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On death processes and urn models
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We use death processes and embeddings into continuous time in order to analyze several urn models with a dimin-
ishing content. In particular we discuss generalizations of the pill’s problem, originally introduced by Knuth and
McCarthy, and generalizations of the well known sampling without replacement urn models, and OK Corral urn
models.
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1 Introduction
1.1 Diminishing Pólya-Eggenberger urn models
In this work we are concerned with so-called Pólya-Eggenberger urn models, which in the simplest case of
two colors can be described as follows. At the beginning, the urn contains n white and m black balls. At
every step, we choose a ball at random from the urn, examine its color and put it back into the urn and then
add/remove balls according to its color by the following rules: if the ball is white, then we put α white and
β black balls into the urn, while if the ball is black, then γ white balls and δ black balls are put into the urn.
The values α, β, γ, δ ∈ Z are fixed integer values and the urn model is specified by the transition matrix
M =

( α β
γ δ

)
. Models with r (≥ 2) types of colors can be described in an analogous way and are specified

by an r × r transition matrix. Urn models are simple, useful mathematical tools for describing many
evolutionary processes in diverse fields of application such as analysis of algorithms and data structures,
and statistical genetics. Due to their importance in applications, there is a huge literature on the stochastic
behavior of urn models; see for example [10, 11, 18]. Recently, a few different approaches have been
proposed, which yield deep and far-reaching results [1, 4, 5, 8, 9, 19]. Most papers in the literature
impose the so-called tenability condition on the transition matrix, so that the process of adding/removing
balls can be continued ad infinitum. However, in some applications, examples given below, there are urn
models with a very different nature, which we will refer to as “diminishing urn models.” Such models
have recently received some attention, see for example [21, 22, 2, 20, 4, 6]. For simplicity of presentation,
we describe diminishing urn models in the case of balls with two types of colors, black and white. We
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consider Pólya-Eggenberger urn models specified by a transition matrix M =
( α β
γ δ

)
, and in addition we

also specify a set of absorbing states A ⊆ N × N. The evolution of the urn takes place in the state space
S ⊆ N × N. The urn contains m black balls and n white balls at the beginning, with (m,n) ∈ S, and
evolves by successive draws according to the transition matrix until an absorbing state inA is reached, and
the process stops. Diminishing urn models with more than two type of balls can be considered similarly.

1.2 Plan of this note and notation
There are numerous examples of diminishing urns and related problems in literature. In the following
we present three concrete problems, the pills problem urn model, the sampling without replacement urn
model, and the OK Corral urn model, and summarize known results. For all three problems presented
below, and suitable generalization of them, we will use stochastic processes and an embedding of the
discrete time process of drawing and adding/removing balls in continuous time, in order to unify and
extend the known results in the literature concerning exact distribution laws, generalizing some results
of [2, 7, 15, 21, 12, 13, 17, 20, 4], trying to provide a lucid derivation. We will denote with X ⊕ Y the
sum of independent random variable X and Y . Moreover, we use the notations N = {1, 2, 3, . . . } and
N0 = {0, 1, 2, . . . }.

1.3 The pills problem and generalizations
Consider the diminishing urn problem with transition matrix given by M =

(−1 0
1 −1

)
, state space S =

N0 × N, and the absorbing axis A = {(0, n) | n ∈ N}. Following Knuth and McCarthy [14], a vivid
interpretation is as follows: An urn has two types of pills in it, which are single-unit and double-unit pills,
respectively. At every step, we pick a pill uniformly at random. If a single-unit pill is chosen, then we eat
it up, and if the pill is of double unit, we break it into two halves—one half is eaten up and the other half
is now considered of single unit and thrown back into the urn. The question is then, when starting with n
single-unit pills and m double-unit pills, what is the probability that k single-unit pills remain in the urn
when all double-unit pills are drawn? This problem was first posed in [14], where the authors asked for a
formula for the expected number of remaining single-unit pills, when there are no double-unit pills in the
urn. The solution appeared in [3]. A more refined study was given by Brennan and Prodinger [2], where
they derive exact formulæ for the variance and the third moment of the number of remaining single-unit
pills; furthermore, a few generalizations are proposed. The probability generating functions and limit laws
for the pills problem and a variant of the problem have been derived in [7] using a generating functions
approach. Furthermore, a study of the arising limiting distributions of a general class of related problems
has been carried out in [15] using a recursive approach basically guessing the structure of the moments,
together with an application of the so-called method of moments. However, some cases proved to be quite
elusive using the techniques of [15]. Moreover, no simple explicit general formula for the probability
mass function of the random variable of interest was obtain before. We will provide the solution for the
general pills problem urn model of [15] with ball transition matrix given by M =

(−α 0
γ −δ

)
, γ = α · p,

p ∈ N0. Furthermore, we will discuss weighted generalizations of the pills problem, and also discuss
extensions to higher dimensional pills problem urn models, with r × r-transition matrix similar to

M =



−1 0 0 ··· 0 0 0

1 −1 0
. . .

