k↑ and k↓, such that ∆ = 2, for which there are periodic orbits of arbitrary length.
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Proposition 3.6 The bi-threshold GDS map over X = Circn with update sequence π = (1, 2, 3, . . . , n),
thresholds k↑ = 1 and k↓ = 3, has cycles of length n− 1.

Proof: We claim that the state x = (0, 0, . . . , 0, 1, 0) is on an (n−1)-cycle. Straightforward computations
give that the single 1-state is shifted one position to the left upon each application of Fπ until the state
y = (0, 1, 0, . . . , 0) is reached. The image of this state is z = (1, 0, 0, . . . , 0, 0, 1) which is easily seen to
map to x. The smallest number of iterations required to return to the original state x is n − 1, producing
a cycle as claimed. 2

In other words, by taking ∆ as a parameter, we see that the bi-threshold sequential dynamical system
undergoes a bifurcation at ∆ = 2.

4 Dynamics of Bi-Threshold GDSs
4.1 Graph Unions
From Proposition 3.6, we see that for X = Circn with threshold k↑ = 1 and k↓ = 3 at each vertex, we
obtain an (n−1)-cycle for the update sequence π = (1, 2, . . . , n). The following proposition demonstrates
how we can combine graphs to obtain larger cycle sizes for bi-threshold SDSs with arbitrarily nonuniform
k↑, k↓. In particular, the result applies to the case where we combine Circn graphs where p = n − 1 is
prime.

Proposition 4.1 For i = 1, 2 let Xi be a graph for which the bi-threshold GDS with update sequence πi
has a cycle in phase space of length ci. Let ui ∈ v[Xi], and let X be the graph obtained as the disjoint
union of X1 and X2 plus additionally the vertex w 6∈ v[X1], v[X2] with the edges {u1, w} and {u2, w}.
Moreover, let all thresholds of vertices in X1 and X2 be as before, and assign threshold k↑ = 3 to w. The
bi-threshold SDS map over X with update sequence π = (π1|π2|w) [juxtaposition] has a cycle of length
lcm(c1, c2).

Proof: Let vertex w have k↑ = 3, so that w will never transition to state 1 from state 0. Let x =
(x1|x2|xw) be the state over X constructed from states x1 and x2 on the respective ci-cycle over X1

and X2 with xw = 0. The only vertices whose connectivity, and therefore induced vertex function, are
affected by the addition of w are u1 and u2. But the state transitions for u1 and u2 are unaffected because
each is predicated on σ(x[u1]) and σ(x[u2]), respectively, and these latter two quantities are not altered
by the state of w because that state is fixed at 0 by construction. Hence, the phase space of X contains a
cycle of length lcm(c1, c2) as claimed. 2

Thus, for k↑ = 1 and k↓ = 3, there exists a circle graph and permutation π that will produce a cycle in
phase space of length three or greater, and multiple circle graphs can be combined to produce graphs with
large orbit cycles without modifying the thresholds of vertices in X1 and X2.

4.2 Trees
Propositions 3.6 and 4.1 show how periodic orbits of length > 2 arise over graphs that contain cycles.
This section investigates bi-threshold SDS maps where X is a tree.

To start, we first recall the notion of κ-equivalence of permutations from Macauley and Mortveit (2009,
2008). Two permutations π, π′ ∈ SX are κ-equivalent if the corresponding induced acyclic orienta-
tions Oπ and Oπ′ of X are related by a sequence of source-to-sink conversions. Here, the orientation Oπ
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Fig. 2: The tree Hn used in the proof of Proposition 4.2.

is obtained from π by orienting each edge {v, v′} ∈ e[X] as (v, v′) if v precedes v′ in π and as (v′, v)
otherwise. This is an equivalence relation, and it is shown in Macauley and Mortveit (2009) that (i) for a
tree the number of κ-equivalence classes is κ(X) = 1, and (ii) that Fπ and Fπ′ have the same periodic
orbit structure (up to digraph isomorphism/topological conjugation) whenever π and π′ are κ-equivalent.
As a result, we only need to consider a single permutation update sequence to study the possible periodic
orbit structures of permutation SDS maps over a tree X .

