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A fixed point theorem for Boolean networks
expressed in terms of forbidden subnetworks

Adrien Richard†

Laboratoire I3S, CNRS & Université de Nice-Sophia Antipolis, France

We are interested in fixed points in Boolean networks, i.e. functions f from {0, 1}n to itself. We define the sub-
networks of f as the restrictions of f to the hypercubes contained in {0, 1}n, and we exhibit a class F of Boolean
networks, called even or odd self-dual networks, satisfying the following property: if a network f has no subnetwork
in F , then it has a unique fixed point. We then discuss this “forbidden subnetworks theorem”. We show that it gen-
eralizes the following fixed point theorem of Shih and Dong: if, for every x in {0, 1}n, there is no directed cycle in
the directed graph whose the adjacency matrix is the discrete Jacobian matrix of f evaluated at point x, then f has a
unique fixed point. We also show that F contains the class F ′ of networks whose the interaction graph is a directed
cycle, but that the absence of subnetwork in F ′ does not imply the existence and the uniqueness of a fixed point.

Keywords: Boolean network, fixed point, self-dual Boolean function, discrete Jacobian matrix, feedback circuit.

1 Introduction
A function f from {0, 1}n to itself is often seen as a Boolean network with n components. On on hand, the
dynamics of the network is described by the iterations of f ; for instance, with the synchronous iteration
scheme, the dynamics is described by the recurrence xt+1 = f(xt). On the other hand, the “structure” of
the network is described by a directed graph G(f): the vertices are the n components, and there exists an
arc from j to i when the evolution of the ith component depends on the evolution of the jth one.

Boolean networks have many applications. In particular, from the seminal works of Kauffman (1969)
and Thomas (1973), they are extensively used to model gene networks. In most cases, fixed points are of
special interest. For instance, in the context of gene networks, they are often seen as stable patterns of
gene expression at the basis of particular biological processes.

In this paper, we are interested in sufficient conditions for the existence and the uniqueness of a fixed
point for f . Such a condition was first obtained by Robert (1980), who proved that ifG(f) has no directed
cycle, then f has a unique fixed point. This result was then generalized by Shih and Dong (2005). They
associated to each point x in {0, 1}n a local interaction graphGf(x), which is a subgraph ofG(f) defined
as the directed graph whose the adjacency matrix is the discrete Jacobian matrix of f evaluated at point x,
and they proved that ifGf(x) has no directed cycle for all x in {0, 1}n, then f has a unique fixed point. Up
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to our knowledge, this is the weakest condition known to be sufficient for the presence and the uniqueness
of a fixed point.

In this paper, we establish a sufficient condition for the existence and the uniqueness of a fixed point that
is not expressed in terms of directed cycles. In Section 2, we defined, in a natural way, the subnetworks of
f as the restrictions of f to the hypercubes contained in {0, 1}n, and we introduce the class F of even and
odd self-dual networks. In Section 3, we prove the main result: if f has no subnetworks in F , then it has a
unique fixed point. The rest of the paper discusses this “forbidden subnetworks theorem”. In section 4, we
show that it generalizes the fixed point theorem of Shih and Dong mentioned above. In section 5, we study
the effect of the absence of subnetwork in F on the asynchronous state graph of f , which is a directed
graph on {0, 1}n constructed from the asynchronous iterations of f and proposed by Thomas (1973) as a
model for the dynamics of gene networks. Finally, in Section 6, we compare F with the well-known class
F ′ of networks f whose the interaction graphG(f) is a directed cycle. Mainly, we show that F ′ ⊆ F and
that the absence of subnetwork in F ′ is not sufficient for the existence and the uniqueness of a fixed point.

2 Definitions and notations
In this section, we introduce the definitions needed to state and prove the main result. Let B = {0, 1}, let
n be a positive integer, let [n] = {1, . . . , n}, and let i ∈ [n]. The ith unit vector of Bn is denoted ei (all
the components are 0, excepted the ith one which is 1). The sum modulo two is denoted ⊕. It is applied
componentwise on elements of Bn: for all x, y ∈ Bn,

x⊕ y = (x1 ⊕ y1, . . . , xn ⊕ yn) and x⊕ 1 = (x1 ⊕ 1, . . . , xn ⊕ 1).

Hence, x ⊕ 1 may be seen as the negation of x. The number of ones that x contains is denoted ||x||, i.e.
||x|| =

∑n
i=1 xi. Thus ||x ⊕ y|| gives the Hamming distance between two points x and y of Bn. We say

that x is even (odd) if ||x|| is even (odd) (there exists 2n−1 even (odd) points in Bn). The point of Bn
obtained from x by assigning the ith component to α ∈ B is denoted xiα, i.e.

xiα = (x1, . . . , xi−1, α, xi+1, . . . , xn).

If n > 1, the point of Bn−1 obtained from x be removing the ith component is denoted x−i, i.e.

x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

We call (n-dimensional Boolean) networks any function f from Bn to itself.

Definition 1 (Conjugate) The conjugate of f : Bn → Bn is the following n-dimensional network:

f̃ : Bn → Bn, f̃(x) = x⊕ f(x) ∀x ∈ Bn.

Remark that f̃(x) = 0 if and only if x is a fixed point of f , i.e. f(x) = x.

