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Upper bounds on the non-3-colourability
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We present a full analysis of the expected number of ‘rigid’ 3-colourings of a sparse random graph. This shows
that, if the average degree is at least 4.99, then asn → ∞ the expected number of such colourings tends to 0 and
so the probability that the graph is 3-colourable tends to 0. (This result is tight, in that with average degree 4.989
the expected number tends to∞.) This bound appears independently in Kaporiset al. [14]. We then give a minor
improvement, which shows in particular that the probability that the graph is 3-colourable tends to 0 if the average
degree is at least 4.989.
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1 Introduction
We are concerned with the 3-colourability of sparse random graphs. We consider theGn,m model (also
known as theuniform model), wherem = ⌈θn/2⌉. This consists of all graphs with vertex setVn =

{1,2, . . . ,n} which havem edges, where each of these graphs occurs with probability
((n

2)
m

)−1
. Note

that the expected degree of a vertex isθ+o(1) asn→ ∞. We say that a graph property holdsasymptoti-
cally almost surely(aas) if the probability that the random graph of ordern has this property tends to 1 as
n→ ∞.

The threshold for non-2-colourability (that is, for the existence of an odd circuit) is well understood,
and is not sharp, see for example the recent survey of Molloy [18]. Fork > 2 our understanding of
k-colourability is less complete. Letχ(G) denote the chromatic number of a graphG. Erdős in [9, 3]
asked whether for eachk ≥ 3 there exists a constantθk such that for anyε > 0, χ(Gn,m) ≤ k aas when
m≤ (θk/2−ε)n, andχ(Gn,m) > k aas whenm≥ (θk/2+ε)n. Note thatθk would specify a critical average
degree for the random graph. In the case of 3-colourability, the experiments in [13] suggest thatθ3 ≃ 4.6.

Recently Achlioptas and Friedgut [1] gave a partial answer to the above question. They showed that for
each fixedk≥ 3, there exists a functiondk(n) such that for anyε > 0, χ(Gn,m) ≤ k aas whenm= m(n) ≤
(

dk(n)
2 − ε

)

n, andχ(Gn,m) > k aas whenm≥
(

dk(n)
2 + ε

)

n. It is widely believed that limn→∞ dk(n) exists,

but confirming this conjecture and determining the limitθk seems challenging. Let

θ−k = liminf
n→∞

dk(n) = sup{θ > 0 : χ(Gn,⌈θn/2⌉) ≤ k aas},

and
θ+

k = limsup
n→∞

dk(n) = inf{θ > 0 : χ(Gn,⌈θn/2⌉) > k aas}.
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Thenθ−k ≤ θ+
k and the two are equal if and only if the answer to the question of Erdős is positive.

Let us return to the casek = 3. There are many results concerning lower bounds onθ−3 ; in other words
showing that for a certain value ofθ, we haveχ(Gn,m)≤ 3 aas ifm= m(n)≤ θn/2, and soθ−3 ≥ θ (see [18]
for a survey on this topic).

There are fewer results concerning upper bounds onθ+
3 , which is our interest here. These upper bounds

are based on the following idea. For each graphG onVn let C (G) denote the set of all proper 3-colourings
of G using colours 1, 2, 3 ; and letC ′(G) ⊆ C (G) satisfyC ′(G) 6= /0 wheneverC (G) 6= /0. We call such a
family of colouringsadequate. Let us denote|C ′(G)| by C′(G): we shall adopt such notation throughout
the paper. By Markov’s inequality,

P(χ(Gn,m) ≤ 3) ≤ E[C′(Gn,m)]. (1)

Of course equality holds here ifC′(G) ≤ 1 always. The aim is to find a small adequate family which is
simple enough to handle, and then to use (1) to yield an upper bound onθ+

3 .
When we consider all possible 3-colourings, that is we takeC ′(G) = C (G) for eachG, we find that

E[C′(Gn,m)]→ 0 asn→ ∞ if θ = 5.41, and soθ+
3 ≤ 5.41. This basic first moment result was improved by

Dunne and Zito in [8] toθ+
3 ≤ 5.2057 by considering a certain adequate family; and then further improved

by Achlioptas and Molloy [2] toθ+
3 ≤ 5.044 by considering a smaller adequate family, namely the ‘rigid’

3-colourings. The idea of considering such colourings came from the success of the method of ‘locally
maximum’ satisfying truth assignments in [15] for investigating the unsatisfiability threshold for random
3-SAT problems, see the survey [18].

Definition 1 A proper 3-colouring with stable sets S1,S2,S3 is called rigid if each vertex in S2 ∪S3 is
adjacent to some vertex in S1, and each vertex in S3 is adjacent to some vertex in S2.

The above bound from [2] was obtained independently by the authors in [11]. [In much earlier work [17],
Molloy and Reed took a different approach to improving the basic boundθ+

3 ≤ 5.41: they showed that a
random graph of average degree at least 5.142 is aas not 3-colourable by proving that the 3-core of such
a random graph is aas not 3-colourable. We do not follow that approach here.] In recent work, Kaporiset
al. [14] give a tighter estimate of the expected number of rigid 3-colourings, and obtainθ+

3 ≤ 4.99. We
obtained this result independently and concurrently (see [11]), and present here a more complete analysis
of the expected number of rigid 3-colourings, which shows in particular that the last bound cannot be
improved, in the sense that with average degree 4.989 the expected number of rigid 3-colourings tends to
∞.

Now, let us introduce our central theorem. Letm= ⌈θn/2⌉. For a graphG, let R (G) denote the set of
rigid 3-colourings ofG, and letR(G) denote the cardinality of this set. Forθ in an interval[θl ,θu], and
for x in a domainD = D(θ) ⊆ [0,1]3, we shall introduce a functionh(x,θ) (defined in (18) below), and
let µ(θ) = supx∈D h(x,θ).

Theorem 1.1 There exist positive real numbersθ0 < θ1 such that:

1. The function µ(θ) is continuous on[θ0,θ1], and for everyθ∈ [θ0,θ1]

E [R(Gn,m)] = 2µ(θ)n+O(logn), (2)

where m= ⌈θn/2⌉. Moreover, µ(θ0) > 0 and µ(θ1) < 0.

2. We have
4.9893< θ0 < θ1 < 4.9895. (3)

In the above theorem as well as in what follows, the symbol log always refers to binary logarithm. In order
to prove this result, one half of the battle is to show (2), and the other half is to show (3). The main step
in proving (3) is to show that forθ = 4.9895, we haveµ(θ) < 0. This involves considerable computation:
we are more explicit about this side of matters than has been the custom in previous papers in this area.
From the previous theorem and the Markov inequality (1) we obtain
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Corollary 1.2 Letθ = 4.9895and m= ⌈θn/2⌉. Then there existsδ> 0 such thatP [χ(Gn,m) ≤ 3]≤ 2−δn,
for n sufficiently large.

Therefore,θ+
3 ≤ 4.9895. Working from the foundation provided by Theorem 1.1, we may try to improve

the bound onθ+
3 in different ways. One way involves an adequate subfamily of the rigid 3-colourings,

the “Ψ-gadget-free” rigid 3-colourings - see the brief discussion in Section 7. A second way involves
considering the number of non-trivial tree components, and using the observation that any non-trivial tree
has at least two rigid 3-colourings: this approach is described in Section 6 below, and yields the following
theorem.

Theorem 1.3 Letθ= 4.98887and m= ⌈θn/2⌉. Then there existsδ> 0 such thatP [χ(Gn,m) ≤ 3]≤ 2−δn,
for n sufficiently large.