The following result shows that there can be cycles of length 3 or greater for permutation SDS over a
tree.

Proposition 4.2 For any integer c ≥ 3 there is a tree X on n = 4c − 6 vertices such that bi-threshold
permutation SDS maps over X with thresholds k↑ = 1 and k↓ = 3 have periodic orbits of length c.

Proof: An H-tree on n = 4β + 2 vertices, denoted by Hn, has vertex set {1, 2, . . . , n} and edge set

{η, n− η + 1} ∪
{
{i, i+ 1}, n/2 + {i, i+ 1} | 1 ≤ i ≤ n/2− 1

}
,

where η = β + 1 and β ≥ 1. The graph Hn is illustrated in Figure 4.2.

Set β = c − 2 so that n = 4β + 2 and η = β + 1. We take X = Hn as the graph and assign
thresholds (k↑, k↓) = (1, 3) to all vertices. By the comment preceding Proposition 4.1, we may simply
use π = (1, 2, 3, . . . , n) as update sequence since all permutations give cycle equivalent maps Fπ .

For the initial configuration, set the state of each vertex v in the range (n/2) + 1 ≤ v ≤ n − η + 1
(bottom right branch) to 1 and set all other vertex states to 0 so that

x(0) = (0, 0, . . . , 0, 1, 1, . . . , 1,︸ ︷︷ ︸
start at vertex (n/2) + 1

0, 0, . . . 0)

The number of vertices in a contiguous vertex range with state 1 will always be η; there may be one or
two such groups in a system state. The image of x(0) is

x(1) = (0, 0, . . . , 0, 1, 1, . . . , 1,︸ ︷︷ ︸
start at vertex η

0, 0, . . . 0) ,

where now the first η − 1 vertices are in state 0, the next η vertices are in state 1, and the remain-
ing vertices—all those along the bottom arm—are in state 0, as follows. Along the top arm, vertices 1
through η − 1 will remain in state 0 because all nodes and their neighbors are in state 0. Vertex η, the
state of the vertex incident to the crossbar on the top arm, will change to 1 because its neighbor along
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the crossbar is in state 1. For the given permutation, then, each subsequent vertex vi in the range η + 1
through n/2 will change to state 1 because xvi−1

= 1 and k↑ = 1. For the bottom arm, vertex (n/2) + 1
will change from state 1 to state 0 because σ(x[v(n/2)+1]) = 2 < k↓. For the same reason, each vertex
vi in the range (n/2) + 2 to n − η + 1 will transition to state 0. Vertices from n − η + 2 through n will
remain in state 0.

The next state is
x(2) = (0, 0, . . . , 0, 1, 1, . . . , 1︸ ︷︷ ︸

start at vertex η−1

, 0, 0, . . . 0, 1, 1, . . . , 1︸ ︷︷ ︸
start at vertex n−η+1

) ,

where, for the top arm, the first η − 2 vertices are in state 0, the next η vertices are in state 1, and the last
vertex on the top arm is in state 0. That is, the set of 1’s along the top arm has shifted one vertex left,
as follows. Let the set of vertices in the top arm in state 1 (in x(1)) be denoted vi through vi+η . Vertex
vi−1 will transition 0→ 1 because xvi = 1. Vertex vi will remain in state 1 because σ(x[vi]) = 3 = k↓.
Likewise vi+1 through vi+η−1 will remain in state 1. However, vi+η will transition to state 0 because
σ(x[vi+η]) = 2 < k↓. We refer to this behavior as a left-shift (the analogous shift to the right is a right-
shift). For the bottom arm, the η vertices (labels (n/2) + 1 through n − η) remain in state 0. Vertex
n−η+1 transitions to state 1 because the neighbor along the crossbar is in state 1. Subsequently, vertices
n− η + 2 through n transition to state 1, in turn, according to π.