Definition 2 (Self-dual networks and even/odd networks) f is self-dual if

f(x) = f(x⊕ 1)⊕ 1 ∀x ∈ Bn.

f is even (odd) if the image of f̃ is the set of even points of Bn, i.e.

{f̃(x) |x ∈ Bn} = {x |x ∈ Bn and ||x|| is even (odd)}.
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We say that f is even (odd) self-dual if it is both even (odd) and self-dual. Note that f(x) = f(x⊕1)⊕1
if and only if f̃(x⊕ 1) = f̃(x). Note also that if f is even (odd) self-dual, then for each even (odd) point
x ∈ Bn, the preimage of x by f̃ is of cardinality two, i.e. there exists exactly two distinct points y, z ∈ Bn
such that f̃(y) = f̃(z) = x. Since f̃(x) = 0 if and only if f(x) = x, we deduce that if f is even self-dual,
then it has exactly two fixed points (obviously, if f is odd self-dual, then it has no fixed point).

Definition 3 (Immediate subnetworks) If n > 1, α ∈ B and i ∈ [n], we call immediate subnetwork
of f (obtained by fixing the ith component to α) the following (n− 1)-dimensional network:

f iα : Bn−1 → Bn−1, f iα(x−i) = f(xiα)−i ∀x ∈ Bn.

Remark that conjugate of f iα is equal to the immediate subnetwork f̃ iα of the conjugate f̃ of f :

f̃ iα(x−i) = x−i ⊕ f iα(x−i) = x−i ⊕ f(xiα)−i = (x⊕ f(xiα))−i = f̃(xiα)−i = f̃ iα(x−i).

Definition 4 (Subnetworks) The subnetworks of f are inductively defined by: (1) if n = 1, then f has a
unique subnetwork, which is f itself; and (2) if n > 1, the subnetworks of f are f and the subnetworks of
the immediate subnetworks of f . A strict subnetwork of f is a subnetwork of f different than f .

3 Main result
Theorem 1 (Forbidden subnetworks theorem) If a network f : Bn → Bn has no even or odd self-dual
subnetwork, then the conjugate of f is a bijection, and in particular, f has a unique fixed point.

The proof of Theorem 1 needs the following two lemmas.

Lemma 1 Let X be a non-empty subset of Bn and V (X) = {x ⊕ ei |x ∈ X, i ∈ [n]}. If X and V (X)
are disjoint and |X| ≥ |V (X)|, thenX is either the set of even points of Bn or the set of odd points of Bn.

Proof: by induction on n. The case n = 1 is obvious. So suppose that n > 1 and that the lemma holds for
the dimensions less than n. Let X be a non-empty subset of Bn satisfying the conditions of the statement.
Let α ∈ B, and consider the following subsets of Bn−1:

Xα = {x−n |x ∈ X,xn = α}, V (X)α = {x−n |x ∈ V (X), xn = α}.

We first prove that V (Xα) ⊆ V (X)α and Xα ∩ V (Xα) = ∅. Let x ∈ Bn with xn = α be such
that x−n ∈ V (Xα). To prove that V (Xα) ⊆ V (X)α, it is sufficient to prove that x−n ∈ V (X)α.
Since x−n ∈ V (Xα), there exists y ∈ Bn with yn = α and i ∈ [n − 1] such that y−n ∈ Xα and
x−n = y−n⊕ ei. So x = y⊕ ei, and since yn = α, we have y ∈ X . Hence x ∈ V (X) and since xn = α,
we have x−n ∈ V (X)α. We now prove that Xα ∩ V (Xα) = ∅. Indeed, otherwise, there exists x ∈ Bn
with xn = α such that x−n ∈ Xα ∩ V (Xα). Since V (Xα) ⊆ V (X)α, we have x−n ∈ Xα ∩ V (X)α,
and since xn = α, we deduce that x ∈ X ∩ V (X), a contradiction.

Now, since V (Xα) ⊆ V (X)α, we have

|X| = |X0|+ |X1| ≥ |V (X)| = |V (X)0|+ |V (X)1| ≥ |V (X0)|+ |V (X1)|.

So |X0| ≥ |V (X0)| or |X1| ≥ |V (X1)|. Suppose that |X0| ≥ |V (X0)|, the other case being similar.
Since X0 ∩ V (X0) = ∅, by induction hypothesis X0 is either the set of even points of Bn−1 or the
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set of odd points of Bn−1. So in both cases, we have |X0| = |V (X0)| = 2n−1. We deduce that
|X1| ≥ |V (X1)|, and so, by induction hypothesis, X1 is either the set of even points of Bn−1 or the set
of odd points of Bn−1. But X0 and X1 are disjointed: for all x ∈ Bn, if x−n ∈ X0 ∩X1, then xn0 and
xn1 are two points of X , and xn1 = xn0 ⊕ en ∈ V (X), a contradiction. So if X0 is the set of even (odd)
points of Bn−1, then X1 is the set of odd (even) points of Bn−1, and we deduce that X is the set of even
(odd) points of Bn. 2

Lemma 2 Let f : Bn → Bn. Suppose that the conjugate of every immediate subnetwork of f is a
bijection. If the conjugate of f is not a bijection, then f is even or odd self-dual.