Similar results can be deduced for theGn,p model. In this model, againVn = {1,2, . . . ,n} is the set of
vertices, but now each of the

(n
2

)

possible edges appears independently with probabilityp. We find that
if θ = 4.98887 andp = θ/n, then there exists aδ > 0 such thatP[χ(Gn,p) ≤ 3] ≤ 2−δn, for n sufficiently
large.

The main steps in the proof of Theorem 1.1 are as follows. We first give an exact formula forE[R(G∗
n,m)],

whereG∗
n,m is a slight variation of theGn,m model; see Lemma 2.1 below. We show that we can discard

the ‘tails’ of the sum that appears there, and give good approximations to the remaining ‘central’ terms.
These terms involve probabilitiesp(k,α,n,θ), which are investigated in Section 3. The probabilities can
be written as a sum, where the summands involve binomial coefficients and certain ‘balls-and-bins’ prob-
abilities. Again we show that we can discard the tails in the sums, and give good approximations to the
remaining central terms, now involving Stirling numbers of the second kind. We use known asymptotic
expressions for these Stirling numbers, thus expressing the summands as terms like 2h(x,θ)n . This yields
an approximation forE[R(G∗

n,m)] as 2µ(θ)n+O(logn) (see (22) below) and we then obtain (2). This part of
the proof is completed in Section 4.

The remaining work to prove Theorem 1.1 is largely numerical, and is described in Section 5. The main
task is to show that forθ = 4.9895, we haveµ(θ) < 0. We show that, for this specificθ, h(x,θ) is concave
over its domainD. We find numerically a first approximation for a point which gives the maximum value
of h inside this area. We define a very fine grid in a box around this point, and find a grid pointx̂ where
the maximum value ofh on the grid is attained. Then, we determine an upper bound forh on the surface
of the box (by computing values ofh and its partial derivatives on a fine grid and using concavity). We
find that this bound is less than the value ofh at x̂, and so we deduce that the box contains the maximum
of h overD. Further computations handle the region inside the box.

After completing the proof of Theorem 1.1 as described above, in Section 6 we prove Theorem 1.3, and
then we make some brief concluding remarks in Section 7. Some details from earlier proofs are given in
the Appendices.

2 Starting the proofs
For the sake of simplicity, we carry out the probability calculations in theG∗

n,m model. In this model,
we form the random graph by choosing at randomm times, each time independently, uniformly and with
replacement, an edge out of the

(n
2

)

possible 2-subsets ofVn = {1, . . . ,n}. We ignore any repetitions of an
edge, so the random graph may have less thanmedges. Our results transfer easily to theGn,m model - see
Lemma 4.3 below. Every probability, unless otherwise stated, is meant to be taken over theG∗

n,m model.
Let

D = {(k,α) : 0≤ k≤ 1, 0≤ α ≤ k},
and for each positive integern let

D(n) = D∩ 1
n

Z
2.

For each(k,α) ∈ D we defineφ(k,α) = k(1−α)− (k−α)2.
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Let C (n) be the set of all 3-colourings ofVn, i.e. the set of all possible mappings fromVn into {1,2,3},
or equivalently the set of all partitions ofVn into three setsS1, S2 andS3 (some of them possibly empty).
Also, for each positive integern and each(k,α) ∈ D(n), let C (k,α,n) denote the set of all partitions ofVn

into three setsS1,S2,S3, where|S1| = αn and|S1|+ |S2| = kn. Let

p(k,α,n,m) = P[Sis rigid| Sis proper], (4)

whereS∈ C (k,α,n). Note that the above quantity depends only on the sizes of the independent sets
induced byS. Recall thatR(G) denotes the number of rigid 3-colourings ofG.

Lemma 2.1 For all positive integers n and m with0 < m≤
(n

2

)

,

E[R(G∗
n,m)] = (1− 1

n
)−m ∑

(k,α)∈D(n)

(

n
kn

) (

kn
αn

)

(2φ(k,α))m p(k,α,n,m).

Proof. By the linearity of the expected value, we have

E[R(G∗
n,m)] = ∑

S∈C (n)

P[S is rigid]

= ∑
S∈C (n)

P[S is rigid|Sis proper] ·P[Sis proper]. (5)

Let us take a fixed colouringS with stable setsS1,S2,S3, wheres1 = |S1| = αn, s2 = |S2| = βn and
s3 = |S3| = γn, and wherek = α +β. Set

e(S) = s1s2 +s1s3 +s2s3.

Hence,

e(S)

n2 = (αβ +βγ+γα) = φ(k,α).

Thus,

P[Sis proper] =

(

e(S)
(n

2

)

)m

= (2φ(k,α))m
(

1− 1
n

)−m

.

Now notice that the familyC (k,α,n) consists of exactly
( n

kn

)

·
(kn

αn

)

colourings. So, rephrasing the sum in
(5) in terms ofk andα we obtain the following:

E[R(G∗
n,m)] = ∑

S∈C (n)

P[S is rigid]

=

(

1− 1
n

)−m

∑
(k,α)∈D(n)

(

n
kn

) (

kn
αn

)

(2φ(k,α))m p(k,α,n,m).

✷

The above lemma is our starting point. We next check that in Lemma 2.1 we may ignore the extreme
values ofα andk. We will split the sum there into two pieces. Let

D1 = {(k,α) : α ≥ 0.2, k≤ 0.8, k−α ≥ 0.2} (6)

(which corresponds toα,β,γ≥ 0.2); and let D(n)
1 = D1∩ 1

nZ
2. Moreover, doing some elementary calcula-

tions, we obtain the following:



Upper bounds on the non-3-colourability threshold of random graphs 209

Lemma 2.2 The functionφ(k,α) is continuous and concave onD, for each(k,α) ∈ D we have0 ≤
φ(k,α) ≤ 1/3, and

sup
(k,α)∈D\D1

φ(k,α) = 0.32,

min
(k,α)∈D1

φ(k,α) = 0.28.

Let

S1 = (1− 1
n
)−m ∑

(k,α)∈D(n)
1

(

n
kn

) (

kn
αn

)

(2φ(k,α))m p(k,α,n,m), (7)

and let

S2 = (1− 1
n
)−m ∑

(k,α)∈D(n)\D(n)
1

(

n
kn

) (

kn
αn

)

(2φ(k,α))m p(k,α,n,m),

so that by Lemma 2.1
E[R(G∗

n,m)] = S1 +S2. (8)

We will see that the second ‘error’ term here is negligible for the relevant values ofm; and then we may
focus on the first term.

Lemma 2.3 Let 4.98≤ a ≤ b. Then there existδ > 0 and n0 ∈ N such that forθ ∈ [a,b], n≥ n0 and
m= ⌈θn/2⌉ we have:

S2 ≤ 2−δn.

Proof. By Lemma 2.2, we have
σ = sup

(k,α)∈D\D1

φ(k,α) = 0.32.

Thus, we have

S2 ≤ ∑
(k,α)∈D(n)\D(n)

1

(

n
kn

) (

kn
αn

) (

n
n−1

2φ(k,α)

)m

≤ 3n
(

n
n−1

2σ
) θn

2

=

(

n
n−1

)θn/2
(

3 (2σ)
θ
2

)n
= O

((

3 (2σ)θ/2
)n)

.

But 3 (0.64)
4.98

2 < 1, and the lemma follows. ✷

The following standard lemma on approximating binomial coefficients may be proved using Stirling’s
formula:

Lemma 2.4 Let0 < δ < 1/2. Then uniformly overδn≤ r ≤ (1−δ)n we have

(

n
r

)

= Θ(n−1/2)
(n

r

)r
(

n
n− r

)n−r

= Θ(n−1/2) 2H(r/n),

where H(x) = −xlogx− (1− x) log(1− x) for 0 ≤ x ≤ 1 (when x= 0 or x = 1, then H(x) = 0) is the
entropy function.