. . .
. . . 0

0 1 −1
. . .

. . .
. . . 0...

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . . −1 0 0

0
. . .

. . .
. . . 1 −1 0

0 0 0 ··· 0 1 −1


; (1)
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Note that the matrix stated above is the natural generalization of the pills problem ball transition matrix
to dimension r ≥ 2.

1.4 Sampling without replacement and generalizations
This classical example, often serving as a toy model, corresponds to the urn with transition matrix M =(−1 0

0 −1
)
, state space S = N0 × N, and absorbing axis A = {(0, n) | n ∈ N0}. In this model, balls are

drawn one after another from an urn containing balls of two different colors and not replaced. What is the
probability that k white balls remain when all black balls have been removed, starting with n white and
m black balls? This simple urn model has been discussed in [7] using generating functions. Moreover,
generalizations of the sampling urn model have been discussed in [15, 16]. We will show that this urn
model can be considered as a degenerate case of the pills problem, and that the solution for the generalized
pills problem urn model also covers the sampling without replacement urn model.

1.5 The OK Corral urn model
The so-called OK Corral urn serves as a mathematical model of the historical gun fight at the OK Corral.
This problem was introduced by Williams and McIlroy in [22] and studied recently by several authors
using different approaches, leading to very deep and interesting results; see [21, 12, 13, 17, 20, 4]. Also
the urn corresponding to the OK corral problem can be viewed as a basic model in the mathematical
theory of warfare and conflicts; see [13, 17].

In the diminishing urn setting the OK corral problem corresponds to the urn with transition matrix
M =

(
0 −1
−1 0

)
, state space S = N × N, and two absorbing axes: A = {(0, n) | n ∈ N} ∪ {(m, 0) |

m ∈ N}. An interpretation is as follows. Two groups of gunmen, group A and group B (with n and
m gunmen, respectively), face each other. At every discrete time step, one gunman is chosen uniformly
at random who then shoots and kills exactly one gunman of the other group. The gunfight ends when
one group gets completely “eliminated”. Several questions are of interest: what is the probability that
group A (group B) survives, and what is the probability that the gunfight ends with k survivors of group
A (group B)? This model was analyzed by Williams and McIlroy [22], who obtained a result for the
expected value of the number of survivors. Using martingale arguments and the method of moments
Kingman [12] gave limiting distribution results for the OK Corral urn model for the total number of
survivors. Moreover, Kingman [13] obtained further results in a very general setting of Lanchester’s
theory of warfare. Kingman and Volkov [17] gave a more detailed analysis of the so-called balanced OK
Corral urn model using a connection to the famous Friedman urn model; amongst others, they derived
an explicit result for the number of survivors and even local limit laws. Puyhaubert [20] extended in his
Ph. D. thesis the results of [12, 17] on the balanced OK Corral urn model using analytic combinatoric
methods concerning the number of survivors of a certain group. His study is based on the connection
to the Friedman urn showed in [17]. He obtained explicit expression for the probability distribution, the
moments, and also reobtained (and refined) most of the limiting distribution results reported earlier. Some
results of [20] where reported in the work of Flajolet et al. [4]. Apparently unknown to the previously
stated authors was the earlier work of Stadje [21], who obtained several limiting distribution results for
the generalized OK Corral urn, as introduced below, and also for related urn models with more general
transition probabilities. In [21] the probability distributions for the most general transition probabilities
are determined by a complex integral, but without any proof. The results of Stadje were then discussed
in [16], and their connection to sampling without replacement urn models with general weight sequences
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uncovered, and a duality relation proved. Despite all the mentioned works and results, no transparent
probabilistic derivation of the general results of [21, 16] were given before.