Proof: Suppose that f satisfies the conditions of the statement, and that the conjugate f̃ of f is not a
bijection. Let X̃ ⊆ Bn be the image of f̃ , and let X = Bn \ X̃ . Since f̃ is not a bijection, X is not empty.
We first prove the following property:

(∗) For every x ∈ X and i ∈ [n], the preimage of x⊕ ei by f̃ is of cardinality two.

Let x ∈ X and i ∈ [n]. By hypothesis, the conjugate of f i0 is a bijection, so there exists a unique point in
Bn−1 whose the image by f̃ i0 is x−i. We deduce that there exists a unique point y ∈ Bn such that yi = 0
and f̃ i0(y−i) = x−i. Then, f̃(y)−i = f̃(yi0)−i = f̃ i0(y−i) = x−i. We deduce that either f̃(y) = x or
f̃(y) = x ⊕ ei. Since x ∈ X we have f̃(y) 6= x so f̃(y) = x ⊕ ei. Hence, we have proved that there
exists a unique point y ∈ Bn such that yi = 0 and f̃(y) = x ⊕ ei, and we prove with similar arguments
that there exists a unique point z ∈ Bn such that zi = 1 and f̃(z) = x⊕ ei. This proves (∗).

We are now in position to prove that f is even or odd. Let V (X) = {x⊕ ei |x ∈ X, i ∈ [n]}. We have

|X|+ |X̃| = 2n = |f̃−1(X̃)| = |f̃−1(V (X))|+ |f̃−1(X̃ \ V (X))| ≥ |f̃−1(V (X))|+ |X̃ \ V (X)|.

Following (∗), we have |f̃−1(V (X))| = 2|V (X)| and V (X) ⊆ X̃ , so

|X|+ |X̃| ≥ 2|V (X)|+ |X̃ \ V (X)| = 2|V (X)|+ |X̃| − |V (X)| = |V (X)|+ |X̃|.

Therefore, |X| ≥ |V (X)|, and since V (X) ⊆ X̃ = Bn \X , we have X ∩ V (X) = ∅. So according to
Lemma 1, X is either the set of even points of Bn or the set of odd points of Bn. We deduce that in the
first (second) case, X̃ is the set of odd (even) points of Bn. Thus, f is even or odd.

It remains to prove that f is self-dual. Let x ∈ Bn. For all i ∈ [n], since ||f̃(x)|| and ||f̃(x) ⊕ ei||
have not the same parity, and since f is even or odd, we have f̃(x) ⊕ ei ∈ X . Thus, according to (∗),
the preimage of (f̃(x) ⊕ ei) ⊕ ei = f̃(x) by f̃ is of cardinality two. Consequently, there exists a point
y ∈ Bn, distinct from x, such that f̃(y) = f̃(x). Let us proved that x = y ⊕ 1. Indeed, if xi = yi = 0
for some i ∈ [n], then f̃ i0(x−i) = f̃(x)−i = f̃(y)−i = f̃ i0(y−i). Since x 6= y, we deduce that f̃ i0 is
not a bijection, a contradiction. We show similarly that if xi = yi = 1, then f̃ i1 is not a bijection. So
x = y ⊕ 1. Consequently, f̃(x⊕ 1) = f̃(x), and we deduce that f is self-dual. 2

Proof of Theorem 1: by induction on n. The case n = 1 is obvious. So suppose that n > 1 and that the
theorem holds for the dimensions less than n. Suppose that f has no even or odd self-dual subnetwork.
Under this condition, f is neither even self-dual nor odd self-dual (since f is a subnetwork of f ), and
every immediate subnetwork of f has no even or odd self-dual subnetwork. So, by induction hypothesis,
the dual of every strict subnetwork of f is a bijection, and we deduce from Lemma 2 that the dual of f is a
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bijection. Thus, in particular, there exists a unique point x ∈ Bn such that f̃(x) = 0, and since f̃(x) = 0
if and only if f(x) = x, this point x is the unique fixed point of f . 2

Clearly, if f has no even or odd self-dual subnetwork, then every subnetwork of f has no even or odd
self-dual subnetwork, and according to Theorem 1, the conjugate of every subnetwork of f is a bijection.
Conversely, if the conjugate of every subnetwork of f is a bijection, then f has no even or odd self-dual
subnetwork, since the conjugate of an even or odd self-dual network is not a bijection. Consequently, we
have the following characterization:

Corollary 1 The conjugate of each subnetwork of f is a bijection if and only if f has no even or odd
self-dual network.

Example 1 f : B3 → B3 is defined by:

f(x1, x2, x3) = (x2 ∧ x3, x3 ∧ x1, x1 ∧ x2).