For m= ⌈θn/2⌉, we set
p(k,α,n,θ) = p(k,α,n,m) (9)

(the use of the same letterp should not cause confusion). Directly from the definition (7) and the last
lemma, we have:
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Lemma 2.5 Uniformly overθ in any interval[a,b] with a> 0,

S1 = Θ(n−1) ∑
(k,α)∈D

(n)
1

(

2H(k)+kH(α/k)(2φ(α,k))θ/2
)n

p(k,α,n,θ).

In the next section we consider the termp(k,α,n,θ).

3 Calculations for p(k,α,n,θ)

In this section, we derive an asymptotic formula forp(k,α,n,θ), which was defined in (9) to be equal to
P[S is rigid|S is proper], whereS∈ C (k,α,n), m= ⌈θn/2⌉ and we are working in theG∗

n,m model. See
Lemma 3.2 below.

For positive integerst ≥ r, we let p(t, r) denote the probability that, when we throwt balls uniformly
at random intor bins, each bin ends up non-empty. Consider(k,α) ∈ D(n). Let L(n) = L(n)(k,α,θ) =
{

λ : n(1−α)
m ≤ λ ≤ 1− n(1−k)

m

}

∩ ( 1
mZ). Then

p(k,α,n,θ) = ∑
λ∈L(n)

b(λm;m, p) p(λm,n(1−α)) p((1−λ)m,n(1−k)), (10)

where
p = 1− ((1−k)(k−α))/φ(k,α) (11)

andb(λm;m, p) is the probability that a random variable distributed according to the binomial distribution
Bi(m, p) is equal toλm. To see this, observe first that, conditioning onSbeing a proper 3-colouring, the
random variable that determines the number of edges betweenS1 andS2∪S3 is binomially distributed,
namely it is Bi(m, p), wherep is defined in (11). Once we have specified the number of edges between
S1 andS2∪S3 (and, therefore, the number of edges betweenS2 andS3 as well), the probability thatS is
rigid is exactly the probability that each vertex inS2∪S3 is adjacent to some vertex inS1 and each vertex
in S3 is adjacent to some vertex inS2. Note that for each edge, say, betweenS1 andS2∪S3, each vertex in
S2∪S3 has the same probability to be the endvertex of it. The same holds for the edges betweenS2 and
S3. Thus, we can think of this as a random throwing of balls into bins; each ball corresponding to an edge
and each bin corresponding to a vertex. Note that we have two independent such random experiments.
This observation yields (10).

3.1 Discarding the tails
We next check that we may discard the extreme values ofλ in (10). This is a technical exercise for which
we need one preliminary lemma.

Lemma 3.1 For positive integers t> r

t
2(t − r)

p(t −1, r) ≤ p(t, r) ≤ t
t − r

p(t −1, r).

Proof. LetW(t, r) be the set of all arrangements oft balls intor bins leaving no empty bins and letw(t, r)
be its cardinality. What we want to prove will follow from the following inequality:

rt
2(t − r)

w(t −1, r) ≤ w(t, r) ≤ rt
t − r

w(t −1, r). (12)

To prove (12), consider ordered pairs of balls and bins, i.e. ifT is the set of balls andR the set of bins,
take the Cartesian product of themP = T ×R. Each such pair(b,B), whereb∈ T andB∈ R, corresponds
to the fact that the ballb is in bin B. For each such pair arrange the remainingt −1 balls into ther bins
leaving no empty bins. Thus, we form the setW = {(p,w) : p∈ P, w∈W(t −1, r)}. Note that we have
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a surjective mapping from the setW onto the setW(t, r). Clearly,W is of cardinalityrtw(t −1, r). The
mapping induces a natural partition on this set and each of the parts, which is the set of pairs that are
mapped to a specific arrangement oft balls intor bins without leaving any empty bins, is of cardinality
equal to the number of balls which are not the only ball in their bin, which is at leastt − r and at most
2(t − r). Thus, (12) has been established. Therefore,

t
2(t − r)

w(t −1, r)
rt−1 ≤ w(t, r)

rt ≤ t
t − r

w(t −1, r)
rt−1 ,

and the lemma follows. ✷

For (k,α) ∈ D1, let

L1 = L1(k,α,θ) =

{

λ :
2(1−α)

θ
(1+0.24) ≤ λ ≤ 1− 2(1−k)

θ
(1+0.065)

}

, (13)

and let

L(n)
1 = L(n)

1 (k,α,θ) = L1∩ (
1
m

Z).

(The extra terms 0.24 and 0.065 here are to exclude extreme values which, as we shall see shortly, are
negligible, but which would cause awkwardness later.)

It is convenient to restrictθ to a range[θl ,θu], as we need to obtain approximations uniformly overθ.
We let

θl = 4.98 θu = 4.99. (14)

Lemma 3.2 Uniformly overθ∈ [θl ,θu] and(k,α) ∈ D(n)
1 ,

p(k,α,n,θ) = Θ(1) ∑
λ∈L

(n)
1

b(λm;m, p) p(λm,n(1−α)) p((1−λ)m,n(1−k)).

(Recall that p is defined in (11).)

Proof. Within the proof, let f (λ) be the general term in the sum in equation (10). We will compare
the term f (λ), for someλ which will be specified later, with the adjacent termf (λ − 1/m). Note that
f (λ) = b(λm;m, p)p(t, r)p(m− t, r ′), wherer = n(1−α) andr ′ = n(1−k), andt = λm.

We consider the “lower” tail first. Assume thatt = n(1− α) + ⌊ηn(1− α)⌋, for someη > 0. By
Lemma 3.1 we have

p(t −1, r)p(m− t +1, r ′) ≤ 2

(

t − r
t

) (

m− t +1
m− t +1− r ′

)

p(t, r)p(m− t, r ′).

Also

b(t −1;m, p) =
λm

m(1−λ)+1
1− p

p
b(t;m, p). (15)

Thus, we obtain

f

(

λ− 1
m

)

≤ 2

(

t − r
t

) (

m− t +1
m− t +1− r ′

)

λm
m(1−λ)+1

1− p
p

f (λ).

Using the fact that(k,α) ∈ D1, straightforward verification shows that forη = 0.25 and forn sufficiently
large the factor on the right hand side is less than 1/2 (in fact it is less than 0.45), for anyθ∈ [θl ,θu]. (This
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is the case because the factor is increasing with respect toη; see [10] for the details.) Therefore, the sum
of the terms fort from n(1−α) up ton(1−α)+ ⌊0.25(1−α)n⌋−1 can be bounded as follows:

n(1−α)+⌊0.25(1−α)n⌋−1

∑
t=n(1−α)

f
( t

m

)

≤ f

(

n(1−α)+ ⌊0.25(1−α)n⌋
m

)

,

by the geometric sum formula.
Following the same treatment, we can bound the other tail of the sum. Here, assume thatm− t =

n(1−k)+ ⌊η(1−k)n⌋. Thus,t = m−n(1−k)−⌊η(1−k)n⌋. From Lemma 3.1 and (15), we obtain

f (λ) ≤ t
t − r

2(m− t +1− r ′)
m− t +1

(1−λ)m+1
λm

p
1− p

f

(

λ− 1
m

)

.

Using the fact that(k,α) ∈ D1, one can see that forη = 0.07 and forn sufficiently large the factor on
the right hand side is less than 1/2 (in fact it is less than 0.49), for anyθ∈ [θl ,θu]. As in the previous case,
this expression is increasing with respect toη. Therefore, the sum of the terms fort from m−n(1−k)−
⌊0.07(1−k)n⌋+1 up to tom−n(1−k) can be bounded as follows:

m−n(1−k)

∑
t=m−n(1−k)−⌊0.07(1−k)n⌋+1

f
( t

m

)

≤ f

(

m−n(1−k)−⌊0.07(1−k)n⌋
m

)

,

by the geometric sum formula.
Now, the lemma follows from the above observations along with the fact that each term is non-negative,

which means that removing a few terms from the sum gives a lower bound on it. ✷

3.2 Introducing Stirling numbers of the second kind
For positive integerst ≥ r the Stirling number of the second kindS(t, r) is defined to be 1/r! times the
number of surjective functions from a set of cardinalityt to a set of cardinalityr. Thus

p(t, r) =
r!S(t, r)

rt .