2 Probabilistic analysis of the pill’s problem urn models
We are interested in a generalized pill’s problem with ball transition matrix given by

M =
(−α 0
γ −δ

)
, (2)

where α, β ∈ N, and γ = α · p, p ∈ N0. Let Xn,m denote the random variable counting the number of
remaining white balls (divided by α) when all black balls have been drawn. The probability generating
function hn,m(v) = E(vXn,m) satisfies the recurrence relation

hn,m(v) =
αn

αn+ δm
hn−1,m(v) +

δm

αn+ δm
hn+p,m−1(v), (3)

with hn,0 = vn, n ≥ 1. We analyze Xn,m using a continuous time embedding. We start at time zero
with n white balls and m black balls, and use two independent linear processes. The first one consists
of n independent ordinary death processes (white balls) with death rate α. Let Wn(t) denote the random
variable counting the number of living white balls at time t, with Wn(0) = n. The second one (black
balls) consists of m independent modified death processes, with rate δ, where each black ball gives at his
death birth to p new white balls with death rate α, independent of all other balls, and p ∈ N0. We denote
with Bm(t) the random variable counting the number of living black balls at time t, with Bm(0) = m.
Finally, let Cm(t) denote the random variable counting the number of surviving white balls up to time t,
which are children of black balls. Let τ = inft>0{Bm(t) = 0} be the time when the black balls die out.
Then

Xn,m =Wn(τ)⊕ Cm(τ),

both random variables are independent, due to the construction. One readily obtains the recurrence re-
lation for the probability generating function hn,m(v) by looking at the time when the first particle dies.
It is well known that the index of the variable achieving the minimum out of r independent exponential
distributed random variables X1, . . . , Xr with parameters λ1, . . . , λr, is given by

P{Xk = min{X1, . . . , Xr}} =
∫ ∞
0

( d
dt

(1− e−λkt
)∏
j=1
j 6=k

e−λjtdt =
λk

λ1 + · · ·+ λk
.

Hence, we note that the probability that any of the type one balls dies first is given by αn
αn+δm , and the

opposite case happens with probability δm
αn+δm . Moreover, if p new white balls with death rate α are being

born, they can be grouped with the already existing white balls, due to the memorylessness of exponential
distributions. This leads directly to (3).

Due to the construction of the two processes the random variablesWn(t) andCm(t) can be decomposed
themselves into sums of i. i. d. random variables,

Wn(t) =

n⊕
k=1

Xk(t), Cm(t) =

m⊕
k=1

Yk(t)
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where Xk(t) denotes the indicator variable of the k-th white ball living at time t, 1 ≤ k ≤ n, and Yk(t)
denote the random variable counting the number of surviving white balls up to time t, which are children
of the k-th black ball, 1 ≤ k ≤ m.

The probability generating function of a single white ball at time t with rate δ is given by

E(vXk(t)) = P{Xk(t) = 0}+ vP{Xk(t) = 1} = 1− e−αt + ve−αt.

so the probability generating function of the total number of white balls living at time t is given by

E(vWn(t)) =

n∏
k=1

E(vXk(t)) =
(
1 + (v − 1)e−αt

)n
,

due to the independence assumption. The probability generating function of Yk(t), assuming that the
black ball dies before time t, is given by∫ t

0

( d
du

(1− e−δu)
)
· (1 + (v − 1)e−α(t−u))pdu =

∫ t

0

δe−δu · (1 + (v − 1)e−α(t−u))pdu,

due to the fact that p independent white balls are being born at the death of the black ball. Consequently,
the probability generating function of the children of the m − 1 black balls, dying before time t, and the
corresponding number of surviving child balls up to time t is given by(∫ t

0

δe−δu · (1 + (v − 1)e−α(t−u))pdu
)m−1

.

Furthermore, the density of the last remaining black ball is given by δ · e−δt, giving birth to p more
surviving white balls. Moreover, this final ball can be any one out the m balls. Alltogether, considering
all possible final death times t, or more precisely by conditioning on the stopping time τ we obtain for the
probability generating function hn,m(v) = E(vXn,m) the following result.

Theorem 1 For arbitrary α, δ ∈ N and p ∈ N0, the probability generating function of the random
variable Xn,m counting the number of remaining white balls (divided by α) when all black balls have
been drawn, M =

(−α 0
γ −δ

)
, γ = α · p, is given by

hn,m(v) =

∫ ∞
0

(
1 + (v − 1)e−αt

)n · (∫ t

0

δe−δu · (1 + (v − 1)e−α(t−u))pdu
)m−1

· vpmδe−δtdt.