Remark that f is not self-dual, since f(000) = f(111) = 000. The immediate subnetworks of f are:

f10(x2, x3) = (0, x2)

f11(x2, x3) = (x3, 0)

f20(x1, x3) = (x3, 0)

f21(x1, x3) = (0, x1)

f30(x1, x2) = (0, x1)

f31(x1, x2) = (x2, 0)

So each immediate subnetwork f iα of f has one component fixed to zero, and so is not self-dual. Futher-
more, each immediate subnetwork of f iα is the one dimensional network h defined by h(0) = h(1) = 0,
which is not self-dual. So f has no self-dual subnetwork, and we deduce from Theorem 1 that the conju-
gate of f̃ of f is a bijection, and that f has a unique fixed point. Indeed:

x f(x) f̃(x)
000 000 000
001 100 101
010 001 011
011 001 010
100 010 110
101 100 001
110 010 100
111 000 111

4 Remarks on the theorem of Shih and Dong
In this section, we show that Theorem 1 implies a fixed point theorem due to Shih and Dong (2005). In
order to state this theorem, we need additional definitions. Let

f : Bn → Bn, f(x) = (f1(x), . . . , fn(x)).
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Definition 5 (Discrete Jacobian matrix) The discrete Jacobian matrix of f evaluated at point x ∈ Bn is
the following n× n Boolean matrix

f ′(x) = (fij(x)), fij(x) = fi(x
j1)⊕ fi(xj0) (i, j ∈ [n]).

In the next definition, we represent f ′(x) under the form of a directed graph, in order to use graph
theoretic notions instead of matrix theoretical notions. In fact, we mainly focus on elementary directed
cycles, that we simply call cycles in the following.

Definition 6 (Local interaction graph) The local interaction graph of f evaluated at point x ∈ Bn is the
directed graph Gf(x) defined by: the vertex set is [n], and for all i, j ∈ [n], there exists an arc j → i if
and only if fij(x) = 1.

The discrete Jacobian matrix of f was first defined by Robert (1983), who also introduced the notion
of Boolean eigenvalue. This material allowed Shih and Ho (1999) to state a combinatorial analog of the
Jacobian conjecture: if f has the property that, for each x ∈ Bn, all the boolean eigenvalues of f ′(x) are
zero, then f has a unique fixed point. This conjecture was proved by Shih and Dong (2005). Since Robert
proved that all the boolean eigenvalues of f ′(x) are zero if and only if Gf(x) has no cycle, the theorem
of Shih and Dong can be stated as follows.

Theorem 2 (Shih and Dong (2005)) If Gf(x) has no cycle ∀x ∈ Bn, then f has a unique fixed point.

A short prove of this theorem, independent of Theorem 1, is given in appendix. In the following of this
section, we show, using Theorem 1, that the condition “if Gf(x) has no cycle for all x” can be weakened
into a condition of the form “if there exists “few” point x such that Gf(x) has a “short” cycle”. The
exact statement is given after the following proposition.

Proposition 1 If f is even or odd, then for every x ∈ Bn the out-degree of each vertex of Gf(x) is odd.
In particular, Gf(x) has a cycle.

Proof: The out-degree d+j of any vertex j of Gf(x), which equals the number of ones in the jth column
of f ′(x), is d+j = ||f(xj1)⊕ f(xj0)|| = ||f(x)⊕ f(x⊕ ej)||. Since

||f(x)⊕ f(x⊕ ej)|| = ||(x⊕ f̃(x))⊕ ((x⊕ ej)⊕ f̃(x⊕ ej))|| = ||f̃(x)⊕ f̃(x⊕ ej)⊕ ej ||,

the parity of d+j is the parity of ||f̃(x)|| + ||f̃(x ⊕ ej)|| + 1. Hence, if f is even or odd, then ||f̃(x)|| +
||f̃(x⊕ ej)|| is even, and d+j is odd. 2

Corollary 2 (Extension of Shih-Dong’s fixed point theorem) If for k = 1, . . . , n, there exists at most
2k − 1 points x ∈ Bn such that Gf(x) has a cycle of length at most k, then the conjugate of f is a
bijection. In particular, f has a unique fixed point.

Proof: According to Theorem 1, it is sufficient to prove, by induction on n, that if f satisfies the conditions
of the statement, then f has no even or odd self-dual subnetwork. The case n = 1 is obvious. Suppose
that n > 1 and that f satisfies the conditions of the statement. Let i, j ∈ [n − 1]. For each x ∈ Bn such
that xn = 0, we have

fn0ij (x−n) = fn0i (xj1−n)⊕ fn0i (xj0−n) = fi(x
j1)⊕ fi(xj0) = fij(x).
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SoGfn0(x−n) is the subgraph ofGf(x) induced by [n−1], and we deduce that fnα satisfies the condition
of the theorem (for every k ∈ [n− 1], there exists at most 2k − 1 points x ∈ Bn−1 such that Gfn0(x) has
a cycle of length at most k). Thus, by induction hypothesis, fn0 has no even or odd self-dual subnetwork.
More generally, we prove with similar arguments, that for all i ∈ [n], f i0 and f i1 have no even or odd
self-dual subnetwork. So f has no odd or even self-dual strict subnetwork. If f is itself even or odd
self-dual, then by Proposition 1, Gf(x) has a cycle for every x ∈ Bn, so f does not satisfy that conditions
of the statement (for k = n). Therefore, f has no even or odd self-dual subnetwork. 2

Example 2 (Continuation of Example 1) Take again

f(x1, x2, x3) = (x2 ∧ x3, x3 ∧ x1, x1 ∧ x2).