The next state is
x(3) = (0, 0, . . . , 0, 1, 1, . . . , 1︸ ︷︷ ︸

start at vertex η−2

, 0, 0, . . . 0, 1, 1, . . . , 1︸ ︷︷ ︸
start at vertex n−η

) ,

where the set of η vertices in state 1 in the top arm has shifted left, and the set of η vertices in state 1
in the bottom arm has shifted left. The shifting process embodied in the transition from state x(2) to
x(3)—where there is a group of vertices in state 1 in each of the top and bottom arms—can happen a total
of (η − 2) times. The state after these (η − 2) transitions is

x(η) = (1, 1, . . . , 1︸ ︷︷ ︸
start at vertex 1

, 0, 0, . . . 0, 1, 1, . . . , 1,︸ ︷︷ ︸
start at vertex n−2η+3

0, 0, . . . , 0) .

The image of x(η) is x(0), the initial state. There are 2 + (η− 2) + 1 state transitions, and we have a limit
cycle of length c = η + 1. 2

Of course, the proof does not guarantee that c is the minimal periodic orbit size, nor that Hn is the
minimal order tree with a periodic orbit of this length. Additionally, there may be multiple periodic orbits
of length c. The following proposition expands on this in the case where c ≥ 5: there exists a tree of
smaller order than Hn that also admits a c-cycle, namely the Y -trees.

Proposition 4.3 For any integer c ≥ 3 there is a tree on n = 3c − 2 vertices such that bi-threshold
permutation SDS maps over this tree with thresholds k↑ = 1 and k↓ = 3 have periodic orbits of length c.

Proof: The proof is analogous to the case of the H-tree. We take as the graph the Y -tree on n = 3β + 1
vertices (see Figure 3) with β ≥ 1, which has vertex set {1, 2, . . . , n} and, setting η = β + 1, edge set{

{i, i+ 1} | 1 ≤ i ≤ 2η − 2
}
∪
{
{i, i+ 1} | 2η ≤ i ≤ (n− 1)

}
∪ {η, n} .



Bifurcations in Boolean Networks 39

1
2

´
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n

Fig. 3: The tree Yn used in the proof of Proposition 4.3.

Let c ≥ 3 with n = 3c− 2 so that X = Yn (and c = β+ 1). We assign thresholds (k↑, k↓) = (1, 3) to all
vertices and use update sequence π = (1, 2, 3, . . . , n) as before. As the initial configuration, set the states
of the β vertices v in the range η ≤ v ≤ 2η− 2 (all vertices in the upper right branch except 2η− 1) to 1,
and set all other vertex states to 0 to form

x(0) = (0, 0, . . . , 0, 1, 1, . . . , 1,︸ ︷︷ ︸
start at vertex η

0, 0, . . . 0) .
The image of x(0) is

x(1) = (0, 0, . . . , 0, 1, 1, . . . , 1,︸ ︷︷ ︸
start at vertex (η − 1)

0, 0, . . . 0, 1) ,

where now the first η − 2 vertices are in state 0, the next β vertices are in state 1, and the remaining
vertices—except for vertex n—are in state 0. In the upper two branches, the initial set of β nodes in
state 1 shifts left for the same reasons described in the proof of Proposition 4.2. The last vertex, n, will
change to 1 because it is adjacent to vertex η, which has state 1.

The image of x(1) is
x(2) = (0, 0, . . . , 0, 1, 1, . . . , 1,︸ ︷︷ ︸

start at vertex (η − 2)

0, 0, . . . 0, 1, 1) ,

where the β nodes in state 1 beginning at vertex η − 2 have shifted left and vertex n − 1 transitions to 1
because vertex n is in state 1. Vertex n remains in state 1 because σ(x[vn]) = 3.

The mechanics of the last state transition (the left shift of β vertices and nodes transitioning to state 1
in the lower branch) repeats itself a total of β − 2 times, at which point the state is

x(β − 1) = (0, 1, . . . , 1, 0, 0, . . . , 0,︸ ︷︷ ︸
start at vertex (η + 1)

1, 1, . . . , 1︸ ︷︷ ︸
start at vertex (n− β + 2)

) ,

where the only vertex in the lower vertical branch in state 0 is 2η, the leaf node.
Noting that vertex η remains in state 1 on the next transition because σ(x[vη]) = 3, all vertices in the

upper right branch transition to 1. Vertex 2η also transitions to 1, giving

x(β) = (1, 1, . . . , 1) .