Hence, we may rewrite Lemma 3.2 as follows:

Lemma 3.3 Uniformly overθ∈ [θl ,θu] and(k,α) ∈ D(n)
1 , we have:

p(k,α,n,θ) =

= Θ(1) ∑
λ∈L

(n)
1

( ⌈θn/2⌉
λ⌈θn/2⌉

)(

(1−k)(k−α)

φ(k,α)

)⌈ θn
2 ⌉(1−λ) (

1− (1−k)(k−α)

φ(k,α)

)λ⌈ θn
2 ⌉

×

(n(1−α))!S(λ⌈θn/2⌉,n(1−α))

(n(1−α))λ⌈ θn
2 ⌉

(n(1−k))!S((1−λ)⌈θn/2⌉,n(1−k))

(n(1−k))⌈
θn
2 ⌉(1−λ)

.

3.3 Asymptotics for Stirling numbers of the second kind
An essential part of our probability calculations involves asymptotic expressions for the Stirling numbers
of the second kind. We need some preliminary definitions and results, see for example [20].

For 0< u≤ 1 let
Eu(x) = 1−e−x−ux.

For 0< u < 1 let x0(u) be the unique positive root ofEu(x) = 0. (See Figure 1.) Note thatE1(x) has the
unique rootx = 0: we letx0(1) = 0. Thenx0(u) is a continuous function on(0,1], and

x0(u)+1−1/u > 0
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y=1-exp(-x)

 x 0

1

y

x

y=ux

Fig. 1: The functionx0(u)

for each 0< u < 1.
For 0< u < 1 let

f (u) =

(

1−u
x0(u)+1−1/u

)1/2

,

and let f (1) = 0. Then f is a continuous function on(0,1], and 0≤ f (u) ≤ 1 (see [7]). In Appendix A,
we give a positive lower bound onf (u).

It is shown in [20] that, for positive integerst > r,

S(t, r) = (ex0 −1)r(x0(u))−te−(t−r)(t − r)(t−r)
(

t
r

)

f (u)(1+ ε(t, r)), (16)

whereu = r/t and max0<r<t |ε(t, r)| → 0 ast → ∞.

3.4 The estimate
Recall that D1 andL1 are defined in (6) and (13) above. Let

D = D(θ) = {(k,α,λ) : (k,α) ∈ D1,λ ∈ L1(k,α,θ)}, (17)

and let

D(n) = D(n)(θ) = D ∩
(

(
1
n

Z
2)× (

1
m

Z)

)

= {(k,α,λ) : (k,α) ∈ D(n)
1 ,λ ∈ L(n)

1 (k,α,θ)}.

For θ∈ [θl ,θu] and(k,α,λ) ∈ D, let

P(k,α,λ,θ) = (1−k)−
θ
2 2

θ
2H(λ)

(

1−k
1−α

) λθ
2

(ex1 −1)(1−α) (ex2 −1)(1−k) (x1)
− λθ

2 (x2)
− θ

2 (1−λ) ×

e−
θ
2

(

λθ
2

) θλ
2
(

θ(1−λ)

2

)

θ(1−λ)
2

(

(1−k)(k−α)

φ(k,α)

) θ
2 (1−λ) (

1− (1−k)(k−α)

φ(k,α)

) λθ
2

,

wherex1 = x0

(

2(1−α)
θλ

)

andx2 = x0

(

2(1−k)
θ(1−λ)

)

. We shall prove the following lemma:
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Lemma 3.4 Uniformly overθ∈ [θl ,θu] and(k,α) ∈ D1, we have:

p(k,α,n,θ) = Θ(n−1/2) ∑
λ∈L

(n)
1

{P(k,α,λ,θ)}n .

Proof. In what follows, the “error” term⌈θn/2⌉− θn/2 yields aΘ(1) factor for each term of the sum

in Lemma 3.3, since(k,α) ∈ D(n)
1 . We use Lemma 2.4 to give asymptotic expressions for the binomial

coefficients. Note that since(k,α) ∈ D1 the assumptions of Lemma 2.4 are satisfied. This is also true for
the coefficient that involvesθ, sinceθ is assumed to be in a closed and bounded interval not containing 0.
Thus, using (16) and Stirling’s approximation for the factorials, Lemma 3.3 implies the following:

p(k,α,n,θ) = Θ(n−1/2) ∑
λ∈L

(n)
1

{

P′(k,α,λ,θ)
}n

,

where, forθ∈ [θl ,θu] and(k,α,λ) ∈ D,

P′(k,α,λ,θ) =

=
n(2−α−k)(1−α)(1−α)(1−k)(1−k)e−(2−α−k)

n
θ
2 (1−k)

θ
2

2
θ
2H(λ)

(

1−k
1−α

) λθ
2

×

n( θλ
2 +α−1) t(1−α,λθ/2) n( θ

2− θλ
2 −1+k) t(1−k,(1−λ)θ/2)×

f

(

2(1−α)

θλ

)

f

(

2(1−k)
θ(1−λ)

)

(1− p)
θ
2 (1−λ) p

λθ
2

=
(1−α)(1−α)(1−k)(1−k)e−(2−α−k)

(1−k)
θ
2

2
θ
2H(λ)

(

1−k
1−α

) λθ
2

f

(

2(1−α)

θλ

)

f

(

2(1−k)
θ(1−λ)

)

×

t(1−α,λθ/2) t(1−k,(1−λ)θ/2) (1− p)
θ
2 (1−λ) p

λθ
2 ,

where

t(x,y) = (ex0 −1)y (x0)
−x e−(x−y) (x−y)(x−y)

(

x
y

)y ( x
x−y

)(x−y)

,

wherex0 = x0(x/y) and wherep is defined in (11). Doing some calculations, we obtain:

P′(k,α,λ,θ) =

= (1−k)−
θ
2 2

θ
2H(λ)

(

1−k
1−α

) λθ
2

(ex1 −1)(1−α) (ex2 −1)(1−k) (x1)
− λθ

2 (x2)
− θ

2 (1−λ) e−
θ
2 ×

f

(

2(1−α)

θλ

)

f

(

2(1−k)
θ(1−λ)

) (

λθ
2

) θλ
2
(

θ(1−λ)

2

)

θ(1−λ)
2

(1− p)
θ
2 (1−λ) p

λθ
2

= P(k,α,λ,θ) f

(

2(1−α)

θλ

)

f

(

2(1−k)
θ(1−λ)

)

,

where x1 = x0

(

2(1−α)
θλ

)

and x2 = x0

(

2(1−k)
θ(1−λ)

)

. For the elementary but tedious calculations see Ap-

pendix B.
Also, note that by (27) in Appendix A, the monotonicity of the lower bound forf (u), whereu= 2(1−α)

θλ
or u = 2(1−k)

θ(1−λ) , and the fact that(k,α) ∈ D1, it follows that in both cases the functionf is at least

√

1− 2
5θ

x0
(

2
5θ
) ,
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and so the two factors includingf in the expression above yield aΘ(1) term. This concludes the proof of
the lemma. ✷

4 Proof of Theorem 1.1 and Corollary 1.2
Recall thatθl ,θu were introduced in (14) andD was defined in (17). Forθ∈ [θl ,θu] and(k,α,λ) ∈ D, let

h(k,α,λ,θ) = H(k)+kH
(α

k

)

+
θ
2
− θ

2
log(e)+

θ
2

log

(

θ
2

)

+
θ
2

(

−λ logλ− (1−λ) log(1−λ)+(1−λ) log(1−k)

+(1−λ) log(k−α)+λ logα +λ log(1−α)
)

+(1−k) log(ex2 −1)− θ
2
(1−λ) log(x2)−

θ(1−λ)

2
log(1−k)+

θ(1−λ)

2
log(1−λ)

+(1−α) log(ex1 −1)− λθ
2

log(x1)−
λθ
2

log(1−α)+
λθ
2

logλ, (18)

wherex1 = x0

(

2(1−α)
θλ

)

andx2 = x0

(

2(1−k)
θ(1−λ)

)

. (Recall that the functionx0(u) was defined at the start of

Subsection 3.3 ) We will prove the following:

Lemma 4.1 Uniformly overθ∈ [θl ,θu],

S1 = Θ(n−3/2) ∑
(k,α,λ)∈D(n)

2h(k,α,λ,θ)n.