We have seen that f has no self-dual subnetwork. So it satisfies the conditions of Theorem 1, but not the
conditions of Shih-Dong’s theorem, since Gf(000) and Gf(111) have a cycle:

x 000 001 010 011 100 101 110 111

Gf(x)

2

1

3 2

1

3 2

1

3 2

1

3 2

1

3 2

1

3 2

1

3 2

1

3

However, f satisfies the condition of Corollary 2 (there is 0 < 21 point x with a cycle of length at most 1;
0 < 22 point x such that Gf(x) has a cycle of length at most 2, and 2 < 23 points x such that Gf(x) has
a cycle of length at most 3).

Now, consider the following “extension” h : B5 → B5 of f :

h(x1, x2, x3, x4, x5) = (x2 ∧ x3, x3 ∧ x1, x1 ∧ x2, 0, 0) = (f(x1, x2, x3), 0, 0)

Using the fact that f has no self-dual subnetwork, it’s easy to see that h has no self-dual subnetwork. So
h satisfies the conditions of Theorem 1. But it does not satisfy the conditions of Corollary 2. Indeed, there
exists 23 points x such that Gh(x) has a cycle of length at most 3:

x 00000 00001 00010 00011 11100 11101 11110 11111

Gh(x)

3

5

2

1
4

3

5

2

1
4

3

5

2

1
4

3

5

2

1
4

3

5

2

1
4

3

5

2

1
4

3

5

2

1
4

3

5

2

1
4

5 Remarks on asynchronous state graphs
In the following definition, we associate with f : Bn → Bn a directed graph on Bn, called the asyn-
chronous state graph of f , which has been proposed by Thomas (1973) as a model for the dynamics of
gene networks; see also Thomas and d’Ari (1990).

Definition 7 (Asynchronous state graphs) The asynchronous state graph of f is the directed graph Γ(f)
defined by: the vertex set is Bn, and for every x, y ∈ Bn, there exists an arc x → y if and only if there
exists i ∈ [n] such that y = x⊕ ei and fi(x) 6= xi.
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Remark that Γ(f) and f share the same information. Remark also that for every i ∈ [n] and α ∈ B,
Γ(f iα) is isomorphic to the subgraph of Γ(f) induced by the set of points x ∈ Bn such that xi = α.
Indeed: for every x, y ∈ Bn,

x−i → y−i is an arc of Γ(f iα) ⇐⇒ ∃j 6= i such that y−i = x−i ⊕ ej and f iαj (x−i) 6= xj

⇐⇒ ∃j 6= i such that yiα = xiα ⊕ ej and fj(xiα) 6= xj

⇐⇒ xiα → yiα is an arc of Γ(f).
(?)

Corollary 3 If f has no even or odd self-dual subnetwork, then f has a unique fixed point x, and for all
y ∈ Bn, Γ(f) contains a directed path from y to x of length ||x⊕ y||.

By the definition of Γ(f), a path from x to y cannot be of length strictly less than ||x⊕ y||; a path from
x to y of length ||x⊕ y|| can thus be seen has a shortest path.

Proof of Corollary 3: by induction on n. The case n = 1 is obvious, so suppose that n > 1 and that
the corollary holds for the dimensions less than n. Let f : Bn → Bn, and suppose that f has no even or
odd self-dual subnetwork. By Theorem 1, f has a unique fixed point x. Let y ∈ Bn. Suppose first that
there exists i ∈ [n] such that xi = yi = 0. Then x−i is the unique fixed point of f i0. So, by induction
hypothesis, Γ(f i0) has a path from y−i to x−i of length ||x−i⊕ y−i||. Since xi = yi = 0, we deduce from
(?) that Γ(f) has a path from y to x of length ||x−i ⊕ y−i|| = ||x ⊕ y||. The case xi = yi = 1 is similar.
So, finally, suppose that y = x⊕ 1. Since y is not a fixed point, there exists i ∈ [n] such that fi(y) 6= yi.
Then, Γ(f) has an arc from y to z = y ⊕ ei. So zi = xi, and as previously, we deduce that Γ(f) has a
path from z to x of length ||x ⊕ z||. This path together with the arc y → z forms a path from y to x of
length ||x⊕ z||+ 1 = ||x⊕ y||. 2

According to (?), the asynchronous state graph of each subnetwork of f is a subgraph of asynchronous
state graph of f induced by an hypercube contained in Bn. Hence, one can see the asynchronous state
graphs of the subnetworks of f as “dynamical modules” of asynchronous state graph of f . The previous
corollary shows that if f has no even or odd self-dual subnetwork, then the asynchronous state graph of f
is “simple”: it describes a “weak convergence” toward a unique fixed point. An interpretation is then that
the asynchronous state graphs of even and odd self-dual networks are “dynamical modules” that
are necessary for the “emergence” of “complex” asynchronous behaviors.

Example 3 (Continuation of Example 1) Take again the 3-dimensional network f defined in Example 1,
which has no self-dual subnetwork. The asynchronous state graph Γ(f) of f is the following:

x f(x) f̃(x)
000 000 000
001 100 101
010 001 011
011 001 010
100 010 110
101 100 001
110 010 100
111 000 111

011 111

110

101001

100000

010
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In agreement with Corollary 3, there exists, from any initial point, a shortest path leading to the unique
fixed point of f (the point 000): the asynchronous state graph describes a “weak asynchronous conver-
gence” (by shortest paths) toward a unique fixed point. However, Γ(f) has a cycle (of length 6), so every
path does not lead to the unique fixed point: the condition “has no even or odd self-dual subnetworks”
does no ensure a “strong asynchronous convergence” toward a unique fixed point.