The next state can be verified to be x(0), thus completing the cycle. The cycle length is therefore c = β+1
as stated. 2

Interestingly, there is no H-tree nor Y -tree that generates a maximum orbit of size 2 for thresholds
(k↑, k↓) = (1, 3). However, so-called X-trees (defined below) admit cycles of any size c ≥ 1.
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Fig. 4: The tree Xn used in the proof of Proposition 4.4 (arrows indicate vertex labeling order).

Proposition 4.4 For any integer c ≥ 2 there is a tree X on n = 4c − 3 vertices such that bi-threshold
permutation GDS maps over X with thresholds k↑ = 1 and k↓ = 3 have periodic orbits of length c. For
c = 1, there is a tree X on n = 5 vertices that has periodic orbits of length 1 (fixed points).

Proof: An X-tree on n = 4β + 1 vertices with β ≥ 1 has vertex set {1, 2, . . . , n} and edge set as
illustrated in Figure 4. Here η = β + 1 is the unique vertex of degree 4. Note first that for any n the
all-zero state over Xn is a fixed point.

We treat the case c = 2 separately; use X = X5, π = (1, 2, 3, 4, 5), and (k↑, k↓) = (1, 3). It can easily
be verified that x(0) = (0, 1, 1, 0, 0) is mapped to x(1) = (1, 1, 0, 1, 1) which in turn is mapped to x(0),
constituting a 2-cycle.

Fix c ≥ 3, set n = 4c − 3 and then c = β + 1, take as the graph X = Xn with thresholds (k↑, k↓) =
(1, 3) for all vertices, and let π = (1, 2, 3, . . . , n).

Define the initial configuration x(0) by assigning the β vertices v with η ≤ v ≤ 2η − 2 (all vertices in
the upper right branch except 2η − 1) to 1 and set all other vertex states to 0, that is,

x(0) = (0, 0, . . . , 0, 1, 1, . . . , 1,︸ ︷︷ ︸
start at vertex η

0, 0, . . . 0) .

The image of x(0) is
x(1) = (0, 0, . . . , 0, 1, 1, . . . , 1,︸ ︷︷ ︸

start at vertex (η − 1)

0, 0, . . . 0, 1, 1, . . . , 1︸ ︷︷ ︸
start at vertex 3η − 2

) ,

where now the first η − 2 vertices are in state 0, the next β vertices are in state 1, and the remaining
vertices in branch 2 are in state 0. In branch 3, only the vertex neighboring vertex η transitions to state 1,
while all vertices in branch 4 transition to state 1 because η is in state 1.

State x(2) is generated by a left-shift of the β contiguous states that are 1 in branches 1 and 2, and by a
left-shift of the β + 1 contiguous state-1 vertices in branches 3 and 4, that is,

x(2) = (0, 0, . . . , 0, 1, 1, . . . , 1,︸ ︷︷ ︸
start at vertex (η − 2)

0, 0, . . . 0, 1, 1, . . . , 1,︸ ︷︷ ︸
start at vertex 3η − 3

0) .

From x(1) there are β − 2 such transitions that result in the state

x(β − 1) = (0, 1, 1, . . . , 1,︸ ︷︷ ︸
start at vertex 2

0, 0, . . . 0, 1, 1, . . . , 1,︸ ︷︷ ︸
start at vertex 3η − β

0, 0, . . . , 0) .
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The next transition results in all vertices in branches 1 and 2 in state 1 since η remains in state 1. The
contiguous set of β + 1 vertices in branches 3 and 4 shift left, giving

x(β) = (1, 1, . . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸
start at vertex 3η

) .

The image of x(β) is x(0), and, since β is the smallest positive time step with this property, we have
established the presence of a periodic orbit of length c = β + 1. 2

Finally, we consider a special class of bi-threshold SDSs on trees with k↑ = 1 and k↓ = k↓(v) =
d(v)+1 for each vertex v. Note that the down-threshold for each vertex depends on its degree as indicated
by the index v in k↓(v). We show that such bi-threshold SDS maps always have fixed points. In such
systems, the state of a vertex v switches from 0 to 1 if it has at least one neighbor in state 1, and from 1
to 0 if it has at least one neighbor in state 0. This is an interesting contrast to the classes of bi-threshold
SDSs on trees discussed above which have large limit cycles.