The results above unify and extend the known results of [7]. Moreover, it allows to largely extend the
results of [15] concerning the structure of the moments, as stated below, and also to give a complete
analysis of the limit laws. Note that by setting p = 0 one also gets the probability generating function
for a certain generalized sampling without replacement urn model. From the result above we will derive
a closed formula for the s-th factorial moment E(X̃s

n,m) of X̃n,m = Xn,m − p, for α 6= δ such that
α` − δ 6= 0; the special case α = δ has already been treated in [7]. Note that the factorial moments
E(Xs

n,m) of Xn,m are recovered using the binomial theorem for the falling factorials

E(Xs
n,m) = E

(
(X̃n,m + p)s

)
=

s∑
`=0

(
s

`

)
E(X̃`

n,m)ps−`.
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Theorem 2 The factorial moments of the random variable X̃n,m = Xn,m − p are given in terms of a
generalized beta integral,

E(X̃s
n,m) = δm−1s!

s∑
j=0

(
n

j

) ∑
∑p
`=0 k`=m−1,

∑p
`=0 `k`=s−j

k`≥0

(
m− 1

k0, . . . , k`

) ∏p
`=0

(
p
`

)k`∏p
`=0(`α− δ)k`

×
∫ 1

0

q
αj
δ +m−1

p∏
`=0

(1− q α`δ −1)k`dq.

In particular, we obtain for p = 1 the simple expression

E(X̃s
n,m) = s!

s∑
`=0

(
n
`

)(
m
s−`
)(

α
δ − 1

)s−` s−∑̀
i=0

(−1)s−`−i
(
s−`
i

)(m−s+`+i+α
δ (s−i)

m−s+`
) .

Our starting point is the following expression for E(X̃s
n,m):

E(X̃s
n,m) = EvD

s
v

hn,m(v)

vp
,

where Ev denotes the operator which evaluates at v = 1, and Dv the differentiation operator. By the
binomial theorem we have∫ t

0

δe−δu · (1 + (v − 1)e−α(t−u))pdu = δ

p∑
`=0

(
p

`

)
(v − 1)`

e−tδ − e−α`t

`α− δ
.

Consequently, using the multinomial theorem, we obtain(∫ t

0

δe−δu · (1 + (v − 1)e−α(t−u))pdu
)m−1

= δm−1
∑

k0+···+kp=m−1
k`≥0

(
m− 1

k0, . . . , kp

) p∏
`=0

(
p

`

)k`
(v − 1)`k`

(e−tδ − e−α`t)k`
(`α− δ)k`

.

Using (
1 + (v − 1)e−αt

)n
e−δt =

n∑
j=0

(
n

j

)
(v − 1)je−(αj+δ)t,

we get

E(X̃s
n,m) = δm

n∑
j=0

(
n

j

) ∑
k0+···+kp=m−1

k`≥0

(
m− 1

k0, . . . , kp

) ∏p
`=0

(
p
`

)k`∏p
`=0(`α− δ)k`

EvD
s
v(v − 1)j+

∑p
`=0 `k`

×
∫ ∞
t=0

e−(αj+δ)t
p∏
`=0

(e−tδ − e−α`t)k`dt.
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Since

EvD
s
v(v − 1)j+

∑p
`=0 `k` =

{
s!, j +

∑p
`=0 `k` = s,

0, j +
∑p
`=0 `k` 6= s,

we get the simpler expression

E(X̃s
n,m) = δms!

s∑
j=0

(
n

j

) ∑
∑p
`=0 k`=m−1,

∑p
`=0 `k`=s−j

k`≥0

(
m− 1

k0, . . . , kp

) ∏p
`=0

(
p
`

)k`∏p
`=0(`α− δ)k`

×
∫ ∞
t=0

e−(αj+δ)t
p∏
`=0

(e−tδ − e−α`t)k`dt.

Now we use the substitution q = e−δt in order to convert the integral above into a beta-function type
integral, which proves our result.

2.1 Higher dimensional urn models
One can readily extend the 2× 2 transition matrix (2) to higher dimensions,

M =



−α1 0 0 ··· 0 0 0

p2α1 −α2 0
. . .

. . .
. . . 0

0 p3α2 −α3

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . . −αr−2 0 0

0
. . .