Proof. Lemmas 2.5 and 3.4 imply that uniformly overθ∈ [θl ,θu]:

S1 = Θ(n−3/2) ∑
(k,α,λ)∈D(n)

(

2H(k) 2kH( α
k ) (2φ(k,α))

θ
2 P(k,α,λ,θ)

)n

= Θ(n−3/2) ∑
(k,α,λ)∈D(n)

(

2h(k,α,λ,θ)
)n

,

since for(k,α,λ) ∈ D,

2H(k) 2kH( α
k ) (2φ(k,α))

θ
2 P(k,α,λ,θ) =

= 2H(k) 2kH( α
k ) (2φ(k,α))

θ
2 2

θ
2H(λ) (1−k)−

θ
2

(

1−k
1−α

) λθ
2

(ex1 −1)(1−α) (ex2 −1)(1−k) ×

(x1)
− λθ

2 (x2)
− θ

2 (1−λ) e−
θ
2

(

λθ
2

) θλ
2
(

θ(1−λ)

2

)

θ(1−λ)
2

(1− p)
θ
2 (1−λ) p

λθ
2

= 2H(k) 2kH( α
k ) 2

θ
2 2

θ
2H(λ) ((1−k)(k−α))

θ
2 (1−λ) (α(1−α))

λθ
2 (1−k)−

θ(1−λ)
2 (1−α)−

λθ
2 ×

(ex1 −1)(1−α) (ex2 −1)(1−k) (x1)
− λθ

2 (x2)
− θ

2 (1−λ) e−
θ
2

(

λθ
2

) θλ
2
(

θ(1−λ)

2

)

θ(1−λ)
2

= 2h(k,α,λ,θ),

wherep is defined in (11). Hence, the lemma has been established. ✷

By the last lemma,

S1 = c(n,θ)

(

max
(k,α,λ)∈D(n)

{

2h(k,α,λ,θ)
}

)n

= c(n,θ) 2µ(θ,n)n, (19)
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wherec(n,θ) = Ω(n−3/2), c(n,θ) = O(n3/2) and

µ(θ,n) = max
(k,α,λ)∈D(n)

{h(k,α,λ,θ)}.

Let D(∞) = liminf D(n) and note that it is the set of rationals contained inD and, therefore, it is dense
inside it. Then, we have

lim
n→∞

µ(θ,n) = µ(θ) = sup
(k,α,λ)∈D(∞)

h(k,α,λ,θ) = max
(k,α,λ)∈D

h(k,α,λ,θ),

since for each fixedθ the functionh(k,α,λ,θ) is continuous onD, which is a compact subset ofR
3. In

fact, we can say a little more than this. We know thath(k,α,λ,θ) attains its maximum at an internal point
of D, sayx∗. Note that this is a stationary point and one can also see thath is differentiable onD and its
derivatives are continuous. The latter implies that for anyε > 0 there exists an open ballU containingx∗

where‖∇ h‖ < ε. Forn sufficiently large, there is a pointxn ∈ D(n) ∩U with

‖xn−x∗‖2 ≤
(

2

(

1
2n

)2

+

(

1
m

)2
)

≤
(

1
2

+
4

θ2
l

)

n−2,

and then

µ(θ,n) ≥ µ(θ)− ε
(

1
2

+
4

θ2
l

)1/2

n−1,

by the Mean Value Theorem. Hence,

sup
θ∈[θl ,θu]

n(µ(θ)−µ(θ,n)) = o(1).

This fact along with (19) imply the following:

Lemma 4.2 Uniformly overθ∈ [θl ,θu],

S1 = 2µ(θ)n+O(logn).

Sinceh(k,α,λ,θ) is continuous on its domainD, andh as a function ofθ is also continuous, the
functionµ(θ) is continuous as well. As we shall see later, forθ0 = 4.9893, we have

µ(θ0) > 0. (20)

The numerical investigation in the next section shows that

µ(θ2) < 0, (21)

for θ2 = 4.9895. By Lemma 2.3, there existsδ̃ > 0 such thatS2 = O
(

2−δ̃n
)

, uniformly overθ∈ [θl ,θu].

We setδ′ = min{δ̃,−µ(θ2)}. Let

θ1 = inf{θ≥ θ0 : µ(θ) ≤−δ′/2}.

Note that (20) and (21) imply thatθ0 < θ1 < θ2. Thus, we haveµ(θ1) =−δ′/2 andµ(θ)≥−δ′/2 for each
θ∈ [θ0,θ1]. Therefore, Lemma 4.2 implies that uniformly overθ∈ [θ0,θ1], we have

E[R(G∗
n,m)] = 2µ(θ)n+O(logn) +S2 = 2µ(θ)n+O(logn) +O

(

2−δ′n
)

= 2µ(θ)n+O(logn),

that is
E[R(G∗

n,m)] = 2µ(θ)n+O(logn). (22)

Now, to establish Theorem 1.1, i.e. to show that this result in fact is also true in theGn,m model, we
have to do a little more work. We prove the following:
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Lemma 4.3 Letθl ≤ b < ∞. Uniformly overθ∈ [θl ,b] we have

E[R(Gn,m)] = Θ(1) E[R(G∗
n,m)],

where m= ⌈θn/2⌉.
Proof. To see the one direction note that

E[R(G∗
n,m)] ≥ E[R(G∗

n,m)||E(G∗
n,m)| = m] P[|E(G∗

n,m)| = m] = E[R(Gn,m)] P[|E(G∗
n,m)| = m].

Here,E(G) denotes the set of edges of a graphG. Recall that ln(1−x) ≥− x
1−x ≥−2x, for 0≤ x≤ 1/2.

Hence, if 2m≤
(n

2

)

,

P[|E(G∗
n,m)| = m] =

m−1

∏
i=0

(

1− i
(n

2

)

)

≥ exp

(

−2

(m
2

)

(n
2

)

)

.

This expression is bounded away from 0 uniformly forθ in the closed interval[θl ,b].
The other direction is a little more tricky. To see this note as before that

P[S∈ R (Gn,m)] = P[S is proper forGn,m] P[S∈ R (Gn,m)|S is proper forGn,m].

By Lemma 2.2, we havee(S) = n2φ(k,α) ≥ 0.28n2, for a colouringS∈ C (k,α,n), where(k,α) ∈ D1,
whence we obtaine(S)/m2 ≥ η > 0, for someη (depending only onb). Thus (once 2m≤ e(S)),

(

1− m
e(S)

)m

= exp

(

m ln

(

1− m
e(S)

))

≥ exp(−2m2/e(S)) ≥ e−2/η .