Let X be a tree. We choose some arbitrary vertex r ∈ v[X] as its root, and partition X into levels
X0, X1, . . . , XD with respect to r such that X0 = {r}, and for any i ≥ 0, we let Xi+1 be the set of
vertices adjacent to vertices in set Xi, but not in the set ∪j<iXj . We sometimes refer to Xi as level-i
set. Let D be the number of levels. We can also define a parent-child relationship relative to this rooted
tree, and denote p(v) as the parent of vertex v 6= r. In our arguments below, we use any permutation π of
v[X], which consists of all the vertices in Xi before those in Xi−1 for each i. Our result is based on the
following property.

Lemma 4.5 Consider a bi-threshold SDS Fπ on a tree X with an arbitrary root r and permutation π
as defined above where k↑ = 1 and k↓(v) = d(v) + 1 for each vertex v. Let x be any state vector and
x′ = Fπ(x). For each vertex v other than the root, we have x′v = xp(v).

Proof: Our proof is by induction on the levels, starting from the highest, i.e., XD. For the base case,
consider a leaf v ∈ XD. We have four cases: xv = xp(v) = 1, xv = 0, xp(v) = 1, xv = 1, xp(v) = 0 and
xv = xp(v) = 0. It is easy to verify that in the first two cases, we have x′v = 1 and in the latter two cases,
we have x′v = 0, since vertex v is updated before p(v) in π. Therefore, the statement of the lemma holds
in the base case for all vertices v ∈ XD.

Next, consider a vertex v in some level Xj , j < D. If v is a leaf in Xj , the lemma follows by exactly
the same argument as in the base case. Therefore, consider the case v is not a leaf. Let w1, . . . , wc denote
its children. Since level j + 1 vertices are updated before those in level j in π, by induction, we have
x′wi

= xv for each wi. Again, we have a case similar to the base case: when vertex v is updated, it has the
same values as its children, and therefore, takes on the state of p(v). Thus, the lemma follows. 2

This property immediately gives us the following:

Corollary 4.6 Let X be a tree. Let π ∈ Sx and let (fv)v be bi-threshold functions satisfying k↑ = 1 and
k↓(v) = d(v) + 1 for each vertex v. Any SDS map Fπ only has fixed points as limit sets.

Proof: Without loss of generality, we take π to be the permutation in Lemma 4.5. By applying Lemma 4.5,
it is easy to verify that for any state vector x, all the vertices in levels 0 and 1 have the same state value in
F (x), namely xr. By induction on i, it is easy to verify that for any i ≥ 1, all vertices in levels 0, . . . , i
have the same state value (of xr) in F i(x). The statement follows since all permutations for a tree give
cycle equivalent SDS maps. 2
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5 Summary and Conclusion
This paper has analyzed the structure of ω-limit sets of bi-threshold GDS. Unlike the synchronous case,
bi-threshold SDS maps can have long periodic orbits, and this is characterized in terms of the difference of
the up- and down-thresholds. We also analyzed certain classes of trees. The following is a list of questions
and conjectures for possible further research.

5.1 Embedding and Inheritance of Dynamics
A fundamental question in the study of GDSs is the following: if a graph X has a graph X ′ as an induced
subgraph, what are the relations between the dynamics over the two graphs? Here one has to assume that
the vertex function, and update sequences if applicable, are appropriately related. For example, is there a
projection from the phase space of the GDS over X to the one over X ′?

In initial computational experiments we studied the dynamics for bi-threshold GDS over trees obtained
from, e.g. H-trees by adding a collection of edges - results indicate that there are several classes of
outcomes. While this is hardly a surprise, there are clear patterns in how edges are added and the dynamics
that result. For example, some classes of edge additions give trees that have long periodic orbits just as
in the case of H-trees. For other classes of edge additions, however, the addition of even a single edge
causes all periodic orbits of size ≥ 2 to disappear. Further insight into the mechanisms involved could
shed light on the the fundamental question above.