. . .
. . . pr−1αr−2 −αr−1 0

0 0 0 ··· 0 prαr−1 −αr


,

with αi ∈ N and pi ∈ N0. We consider the distribution of the random vector Xn = (X
[1]
n , . . . , X

[r−1]
n ),

which counts the number of type 1 up to type r−1 pills when all pills of r units are all taken, starting with
ni pills of i units, i = 1, . . . , r. One may use similar arguments to the 2× 2 case to obtain the following
result.

Theorem 3 The probability generating function of Xn is given by

hn(v) =

∫ ∞
0

(
gr(t,v)

)nr−1
vprr−1αrnre

−αrt
r−1∏
`=1

(
f`(t,v)

)n`dt.
Here fj(t,v) denotes a sequence of functions defined by f0(t,v) = 1, and

fj(t,v) = vje
−αjt +

∫ t

0

αje
−αjuj

(
fj−1(t− uj ,v)

)pj
duj , j ≥ 1,

with gj(t,v) = fj(t,v)− vje−αjt.

Note that the result above can be further generalized to r × r ball transition matrices M = (mi,j) with
entries −αi, 1 ≤ i ≤ r, and entries mi,j = −αi, for 1 ≤ i = j ≤ r, mi,j = pi,j · αj for 1 ≤ i < j ≤ r
and pi,j ∈ N0, and mi,j = 0 for 1 ≤ j < i ≤ r.
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2.2 General weight sequences
One may also obtain the result for Xn,m using a slightly different probabilistic model. Our first process
still consists of n independent ordinary death processes (white balls) with death rate α. However, con-
cerning the second process, we consider a single modified death processB(t) with death rates θm, . . . , θ1,
starting with B(0) = m. Note that for θk = δ · k, we reobtain our earlier results. At each transition of
B(t) exactly p white balls are being born, modeled by p independent ordinary death processes (white
balls) with death rate α. Consequently, one obtains the alternative description

hn,m(v) =

∫ ∞
0

(
1 + (v − 1)e−αt

)n · pm(t, v)dt.

where pm(t, v) denotes density of B(t) dying out before time t, with variable v marking the living white
balls at time t,

pm(t, v) =
d

dt

(∫ t

0

θme
−θmum(1 + (v − 1)e−α(t−um))p∫ t−um

0

θm−1e
−θm−1um−1(1 + (v − 1)e−α(t−um−um−1))p . . .

. . .

∫ t−
∑m
`=2 u`

0

θ1e
−θ1u1(1 + (v − 1)e−α(t−

∑m
`=1 u`))pdu1 . . . dum

)
.

(4)

For θk = δ · k, the nested integrals simplify and we reobtain our earlier result. Note that the general case
corresponds to a biased pills problem urn model, first described in [16]: assuming that the urn contains
n white and m black balls, the probability of choosing a white ball is given by n/(n + θm), whereas
the probability of choosing a black ball is given by θm/(n + θm). Similar to the standard model with
transition matrix (2), a chosen white ball will be discarded, and a chosen black ball will be discarded, but
p additional white balls are added to the urn. One gets the following recurrence for P{Xm,n = k}:

P{Xm,n = k} = n

n+ θm
P{Xm,n−1 = k}+ θm

n+ θm
P{Xm−1,n+c = k},

with initial values P{X0,n = n} = 1, for n ∈ N0.

3 Probabilistic analysis of sampling without replacement and OK
Corral type urn models

We will generalize the sampling without replacement urns, and OK Corral urn models by analyzing two
urn models associated to sequences of positive real numbers A = (αn)n∈N and B = (βm)m∈N. The
dynamics of the discrete time process of drawing and replacing balls is as follows: At every discrete time
step, we draw a ball from the urn according to the number of white and black balls present in the urn, with
respect to the sequences (A,B), subject to the two models defined below. The choosen ball is discarded
and the sampling procedure continues until one type of balls is completely drawn.

Urn model I (Sampling without replacement with general weights). Assume that nwhite andm black balls
are contained in the urn, with arbitrary n,m ∈ N. A white ball is drawn with probability αn/(αn + βm),
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and a black ball is drawn with probability βm/(αn + βm). Additionally, we assume for urn model I that
α0 = β0 = 0.

Urn model II (OK Corral urn model with general weights). For arbitrary n,m ∈ N assume that n white
and m black balls are contained in the urn. A white ball is drawn with probability βm/(αn + βm), and a
black ball is drawn with probability αn/(αn + βm).