6 Remarks on positive and negative cycles
In this section, we show that positive (negative) circular networks, i.e. Boolean networks whose the
global interaction graph reduces to a positive (negative) cycle, are simple instances of even (odd) circular
networks. From this fact and existing results about positive and negative cycles, we will see that natural
ideas of generalizations of Theorem 1 arise, but that none of these generalizations is true.

Let us begin with additional definitions. A signed directed graph is a directed graph in which each
arc is either positive, negative or unsigned. In such a graph, a cycle is positive (negative) if it contains
an unsigned arc or an even (odd) number of negative arcs (a directed cycle may be both positive and
negative).

Definition 8 (Global interaction graph) The global interaction graph of f : Bn → Bn is the signed
directed graph G(f) defined by: the vertex set is [n], and for all i, j ∈ [n], there exists an arc i → j
if and only if fi(xj1) 6= fi(x

j0) for at least one x ∈ Bn; and an arc j → i of G(f) is: positive if
fi(x

j1) ≥ fi(x
j0) for all x ∈ Bn; negative if fi(xj1) ≤ fi(x

j0) for all x ∈ Bn; and unsigned in the
other cases.

Remark that G(f) has an arc j → i if and only if fi depends on the jth variable xj (and that fi(xj1) 6=
fi(x

j0) if and only if fij(x) = 1).

Definition 9 (Positive and negative circular networks) f is a positive (negative) circular network if
G(f) is a positive (negative) cycle.

The dynamics of positive and negative circular networks has been widely studied; see Remy et al.
(2003) and Demongeot et al. (2010). Here, we prove that they are simple instances of even and odd
self-dual networks.

Proposition 2 Every positive (negative) circular network is even (odd) and self-dual.

Proof: Let f be a circular network. Without loss of generality, suppose that the n arcs of G(f) are
i + 1 → i for all i ∈ [n]; n + 1 being identified to 1 (here and in the rest of the proof). Then fi depends
only on xi+1, so either fi(x) = xi+1 (and i + 1 → i is positive), or fi(x) = xi+1 ⊕ 1 (and i+ 1 → i is
negative); in the first case, we set si = 0, and in the second case, we set si = 1 (so that fi(x) = xi+1⊕ si
in both cases). Let s = (s1, . . . , sn) ∈ Bn. By construction, f is positive if ||s|| is even, and negative if
||s|| is odd. Furthermore,

f(x) = (x2, x3, . . . , xn, x1)⊕ s ∀x ∈ Bn.

Hence

f(x⊕ 1) = (x2 ⊕ 1, . . . , xn ⊕ 1, x1 ⊕ 1)⊕ s = (x2, . . . , xn, x1)⊕ 1⊕ s = f(x)⊕ 1.



10 Adrien Richard

So f is self-dual. Also, we have f̃(x) = x ⊕ (x2, . . . , xn, x1) ⊕ s so the parity of f̃(x) is the parity of
||x||+ ||(x2, . . . , xn, x1)||+ ||s||. Since ||x|| = ||(x2, . . . , xn, x1)||, we deduce that the parity of f̃(x) is the
parity of ||s||. So if f is positive (negative) then the image of f̃ only contains even (odd) points.

It remains to prove that if f is positive (negative) then each even (odd) point is in the image of f̃ .
Suppose that f is positive (negative), and let z be an even (odd) point of Bn. Let x ∈ Bn be recursively
defined by

x1 = zn, xi+1 = zi ⊕ si ⊕ xi for all i ∈ [n− 1].

Then, for every i ∈ [n− 1], we have

f̃i(x) = xi ⊕ fi(x) = xi ⊕ xi+1 ⊕ si = xi ⊕ (zi ⊕ si ⊕ xi)⊕ si = zi.

If remains to prove that f̃n(x) = zn. By the definition of x, we have

xn = (zn−1 ⊕ sn−1)⊕ xn−1
= (zn−1 ⊕ sn−1)⊕ (zn−2 ⊕ sn−2)⊕ xn−2
...
= (zn−1 ⊕ sn−1)⊕ (zn−2 ⊕ sn−2)⊕ · · · ⊕ (z1 ⊕ s1)⊕ zn
= (z1 ⊕ z2 ⊕ · · · ⊕ zn)⊕ (s1 ⊕ s2 ⊕ · · · ⊕ sn−1).

So z and (s1, s2, . . . , sn−1, xn) have the same parity, and since z and s have the same parity, we deduce
that xn = sn. Thus f̃n(x) = xn ⊕ fn(x) = sn ⊕ x1 ⊕ sn = x1 = zn, and we deduce that f̃(x) = z. So
f is even (odd) self-dual. 2

Remark 1 There are 2n−1! n-dimensional even (odd) self-dual networks, but “only” (n − 1)!2n−1 n-
dimensional positive (negative) circular networks. Since 2n−1! = (n − 1)!2n−1 for n = 1, 2, we deduce
that every one or two-dimensional even (odd) self-dual network is a positive (negative) circular network.