5.2 Minimality of Trees with Given Periodic Orbit Sizes
Our results above on the existence of trees admitting bi-threshold SDS with given periodic orbit sizes are
not necessarily minimal. For a given c ≥ 1 there is an X-tree with a periodic orbit of length c, but there
may be a smaller tree (or graph in general) which admits periodic orbits of size c as well. While we have
obtained some insight on this via sampling, no firm results have been established.

Note. For all computational experiments involving dynamics of SDS maps over graphs in this paper we
used a variant of InterSim (Kuhlman et al., 2011).
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A Limit Cycle Structure for Standard Threshold Cellular Automata
This appendix section contains a condensed version of the proof from Goles and Olivos (1981) for standard threshold
functions. We have incorporated their proof for two reasons. First, only a portion of the original proof needs to be
adapted to cover bi-threshold systems, and in this way the paper becomes self-contained. Second, the original proof
only appears in French, and we here provide an English version.

Let K = {0, 1}, let A = (aij)
n
i,j=1 be a real symmetric matrix, let θ = (θ1, . . . , θn) ∈ Rn, and let F =

(f1, . . . , fn) : Kn −→ Kn be the function defined coordinate-wise by

fi(x1, . . . , xn) =

0, if
n∑
j=1

aijxj < θi

1, otherwise .
(A.1)

Theorem A.1 For all x ∈ Kn, there exists s ∈ N such that Fs+2(x) = Fs(x).

The proof of this theorem is based on two lemmas which are given below. Note first that since Kn is finite, for
each x ∈ Kn there exist s, T ∈ N (they will generally depend on x) with T > 0 such that

Fs+T (x) = Fs(x) and Fs+r(x) 6= Fs(x)

for all 0 < r < T . Here s is the transient length of the state x. Next define the n × T matrix X(x, T ) =
(Fs(x), . . . ,Fs+T−1(x)) by

X(x, T ) =

 z1(0) . . . z1(T − 1)
... · · ·

...
zn(0) . . . zn(T − 1)

 ,

where Fs(x) = z = (z1(0), . . . , zn(0)) and Fs+T−1(x) = (z1(T − 1), . . . , zn(T − 1)). In other words, z denotes
the first periodic point reached from x (after s steps) and its period is T . The columns ofX(x, T ) are the T successive
periodic points of the cycle containing z.

In general we have
Fs+l(x) = (z1(l), . . . , zn(l)) for 0 ≤ l ≤ T − 1 .

Since
Fs(x) = Fs+T (x) = F(z1(T − 1), . . . , zn(T − 1))

we have zi(0) = fi(z1(T − 1), . . . , zn(T − 1)), and from Fs+l+1(x) = F(Fs+l(x)) we have

zi(l + 1) = fi(z1(l), . . . , zn(l)) for l = 0, . . . , T − 2.

We will call zi the ith row of the matrixX(x, T ) and let γi denote the smallest divisor of T such that zi(l+γi) = zi(l)
for l ∈ {0, . . . , T − 1}, and will say that γi is the period of the component zi. Clearly, we have zi(l + T ) = zi(l)
for i ∈ {1, 2, . . . , n} and all l ∈ {0, . . . , T − 1}. Let S = {z1, . . . , zn} be the set of rows of X(x, T ). We define
the operator L : S × S → R by

L(zi, zj) = aij

T−1∑
l=0

(zj(l + 1)− zj(l − 1))zi(l) ,

with indices taken modulo T .

Lemma A.2 The operator L has the following properties:

(i) L(zi, zj) + L(zj , zi) = 0 for i, j ∈ {1, . . . , n} (anti-symmetry).
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(ii) If γi ≤ 2 then L(zi, zj) = 0 for j ∈ {1, . . . , n}.