The absorbing states, i.e. the points where the evolution of the urn models stop, are given for both urn
models by the positive lattice points on the the coordinate axes {(0, n) | n ≥ 1}∪{(m, 0) | n ≥ 1}. These
two urn models generalize two famous Pólya-Eggenberger urn models with two types of balls, namely
the classical sampling without replacement (I), and the so-called OK-Corral urn model (II), described in
detail below. We are interested in a probabilistic derivation of the distribution of the random variable
Xn,m, counting the number of white balls, when all black balls have been drawn. In order to simplify the
analysis we note that there only exists a single one urn model.

Lemma 1 ([16]) Let P{Xn,m,[A,B,I] = k} denote the probability that k white balls remain when all
black balls have been drawn in urn model I with weight sequences A = (αn)n∈N, B = (βm)m∈N
and P{Xn,m,[Ã,B̃,II] = k} the corresponding probability in urn model II with weight sequences Ã =

(α̃n)n∈N, B̃ = (β̃m)m∈N. The probabilities P{Xn,m,[A,B,I] = k} and P{Xn,m,[Ã,B̃,II] = k} are dual to
each other, i.e. they are related in the following way.

P{Xn,m,[A,B,I] = k} = P{Xn,m,[Ã,B̃,II] = k},

for αn = 1
α̃n

, βm = 1
β̃m

, n,m ∈ N, and k > 0.

Without loss of generality, we will restrict ourselves to the urn model I. Note that the recurrence relation
for the probability generating function hn,m(v) = E(vXn,m) of Xn,m is given by

hn,m(v) =
αn

αn + βm
hn−1,m(v) +

βm
αn + βm

hn,m−1(v), n,m ≥ 1, (5)

with initial values hn,0(v) = vn, h0,m(v) = 1 n,m ≥ 0. For the sake of simplicity will assume in the
following that αj 6= α` and βj 6= β`, 1 ≤ j < ` <∞.

3.1 Probabilistic embedding

We use a probabilistic approach, embedding the discrete-time model into a continuous-time model. The
basic idea is as follows. We consider two independent death processes X(t), and Y (t), which stop at 0.
Their death rates are defined using the weight sequences, A = (αn)n∈N, B = (βm)m∈N: the death rates
of X(t), starting with X(0) = n are αn, . . . , α1, and the death rates of Y (t), starting with Y (0) = m are
βm, . . . , β1. For the sake of convenience we set β0 = 0. We can model the random variable Xn,m of urn
model I by looking at the distribution of Cn,m = X(τ), starting with X(0) = n, where τ denotes the
time of the process Y (t) dying out, τ = inf{t > 0 : Y (t) = 0}. By conditioning on the first transition of
the two processes one directly obtains the recurrence relation (5) for E(vCn,m), which proves that Xn,m

and Cn,m have the same distribution. Now things are simple. The probability that the process X(t) = k,
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is according to the definition given by the iterated integral

P{X(t) = k} =
∫ t

0

αne
−αnun

∫ t−un

0

αn−1e
−αn−1un−1 . . .

. . .

∫ t−un−···−uk+2

0

αk+1e
−αk+1uk+1 · eαk(t−un−···−uk+2−uk+1)duk+1 . . . dun.

This integral can be evaluated,

P{X(t) = k} =
( n∏
h=k+1

αh

) n∑
h=k

e−αht∏n
j=k
j 6=h

(αj − αh)
, (6)

which can easily be checked by induction; here we need the assumptions that αj 6= α` and βj 6= β`,
1 ≤ j < ` < ∞. Note that a different integral representation holds true for general weight sequences.
This result above is covered in standard textbooks or lecture notes, its derivation is usually based on the
Kolomogorov equation and an application of the Laplace transform. The exact distribution of τ is given
by

P{τ < t} =
∫ t

0

βme
−βmumdum

∫ t−um

0

βm−1e
−βm−1um−1 . . .

∫ t−um−···−u2

0

β1e
−β1u1du1 . . . dum.