Hence, for such anS, we have

P[S is proper forGn,m] =
e(S)
(n

2

)

e(S)−1
(n

2

)

−1
· · · e(S)−m+1
(n

2

)

−m+1

≥
((

e(S)
(n

2

)

)

(

1− m
e(S)

)

)m

≥ e−2/η
P[S is proper forG∗

n,m].

On the other hand,

P[S∈ R (Gn,m)|S is proper forGn,m] ≥ P[S∈ R (G∗
n,m)|S is proper forG∗

n,m],

since adding edges to a proper 3-colouring increases the probability that this is rigid. Therefore,

P[S∈ R (G∗
n,m)] ≤ e2/η

P[S∈ R (Gn,m)].

Finally, by Lemma 2.3, sinceθ≥ 4.98,

E[R(G∗
n,m)] = (1+o(1)) ∑

(k,α)∈D(n)
1

∑
S∈C (k,α,n)

P[S∈ R (G∗
n,m)]

≤ (1+o(1)) e2/η ∑
(k,α)∈D(n)

1

∑
S∈C (k,α,n)

P[S∈ R (Gn,m)]

≤ (1+o(1)) e2/η
E[R(Gn,m)].

✷

Thus, Lemma 4.3 along with (22) and inequalities (20) and (21) conclude the proof of Theorem 1.1.
Corollary 1.2 follows immediately.
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5 Numerical Computations
Let us quickly dispose of the easy result (20). As above, letθ0 = 4.9893. Also, we setk= 0.698,α = 0.362
andλ = 0.691. We find using Maple with 10 digits precision thath(k,α,λ,θ0) > 0. In fact, to one digit
it equals 5×10−6. Moreover, for the same values ofk, α andλ and forθ = 4.989, h(k,α,λ,θ) equals
7×10−5, to one digit, and soµ(4.989) > 0 (yielding the result stated in brackets in the abstract). These
values fork, α, λ were found using the Complex method [6]: for details of this and other computational
matters see [10].

To complete the proof of Theorem 1.1, and thus of Corollary 1.2, it remains to establish (21). Let
h= h(k,α,λ) = h(k,α,λ,θ2), where as aboveθ2 = 4.9895. Thenh is continuous overD, and we shall see
in Appendix C that it is strictly concave over the interior ofD. Thus, ifC ⊆ D andy ∈ C o (the interior
of C ) are such thath(y) > h(x) for everyx in the boundary ofC , thenh has a unique maximum pointx∗

overD andx∗ ∈ C o. Using concavity, we can estimate numerically where the maximum ofh is located,
and give an upper bound onh over this domain, as follows.

From an initial approximation to the maximum inD, using the Complex method [5] (see also [6]),
our attention is directed to the cubeC ⊆ D, where 0.6980≤ k ≤ 0.6981, 0.3622≤ α ≤ 0.3623 and
0.6910≤ λ ≤ 0.6911. Divide the surface of the cubeC into squares of sides= 5×10−6. For a square
centred ata, by the concavity ofh we obtain

h(b) ≤ h(a)+(s/
√

2)‖∇ h(a)‖

for each pointb in the square. By checking each square, we find thath(x) ≤−3.937721×10−5 for each
point x on the surface of the cubeC . But there is a pointy insideC with h(y) strictly greater than this
bound. More specifically, we may define a cubic grid insideC each cube having side equal to 5×10−6.
The maximum value we find by searching this grid is equal to−3.937414×10−5 and it is strictly greater
than the upper bound onh on the surface ofC . Sinceh is concave onD, it follows as noted above thath
attains its maximum overD insideC .

Now we obtain an upper bound onh insideC , using the aforementioned grid. By concavity, for each
pointb in the sub-cube with its centre located ata and edge of length equal tos, we have

h(b) ≤ h(a)+

√
3s
2

‖∇ h(a)‖.

By checking through each sub-cube, we find thath(x) is less than−3.9×10−5, for eachx ∈ C , and thus
for eachx ∈ D.

6 Proof of Theorem 1.3
Let t(G) denote the number of components of the graphG that are non-trivial trees (that is, trees with at
least one edge).

Lemma 6.1 For any t≥ 0 and any positive integers n and m with0≤ m≤
(n

2

)

,

P[χ(Gn,m) ≤ 3] ≤ 2−t
E[R(Gn,m)]+P[t(Gn,m) < t].

Proof. Any non-trivial tree has at least 2 rigid 3-colourings. Thus, for a graphG, if χ(G)≤ 3 andt(G)≥ t,
thenR(G) ≥ 2t . Hence,

1{χ(G)≤3}∩{t(G)≥t} ≤ 2−tR(G).

Now, we apply this result toGn,m and take expectations. We obtain:

P[(χ(Gn,m) ≤ 3)∧ (t(Gn,m) ≥ t)] ≤ 2−t
E[R(Gn,m)],

and the lemma follows. ✷
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Forθ > 0 let

τ(θ) =
∞

∑
t=2

θt−1e−tθtt−2

t!
,

andm= ⌈θn/2⌉. We shall use standard methods to prove:

Lemma 6.2 Letθ > 0. For anyε > 0 there existsδ1 > 0 such that

P[t(Gn,m) ≤ τ(θ)n− εn] = O(e−δ1n).

Proof. Let T be a tree on vertices 1, . . . , t, wheret is constant. Then

P[T is a component ofGn,m] =

( (n−t
2 )

m−t+1

)

((n
2)
m

)

=

(

θ
n

)t−1

e−θt (1+o(1)),

by standard approximations. Now we may multiply by
(n

t

)

tt−2 to see that the expected number of tree
components witht vertices inGn,m is (1+o(1)) nθt−1e−θttt−2/t!. Since the number of tree components
of Gn,m with at leastt vertices is at mostn/t, it follows that (see also [4] p.96):

E[t(Gn,m)] = n

(

∞

∑
t=2

θt−1e−θttt−2/t!

)

(1+o(1)) = n· τ(θ) (1+o(1)).

The following lemma will complete the proof, since ifG′ is obtained fromG by adding an edge and
deleting an edge then|t(G)− t(G′)| ≤ 2. ✷

The following lemma is a special case of Theorem 7.4 of [16].

Lemma 6.3 Let f be a function on graphs such that, if G′ is obtained from G by adding an edge and
deleting an edge, then| f (G)− f (G′)| ≤ c. Let µ= E[ f (Gn,m)]. Then for any x≥ 0

P[ f (Gn,m)−µ≥ x] ≤ exp
(

−2x2/mc2)

and
P[ f (Gn,m)−µ≤−x] ≤ exp

(

−2x2/mc2) .

Proof. Given anm-tuplex of distinct edges ofKn, let G(x) be the graph on{1, . . . ,n} with edges those
mentioned inx (ignoring the order), and let̃f (x) = f (G(x))/c. Then| f̃ (x)− f̃ (y)| ≤ 1 if x andy differ
in exactly one co-ordinate, or if they differ in exactly two co-ordinates and the values there are swapped.
Thus we may apply Theorem 7.4 of [16], see also Example 7.3 there. ✷

Therefore, settingx= τ(θ)n−εn, for someε > 0 which will be specified later, in Lemma 6.1, and using
also Lemmas 6.2, 4.2 and 4.3 along with equation (8) we obtain the following:

P [χ(Gn,m) ≤ 3] ≤ 2−nτ(θ)+εn
E [R(Gn,m)]+O

(

e−δ1n
)

= 2εn 2−nτ(θ)+Θ(1) (2nµ(θ)+O(logn) +S2)+O
(

e−δ1n
)

. (23)

We now fixθ = 4.98887.
From the proof of Lemma 2.3 we may see thatS2 ≤ 1, for n sufficiently large. We keep the definition

of the regionD unchanged. InsideD, we may perform numerical investigations similar to those in the
case of the rigid 3-colourings. We consider the same sub-cubeC as before, and find again thath(k,α,λ,θ)
attains its maximum insideC . We can check through the same family of sub-cubes and see that the
maximum valueµ(θ) of h(k,α,λ,θ) overD satisfiesµ(θ) > 0, butτ(θ)−µ(θ)≥ 10−5. Then by (23) with

ε = τ(θ)−µ(θ)
2 , we obtain:

P [χ(Gn,m) ≤ 3] ≤ 2−(ε+o(1))n +O
(

e−δ1n
)

.