Since the class of positive and negative circular networks is contained in the class of even and odd self-
dual networks, it is natural to think about the following generalization of Theorem 1: if f has no positive
or negative circular networks, then f has a unique fixed point. However, this is false, as showed by the
following example. Hence, Theorem 1 becomes false if “has no even or odd self-dual subnetwork” is
replaced by “has no positive or negative circular subnetwork”.

Example 4 f : B4 → B4 is defined by

f1(x) = (x2 ∧ x3 ∧ x4) ∨ ((x2 ∨ x3) ∧ x4)
f2(x) = (x3 ∧ x1 ∧ x4) ∨ ((x3 ∨ x1) ∧ x4)
f3(x) = (x1 ∧ x2 ∧ x4) ∨ ((x1 ∨ x2) ∧ x4)
f4(x) = (x2 ∧ x3 ∧ x1) ∨ ((x2 ∨ x3) ∧ x1)
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The table of f and f̃ , and the asynchronous state graph of f are as follow:

x f(x) f̃(x)
0000 0000 0000
0010 1000 1010
0100 0010 0110
0110 0011 0101
1000 0100 1100
1010 1001 0011
1100 0101 1001
1110 0001 1111
0001 1110 1111
0011 1010 1001
0101 0110 0011
0111 1011 1100
1001 1100 0101
1011 1101 0110
1101 0111 1010
1111 1111 0000 1000

0010 1010

0100

0110 1110

1100

0001

0101

0111 1111

1101

1011

1001

0011

0000

One can see that f is even self-dual. The immediate subnetworks of f are the following:

f10(x2, x3, x4) = (x3 ∧ x4, x2 ∨ x4, x2 ∧ x3)

f11(x2, x3, x4) = (x3 ∨ x4, x2 ∧ x4, x2 ∨ x3)

f20(x1, x3, x4) = (x3 ∨ x4, x1 ∧ x4, x3 ∧ x1)

f21(x1, x3, x4) = (x3 ∧ x4, x1 ∨ x4, x3 ∨ x1)

f30(x1, x2, x4) = (x2 ∧ x4, x1 ∨ x4, x2 ∧ x1)

f31(x1, x2, x4) = (x2 ∨ x4, x1 ∧ x4, x2 ∨ x1)

f40(x1, x2, x3) = (x2 ∧ x3, x3 ∧ x1, x1 ∧ x2) (as in Examples 1-3)
f41(x1, x2, x3) = (x2 ∨ x3, x3 ∨ x1, x1 ∨ x2)

Proceeding as in Example 1, one can check that none immediate subnetwork of f has a self-dual subnet-
work (actually, it is sufficient to check this for each f i0 since f i1(x) = f i0(x⊕ 1)⊕ 1, 1 ≤ i ≤ 4). So f
has no circular strict subnetwork, and since f is not circular, f has no circular subnetwork, but it has not
a unique fixed points. Note that for 1 ≤ i ≤ 4, the 4-dimensional network h defined by h(x) = f(x)⊕ ei
is odd self-dual, has no circular subnetwork, and no fixed point.

Now, consider the following three fundamental theorems about cycles and fixed points (the last two the-
orems result from two conjectures of Thomas; see Remy et al. (2008); Richard (2010) and the references
therein).

Theorem 3 (Robert (1980)) If G(f) has no cycle, then f has a unique fixed point.

Remark 2 Clearly, each local interaction graph Gf(x) is a subgraph of the (unsigned version of the)
global interaction graph G(f). Hence, the condition “G(f) has no cycle” of Robert’s theorem is (much
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more) stronger than the condition “Gf(x) has no cycle for every x” of Shih-Dong’s Theorem. Conse-
quently, Shih-Dong’s theorem is a generalization of Robert’s theorem. Thus, Theorem 1 is also a general-
ization of Robert’s theorem.

Remark 3 Actually, Robert proved, in Robert (1980) and Robert (1995), that if G(f) has no cycle, then
f has a unique fixed point x and: (1) the synchronous iteration xt+1 = f(xt) converges toward x in
at most n steps for every initial point x0 ∈ Bn; (2) every path of Γ(f) leads to x in at most n steps
(“strong asynchronous convergence by shortest paths toward a unique fixed points”). These results shows
the necessity of cycles for obtaining “complex” synchronous or asynchronous behaviors (e.g. multiple
fixed points, cyclic attractors, long transient phases...).

Theorem 4 (Remy et al. (2008)) If G(f) has no positive cycle, then f has at most one fixed point.

Remark 4 Actually, by saying that an arc j → i of Gf(x) is positive if fi(xj1) > fi(x
j0) and negative

if fi(xj1) < fi(x
j0), Remy et al. (2008) proved the following more general statement: if Gf(x) has no

positive cycle for all x ∈ Bn, then f has at most one fixed point.

Theorem 5 (Richard (2010)) If G(f) has no negative cycle, then f has at least one fixed point.