One obtains the closed formula

P{τ < t} = 1 +

( m∏
`=1

β`

) m∑
`=1

e−β`t∏m
i=0
i 6=`

(βi − β`)
,

using the convention β0 = 0. Hence, then density function of the stopping time τ is given by

d

dt
P{τ < t} =

( m∏
`=1

β`

) m∑
`=1

e−β`t∏m
i=1
i 6=`

(βi − β`)
. (7)

Considering all possible times when the second process dies out leads to the integral representation

P{Xn,m = k} =
∫ ∞
0

d

dt
P{τ < t}P{X(t) = k}dt

=

( m∏
`=1

β`

)( n∏
h=k+1

αh

) n∑
h=k

m∑
`=1

1∏m
i=1
i6=`

(βi − β`)
∏n
j=k
j 6=h

(αj − αh)

∫ ∞
0

e−(β`+αh)tdt

=

( m∏
`=1

β`

)( n∏
h=k+1

αh

) n∑
h=k

m∑
`=1

1

(β` + αh)
∏m
i=1
i6=`

(βi − β`)
∏n
j=k
j 6=h

(αj − αh)
.

(8)
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The result above can be simplified in two different ways using the partial fraction identities

1∏n
j=k(αj + x)

=

n∑
h=k

1

(x+ αh)
∏n
j=k
j 6=h

(αj − αh)
,

1∏m
i=1(βi + x)

=

n∑
`=1

1

(x+ β`)
∏m
i=1
i6=`

(βi − β`)
.

(9)

Consequently, we obtain a transparent probabilistic proof of the following result.

Theorem 4 ([16]) The probability mass function of the random variable Xn,m, counting the number
of remaining white balls when all black balls have been drawn in urn model I with weight sequences
A = (αn)n∈N, B = (βm)m∈N, is for n,m ≥ 1 and n ≥ k ≥ 1 given by the explicit formula

P{Xn,m = k} =
( m∏
h=1

βh

)( n∏
h=k+1

αh

) m∑
`=1

1(∏n
j=k(αj + β`)

)(∏m
i=1
i6=`

(βi − β`)
)

=
( m∏
h=1

βh

)( n∏
h=k+1

αh

) n∑
`=k

1(∏n
j=k
j 6=`

(αj − α`)
)(∏m

i=1(βi + α`)
) ,

assuming that αj 6= α` and βj 6= β`, 1 ≤ j < ` <∞, and that α0 = 0.

It can be shown that the result above is also valid for k = 0. Moreover, by the duality of the two urn
models, one also gets the corresponding result for the urn model II, OK-Corral type urn models, by
switching to weight sequences, Ã = (1/αn)n∈N, B̃ = (1/βm)m∈N.

3.2 Sums of independent exponential random variables

Of course, the formulas (6), (7) stated before do not come as a surprise, since one can take yet another
viewpoint. The time τ until the second process Y (t) dies out has the same distribution as the sum of m
independent exponential distributed random variables εβi with parameters βm, . . . , β1 stemming from the
death rates of the process. Hence,

τ =

m⊕
`=1

εβ` ,

where εβi denotes an exponential distribution with parameter βi, and the density is simply the formula
stated in (7). Furthermore, the distribution of X(t) can also be modeled by k independent random vari-
ables: let

θ =

n⊕
`=k+1

εα` .
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If X(t) = k, then the k transitions of the process X have occurred before t, and no more transition
afterwards. Hence,

P{X(t) = k} = P{θ < t, θ + εαk > t} =
∫ t

0

( n∏
h=k+1

αh

) n∑
h=k+1

e−αhu∏n
j=k+1
j 6=h

(αj − αh)
e−αk(t−u)du

=

n∑
h=k+1

(∏n
h=k+1 αh

)
e−αht∏n

j=k
j 6=h

(αj − αh)
+

n∑
h=k+1

(∏n
h=k+1 αh

)
e−αkt

(αh − αk)
∏n
j=k+1
j 6=h

(αj − αh)

which simplifies to (6) after an application of (9).
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[5] P. Flajolet, J. Gabarró, and H. Pekari. Analytic urns. Annals of Probability, 33:1200–1233, 2005.

[6] P. Flajolet and T. Huillet. Analytic combinatorics of the mabinogion urn. Discrete mathematics
and Theoretical Computer Science (DMTCS), Proceedings of Fifth Colloquium on Mathematics and
Computer Science: Algorithms, Trees, Combinatorics and Probabilities, 2008.

[7] H. K. Hwang, M. Kuba, and A. Panholzer. Analysis of some exactly solvable diminishing urn mod-
els. Proceedings of the 19th International Conference on Formal Power Series and Algebraic Com-
binatorics, Nankai University, Tianjin, 2007. available at http://dmg.tuwien.ac.at/kuba/urnsub.pdf.

[8] S. Janson. Functional limit theorems for multitype branching processes and generalized pólya urns.
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