Choosingδ < min{ε,δ1 loge}, we conclude the proof of Theorem 1.3.
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7 Concluding remarks
We considered the adequate family consisting of the rigid 3-colourings of a graph, and investigated care-
fully the expected number of such colourings in the random graphGn,m. We thus obtained an upper bound
on the non-3-colourability thresholdθ+

3 , which appears independently in [14]. We then improved this
upper bound slightly, by taking into account the number of non-trivial tree components.

Let us sketch now some related ideas that also will improve the upper bound slightly. When we consid-
ered the number of non-trivial tree components in Section 6, in the proof of Lemma 6.1 we used the fact
thatR(T)≥ 2 for any non-trivial treeT. We can be more precise; for exampleR(T)≥ 3 unlessT is a star.
By computing the value ofR(T) for each ‘small’ non-trivial tree (say those having at most 5 vertices), and
then following the general approach in Section 6, it is possible to obtain a slight improvement on Theorem
1.3 (see [10] for further details).

We may also consider an adequate subfamily of the rigid 3-colourings of a graphG, namely theleftmost
3-colourings. These are the proper 3-colouringsS1,S2,S3 where|S3| is minimal and, subject to this,|S2| is
minimal. Note that any such 3-colouring must be rigid and, further, this family is adequate. Unfortunately
it seems to be hard to study leftmost 3-colourings, but we can work with related families such as those
defined in terms of “Ψ-gadgets”.

Given a 3-colouringS1, S2, S3 of a graphG, a Ψ12-gadget is a component of the subgraph induced on
S1∪S2, which is a star with centre inS1 and at least 2 leaves (which must belong toS2). We may define
Ψ13- andΨ23-gadgets similarly. Call a rigid 3-colouringΨ-gadget freeif there are noΨ12 or Ψ13 or
Ψ23 gadgets. Note that these 3-colourings form an adequate family, since each leftmost 3-colouring is
Ψ-gadget free. By analysing such families of 3-colourings we may reduce the upper bound onθ+

3 slightly
- see [11] and [10].
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Appendices
A A note on Subsection 3.3
We setu = r/t. Recall thatx0(u) = x0(r, t) is the root of the following equation:

Eu(x) = 1−e−x−ux= 0, (24)

for 0 < u = u(r, t) ≤ 1. Letx0 = x0(u) throughout this Appendix. Suppose thaty is eitherr or t. We have

e−x0
∂x0

∂y
− ∂u

∂y
x0−u

∂x0

∂y
= 0.

Therefore,
∂x0

∂y
=

(∂u/∂y)x0

e−x0 −u
. (25)

Again, using (24) we have
ex0 −1−ex0ux0 = 0.

So,
u = e−x0(ex0 −1)x−1

0 .

Thus, (25) becomes

∂x0

∂y
=

(∂u/∂y)x0

e−x0 −e−x0(ex0 −1)x−1
0

=
ex0(∂u/∂y)x2

0

1+x0−ex0
. (26)

The denominator is negative, since 1+x0 < ex0. Thus, the sign of this expression depends upon the sign
of ∂u/∂y. We shall use these expressions for the derivatives ofx0(u) with respect to the variables on which
it depends in Appendix C.

Now, we shall give a lower bound onf (t, r) and we will study its monotonicity. In fact we shall work
with

f (t, r)2 = f (u)2 =
1−u

x0− 1
u +1

,

whereu = r/t. We have

f (u)2 =
1−u

x0− 1
u +1

u(1−u)

ux0− (1−u)
>

u(1−u)

ux0
=

1−u
x0

.

Thus,

f (u)2 >
1−u

x0
. (27)

In what follows, we are trying to investigate the monotonicity of the latter function. The derivative of this
with respect tou is

(

1−u
x0

)′
=

−x0− (1−u) ∂x0
∂u

x2
0

.

We have to determine the sign of the numerator. Using (25), we obtain

−x0− (1−u)
∂x0

∂u
= −x0

(

1+(1−u)
1

e−x0 −u

)

= −x0

(

1+(1−u)
1

1−ux0−u

)

= −x0

(

1+
1

1− u
1−ux0

)

.
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Sincex0 6= 0, the expression on the right hand side is 0 if and only ifx0 = 2(1−u)/u. That is

1−e−
2(1−u)

u −2(1−u) = 0.

But the function 1−e−
2(1−u)

u −2(1−u) is strictly less than zero foru < 1, and its only root in(0,1] is

u = 1. This follows from the monotonicity of 1−e−
2(1−u)

u −2(1−u) with respect tou. Note, also, that
for u = (1−e−2)/2, we havex0 = 2. Sinceu < 1/2, the monotonicity ofx0 with respect tou implies
thatx0(1/2) < 2. This observation along with the above result yieldx0 > 2(1−u)/u, which implies that
1+ 1

1− u
1−ux0

< 0, for 0< u < 1. Hence, the derivative of(1− u)/x0 with respect tou is positive, and,

therefore, this is a strictly increasing function with respect tou. Thus, foru ≤ 1, this is an increasing
function. We will use this fact to obtain a lower bound forf (t, r) for specifict, r.

B Some calculations from Subsection 3.4
In this Appendix we present the elementary but tedious calculations for the functionP′(k,α,λ) on D, as
it was defined in Subsection 3.4:

P′(k,α,λ) =

=
n(2−α−k)(1−α)(1−α)(1−k)(1−k)e−(2−α−k)

n
θ
2 (1−k)

θ
2

2
θ
2H(λ)

(

1−k
1−α

) λθ
2

×

n( θλ
2 +α−1) t(1−α,λθ/2) n( θ

2− θλ
2 −1+k) t(1−k,(1−λ)θ/2)×

f

(

2(1−α)

θλ

)

f

(

2(1−k)
θ(1−λ)

) (

(1−k)(k−α)

φ(k,α)

) θ
2 (1−λ) (

1− (1−k)(k−α)

φ(k,α)

) λθ
2

=
(1−α)(1−α)(1−k)(1−k)e−(2−α−k)

(1−k)
θ
2

2
θ
2H(λ)

(

1−k
1−α

) λθ
2

f

(

2(1−α)

θλ

)

f

(

2(1−k)
θ(1−λ)

)

×

t(1−α,λθ/2) t(1−k,(1−λ)θ/2)

(

(1−k)(k−α)

φ(k,α)

) θ
2 (1−λ) (

1− (1−k)(k−α)

φ(k,α)

) λθ
2

,

where

t(x,y) = (ex0 −1)y (x0)
−x e−(x−y) (x−y)(x−y)

(

x
y

)y ( x
x−y

)(x−y)

,

wherex0 = x0(x/y). Thus, for(k,α,λ) ∈ D we have

P′(k,α,λ) =

=
(1−α)(1−α)(1−k)(1−k)e−(2−α−k)

(1−k)
θ
2

2
θ
2H(λ)

(

1−k
1−α

) λθ
2

(ex1 −1)(1−α) (x1)
− λθ

2 e−( θλ
2 +α−1)×

(

θλ
2

+α−1

)( θλ
2 +α−1) ( λθ

2(1−α)

)(1−α)
(

λ θ
2

θλ
2 +α−1

)( θλ
2 +α−1)