Hence, Theorems 4 and 5 give a nice proof “by dichotomy” of Robert’s theorem: the absence of posi-
tive cycle gives the uniqueness, and absence of negative cycle gives the existence. Seeing the relationship
between positive (negative) circular networks and even (odd) self-dual networks, one may ask if a “proof
by dichotomy” occurs for Theorem 1, i.e., if the absence of even self-dual subnetwork gives the unique-
ness, and if the absence of odd self-dual network gives the existence. The following example shows that
both cases are false. Hence: if f has no even (odd) self-dual subnetworks, than it has not necessarily
at most (at least) one fixed point.

Example 5 f : B3 → B3 is defined by

f1(x) = (x1 ∧ (x2 ∨ x3)) ∨ (x2 ∧ x3)

f2(x) = (x2 ∧ (x3 ∨ x1)) ∨ (x3 ∧ x1)

f3(x) = (x3 ∧ (x1 ∨ x2)) ∨ (x1 ∧ x2)

The table of f and f̃ , and the asynchronous state graph of f are as follow:

x f(x) f̃(x)
000 000 000
001 110 111
010 101 111
011 100 111
100 011 111
101 010 111
110 001 111
111 111 000

011 111

110

101001

100000

010
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f is self-dual, but not even since ||f(001)|| is odd. The immediate subnetworks of f are:

f10(x2, x3) = (x2 ∧ x3, x3 ∧ x2)

f11(x2, x3) = (x2 ∨ x3, x3 ∨ x2)

f20(x1, x3) = (x1 ∧ x3, x3 ∧ x1)

f21(x1, x3) = (x1 ∨ x3, x3 ∨ x1)

f30(x1, x2) = (x1 ∧ x2, x2 ∧ x1)

f31(x1, x2) = (x1 ∨ x2, x2 ∨ x1)

So each f iα is not circular, and according to Remark 1, it is not even and self-dual. Furthermore, each
strict subnetwork h of f iα is either constant or defined by h(0) = 1 and h(1) = 0 (in the second case,
h is odd and self-dual). So f iα has no strict even self-dual subnetwork. We deduce that f has no even
self-dual subnetwork. But it has two fixed points.

Now consider the network f : B3 → B3 is defined by

f1(x) = x2

f2(x) = x3

f3(x) = (x3 ∧ (x1 ∨ x2)) ∨ (x1 ∧ x2)

The table of f and f̃ , and the asynchronous state graph of f are as follow:

x f(x) f̃(x)
000 110 110
001 101 100
010 011 001
011 001 010
100 110 010
101 100 001
110 010 100
111 001 110

011 111

110

101001

100000

010

f is self-dual, but not odd since ||f(000)|| is even. The immediate subnetworks of f are:

f10(x2, x3) = (x3, x3 ∨ x2)

f11(x2, x3) = (x3, x3 ∧ x2)

f20(x1, x3) = (1, x3 ∧ x1)

f21(x1, x3) = (0, x3 ∨ x1)

f30(x1, x2) = (x2, 1)

f31(x1, x2) = (x2, 0)

So each f iα is not circular, and according to Remark 1, it is not odd and self-dual. Furthermore, each
strict subnetwork h of f iα is either constant or defined by h(0) = 0 and h(1) = 1 (in the second case,
h is even and self-dual). So f iα has no strict odd self-dual subnetwork. We deduce that f has no odd
self-dual subnetwork. But it has no fixed point.
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A A short proof of the theorem of Shih and Dong
The “trick” consists in proving, by induction on n, the following more general statement:

(∗) If Gf(x) has no cycle for all x ∈ Bn, then the conjugate of f is a bijection (so that f has
a unique fixed point).

The case n = 1 is obvious, so suppose that n > 1 and that (∗) holds for the dimensions less than n.
Suppose that Gf(x) has no cycle for all x ∈ Bn. Let i, j ∈ [n − 1], and x ∈ Bn such that xn = 0. We
have

fn0ij (x−n) = fn0i (xj1−n)⊕ fn0i (xj0−n) = fi(x
j1)⊕ fi(xj0) = fij(x).

So Gfn0(x−n) is the subgraph of Gf(x) induced by [n − 1], and thus, it has no cycle. We deduce that
fn0 satisfies the conditions of (∗). Thus, by induction hypothesis, the conjugate of fn0 is a bijection. We
prove with similar arguments that f̃ i0 and f̃ i1 are bijections for all i ∈ [n].

Now, suppose, by contradiction, that f̃ is not a bijection. Then, there exists two distinct points x, y ∈ Bn
such that f̃(x) = f̃(y). Let us proved that x = y ⊕ 1. Indeed, if xi = yi = α for some i ∈ [n], then
f̃ iα(x−i) = f̃(x)−i = f̃(y)−i = f̃ iα(y−i). Thus f̃ iα is not a bijection, a contradiction. So x = y ⊕ 1.
Since Gf(x) has no cycle, it contains at least one vertex of out-degree 0. In other words, there exists
i ∈ [n] such that f(xi1) = f(xi0). Thus f̃(xi1)−i = f̃(xi0)−i = f̃(x)−i. Hence, setting α = yi, we
obtain

f̃ iα(x−i) = f̃(xiα)−i = f̃(x)−i = f̃(y)−i = f̃(yi1)−i = f̃ i1(y−i).

So f̃ iα is not a bijection, a contradiction. Thus f̃ is a bijection and (∗) is proved.
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