Proof: For (i), since aij = aji, we have

L(zi, zj) + L(zj , zi) = aij

T−1∑
l=0

(
[zi(l)zj(l + 1)− zi(l − 1)zj(l)]

+[zi(l + 1)zj(l)− zi(l)zj(l − 1)]
)
,

which clearly evaluates to zero due to periodicity. For part (ii), if γi = 1 then the row zi is constant andL(zi, zj) = 0.
If γi = 2 then the value of zi alternates as

zi(0), zi(1), zi(0), zi(1), . . . , zi(0), zi(1)

across the ith row, and the terms in L(zi, zj) cancel in pairs. 2

Let zi ∈ S and suppose in the following that γi ≥ 3. We set

supp(zi) = {l ∈ {0, . . . , T − 1} : zi(l) = 1} ,

and write I(l) = {l, l + 2, l + 4, . . . , l − 4, l − 2}. Next, set

C0 =

{
∅, if there is no l0 ∈ {0, . . . , T − 1} such that I(l0) ⊂ supp(zi)

I(l0), otherwise.

We define C1 as the set
C1 = {l1 + 2s ∈ supp(zi) : s = 0, 1, . . . , q1} ,

where l1 is the smallest index not in C0 satisfying zi(l1 − 2) = 0 and q1 satisfies zi(l1 + 2q1 + 2) = 0. For k ≥ 2
we define the sets Ck by

Ck = {lk + 2s ∈ supp(zi) : s = 0, 1, . . . , qk} ,
where lk = lk−1 + rk (mod T ) /∈ {l1, . . . , lk−1} is the smallest index for which zi(lk − 2) = 0 and qk satisfies
zi(lk + 2qk + 2) = 0.

Since γi ≥ 3 (assumption), there always exists l1 ∈ supp(zi) for which zi(l1−2) = 0. This allows us to build the
collection of sets C = {C0, . . . , Cp}. By construction, C is a partition of supp(zi). The following lemma provides
the final piece needed in the proof of the main result.

Lemma A.3 For zi ∈ S and with γi ≥ 3 we have
n∑
j=1

L(zi, zj) < 0 .

Proof: Using the partition C of supp(zi), we have

n∑
j=1

L(zi, zj) =

n∑
j=1

aij
∑

l∈supp(zi)

(zj(l + 1)− zj(l − 1)) · 1

=
n∑
j=1

aij

p∑
k=0

∑
l∈Ck

(zj(l + 1)− zj(l − 1)) =

p∑
k=0

n∑
j=1

aij
∑
l∈Ck

(zj(l + 1)− zj(l − 1))

=

p∑
k=0

Ψik ,
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where we have introduced

Ψik =

n∑
j=1

aij
∑
l∈Ck

(zj(l + 1)− zj(l − 1)) . (A.2)

If C0 = ∅ then Ψi0 = 0, and if C0 = {l0, l0 + 2, . . . , l0 − 2} we have∑
l∈C0

(zj(l + 1)− zj(l − 1)) = 0 .

In other words, we always have Ψi0 = 0, so we assume k > 0 in the following. From the assumption that γi ≥ 3,
there exists Ck 6= ∅ such that Ck = {lk, lk + 2, . . . , lk + 2qk}, so we can re-write Ψik as

Ψik =

n∑
j=1

aij

qk∑
s=0

(zj(lk + 2s+ 1)− zj(lk + 2s− 1))

=
n∑
j=1

aijzj(lk + 2qk + 1)−
n∑
j=1

aijzj(lk − 1) .

[Cross-reference for bi-threshold systems] By the construction ofCk, we have zi(lk+2qk+2) = 0 and zi(lk) = 1
which, by the definition of f in (A.1), is only possible if

n∑
j=1

aijzj(lk + 2qk + 1) < θi, and
n∑
j=1

aijzj(lk − 1) ≥ θi . (A.3)

This implies that Ψik < 0 and we conclude that

n∑
j=1

L(zi, zj) =

p∑
k=1

Ψik < 0

as required. 2

Proof of Theorem A.1: From Lemma A.2 we have that L is anti-symmetric so

n∑
i=1

n∑
j=1

L(zi, zj) = 0 .

However, if we assume that T ≥ 3, then there is zi with γi ≥ 3 and Lemma A.3 produces the desired contradiction.
We conclude that T ≤ 2. 2
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