×

(ex2 −1)(1−k) (x2)
− θ

2 (1−λ) e−( θ
2− θλ

2 −1+k) ×
(

θ
2
− θλ

2
−1+k

)( θ
2− θλ

2 −1+k) (θ(1−λ)

2(1−k)

)(1−k)




θ(1−λ)
2

(

θ
2 − θλ

2 −1+k
)





( θ
2− θλ

2 −1+k)

×

f

(

2(1−α)

θλ

)

f

(

2(1−k)
θ(1−λ)

) (

(1−k)(k−α)

φ(k,α)

) θ
2 (1−λ) (

1− (1−k)(k−α)

φ(k,α)

) λθ
2
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= (1−k)−
θ
2 2

θ
2H(λ)

(

1−k
1−α

) λθ
2

(ex1 −1)n(1−α) (ex2 −1)(1−k) (x1)
− λθ

2 (x2)
− θ

2 (1−λ) e−
θ
2 ×

(

λθ
2

) θλ
2
(

θ(1−λ)

2

)

θ(1−λ)
2

f

(

2(1−α)

θλ

)

f

(

2(1−k)
θ(1−λ)

)

×
(

(1−k)(k−α)

φ(k,α)

) θ
2 (1−λ) (

1− (1−k)(k−α)

φ(k,α)

) λθ
2

,

wherex1 = x0

(

2(1−α)
θλ

)

, i.e. it is the positive root of the equation

1−e−x− 2(1−α)

θλ
x = 0 (28)

andx2 = x0

(

2(1−k)
θ(1−λ)

)

, i.e. it is the positive root of the equation

1−e−x− 2(1−k)
θ(1−λ)

x = 0. (29)

C The concavity of h(k,α,λ) over D

In this Appendix, we show that the functionh(k,α,λ) as it was defined in Section 5 is strictly concave over
the interior ofD, whereD was defined in (17). (Recall that the functionh(k,α,λ,θ) was defined in (18),
and we have fixedθ = θ2 = 4.9895 to obtainh(k,α,λ).) This treatment improves the proof in an earlier
version of this paper; and was inspired by the correction [12] to [14]. We split the functionh(k,α,λ)
(multiplied by ln2 to change to natural logarithms) into four parts. Namely, for any(k,α,λ)∈ D, we have

ln2 h(k,α,λ) = h1(k,α,λ)+h2(k,α,λ)+h3(k,α,λ)+
θ2

2
h4(k,α,λ),

where

h1(k,α,λ) = −(1−k) ln(1−k)− (k−α) ln(k−α)−α lnα +

(

θ2

2
− θ2

2
log(e)+

θ2

2
log

(

θ2

2

))

ln2,

h2(k,α,λ) = (1−k) ln(ex2 −1)− θ2

2
(1−λ) lnx2−

θ2(1−λ)

2
ln(1−k)+

θ2(1−λ)

2
ln(1−λ),

h3(k,α,λ) = (1−α) ln(ex1 −1)− λθ2

2
lnx1−

λθ2

2
ln(1−α)+

λθ2

2
lnλ,

h4(k,α,λ) = −λ lnλ− (1−λ) ln(1−λ)+(1−λ) ln(1−k)+(1−λ) ln(k−α)+λ lnα +λ ln(1−α),

andx1, x2 are defined in (28) and (29), respectively. Fori = 1, . . . ,4, we sethi = hi(k,α,λ). We prove that
each of these functions is concave over the interior ofD, with h4 being strictly concave there. To prove
that a suitably differentiable function is concave (strictly concave, respectively) over an open domain,
we have to prove that its Hessian matrix (i.e. the matrix of the second partial derivatives) is negative
semidefinite (definite, respectively) over this domain (see for example [21], Theorem 5.5.5 p. 230). By,
for example, Theorem 6E in [19] (p.339), to check negative semidefiniteness (definiteness, respectively)
of a real symmetric matrix it is necessary and sufficient to show that the principal minors have alternating
signs (and are non-zero in the case of definiteness), the first one being non-positive. Thus, we may deal
with h1, . . . ,h4 as follows (for further details of the calculations see [10]).

1. Observe thath1 does not depend onλ. It can be easily checked that it is concave overD. The
elements of the Hessian matrix with respect tok andα are the following:

∂2h1

∂k2 = − 1
(1−k)

− 1
(k−α)

< − 1
(k−α)

,
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∂2h1

∂k∂α
=

1
k−α

,

∂2h1

∂α2 = − 1
α
− 1

k−α
< − 1

(k−α)
.

Thus ∂2h1
∂k2 < 0 and∂2h1

∂k2
∂2h1
∂α2 −

(

∂2h1
∂k∂α

)2
> 0, and so is concave overD.

2. Next we consider the functionh2, which does not depend onα. After doing some algebraic manip-
ulations and using (29) and (26), we obtain:

∂2h2

∂k2 =
θ2

2
1−λ

(1−k)2

x2

1+x2−ex2
.

Similarly,

∂2h2

∂λ2 =
θ2

2(1−λ)

x2

1+x2−ex2
,

and

∂2h2

∂k∂λ
= −θ2

2
1

1−k
x2

1+x2−ex2
.

Clearly we have∂2h2
∂k2 < 0 and it is easily checked from the above that∂2h2

∂k2
∂2h2
∂λ2 −

(

∂2h2
∂k∂λ

)2
is identi-

cally 0 overD; and soh2 is concave there.

3. The functionh3 has precisely the same form ash2, where 1−λ has been replaced byλ. Thus, we
deduce thath3 is also concave over the interior ofD.

4. We show thath4 is strictly concave over the interior ofD. Its Hessian matrix is:








∂2h4
∂k2

∂2h4
∂k∂α

∂2h4
∂k∂λ

∂2h4
∂k∂α

∂2h4
∂α2

∂2h4
∂α∂λ

∂2h4
∂k∂λ

∂2h4
∂α∂λ

∂2h4
∂λ2









=







− 1−λ
(1−k)2 − 1−λ

(k−α)2
1−λ

(k−α)2
1

1−k − 1
k−α

1−λ
(k−α)2 − 1−λ

(k−α)2 − λ
α2 − λ

(1−α)2
1

k−α + 1
α − 1

1−α
1

1−k − 1
k−α

1
k−α + 1

α − 1
1−α − 1

λ −
1

1−λ






.

To show strict concavity, it suffices to show that the principal minors are non-zero and have alter-
nating signs with the first one being negative. It is easy to see that the first two principal minors are

as required, since∂
2h4
∂k2 and ∂2h4

∂α2 are strictly less than− 1−λ
(k−α)2 . The third principal minor, which is

the determinant∆ of the matrix, satisfies

∆ =
−(1−λ)α2(1−α)2 +4λα(1−α)(k−α)(1−k)−2λ2(k−α)(1−k)

λα2(1−α)2(k−α)2(1−k)2 ,

and this can verified e.g. by using Maple (or see [10] for the details). The denominator is always
strictly positive, so it is sufficient to show that the numerator in negative for any(k,α,λ) ∈ D.
Let us fix α,λ < 1 and express the numerator as a quadratic function ofk, for α ≤ k ≤ 1. We
obtain−k2η +k(α +1)η−((1−λ)α2(1−α)2+αη), whereη = (4α(1−α)−2λ)λ. If η = 0, then
obviously this expression is negative. On the other hand, fork = α or k = 1, the above expression is
equal to−(1−λ)α2(1−α)2 < 0. So, to show that this quadratic function is negative it is sufficient
to prove that at its stationary pointk = (α +1)/2 this is negative. But the value of the function at
this point is

−(1−λ)α2(1−α)2 +λα(1−α)3− λ2(1−α)2

2
= −(1−α)2

(

α2

2
+

1
2
(α−λ)2

)

< 0,

and this concludes the proof of the strict concavity ofh4 overD.
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