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We present a full analysis of the expected number of ‘rigid’ 3-colourings of a sparse random graph. This shows
that, if the average degree is at least 4.99, then -as~ the expected number of such colourings tends to 0 and

so the probability that the graph is 3-colourable tends to 0. (This result is tight, in that with average degree 4.989
the expected number tends¢o) This bound appears independently in Kapetisl. [T4]. We then give a minor
improvement, which shows in particular that the probability that the graph is 3-colourable tends to O if the average
degree is at least 4.989.
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1 Introduction

We are concerned with the 3-colourability of sparse random graphs. We considgfsh®model (also
known as theuniform model), wherem = [6n/2]. This consists of all graphs with vertex 9éf =

{1,2,...,n} which havem edges, where each of these graphs occurs with probab{ﬁiy 1. Note
that the expected degree of a verte®is o(1) asn — «. We say that a graph property holasymptoti-
cally almost surelyaas) if the probability that the random graph of ordéxas this property tends to 1 as
n— oo,

The threshold for non-2-colourability (that is, for the existence of an odd circuit) is well understood,
and is not sharp, see for example the recent survey of Molidy [18]. kPer2 our understanding of
k-colourability is less complete. Le{(G) denote the chromatic number of a gra@h Erdds in [9, 3]
asked whether for eadh> 3 there exists a constaB such that for ang > 0, X(Gnm) < k aas when
m< (8x/2—¢)n, andx(Gnm) > kaas whem > (8y/2+¢)n. Note tha, would specify a critical average
degree for the random graph. In the case of 3-colourability, the experimeints in [13] suggéstab.

Recently Achlioptas and Friedgtit [1] gave a partial answer to the above question. They showed that for
each fixedk > 3, there exists a functiotl(n) such that for ang > 0, X(Gnm) < kaas whem = m(n) <

%2") — s) n, andx(Gnm) > k aas whem > @ + s) n. Itis widely believed that lirp_,. dk(n) exists,
but confirming this conjecture and determining the lifijitseems challenging. Let

B = IinmiQf dk(n) =sup(8 > 0: X(Gn en/2)) < kaas},
and

8, = limsupdy(n) =inf{6 > 0: X(Gn en/2) > k aas}.

Nn—oo
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Then®, <6, and the two are equal if and only if the answer to the question di<isipositive.

Let us return to the cade= 3. There are many results concerning lower bound8,arin other words
showing that for a certain value 6f we havex(Gnm) < 3 aas ifm=m(n) <6n/2, and s®; > 6 (see [18]
for a survey on this topic).

There are fewer results concerning upper bouncﬁ{,{orwhich is our interest here. These upper bounds
are based on the following idea. For each gr&aimV;, let C(G) denote the set of all proper 3-colourings
of G using colours 1, 2, 3 ; and 1e¥ (G) C C(G) satisfyC'(G) # 0 wheneverC(G) # 0. We call such a
family of colouringsadequate Let us denotéC’(G)| by C'(G): we shall adopt such notation throughout
the paper. By Markov’s inequality,

P(X(Gnm) < 3) <E[C'(Gnm)]- 1)

Of course equality holds here@(G) < 1 always. The aim is to find a small adequate family which is
simple enough to handle, and then to Jse (1) to yield an upper bou&;don

When we consider all possible 3-colourings, that is we @k&) = C(G) for eachG, we find that
E[C'(Gnm)] — 0 asn— w if 8 =5.41, and s®] < 5.41. This basic first moment result was improved by
Dunne and Zito in[f8] t®3 < 5.2057 by considering a certain adequate family; and then further improved
by Achlioptas and Molloy([2] td; < 5.044 by considering a smaller adequate family, namely the ‘rigid’
3-colourings. The idea of considering such colourings came from the success of the method of ‘locally
maximum’ satisfying truth assignments inJ[15] for investigating the unsatisfiability threshold for random
3-SAT problems, see the survey][18].

Definition 1 A proper 3-colouring with stable setg,$,S; is calledrigid if each vertex in §U S is
adjacent to some vertex in,Sand each vertex ins3s adjacent to some vertex in.S

The above bound fronil[2] was obtained independently by the authdrs in [11]. [In much earlieirwork [17],
Molloy and Reed took a different approach to improving the basic bégnd 5.41: they showed that a
random graph of average degree at least 5.142 is aas not 3-colourable by proving that the 3-core of such
a random graph is aas not 3-colourable. We do not follow that approach here.] In recent work, Kaporis
al. [4] give a tighter estimate of the expected number of rigid 3-colourings, and diain4.99. We
obtained this result independently and concurrently (Seée [11]), and present here a more complete analysis
of the expected number of rigid 3-colourings, which shows in particular that the last bound cannot be
improved, in the sense that with average degree 4.989 the expected number of rigid 3-colourings tends to
o,

Now, let us introduce our central theorem. bet= [8n/2]. For a graplG, let ® (G) denote the set of
rigid 3-colourings ofG, and letR(G) denote the cardinality of this set. F&iin an interval[6,,6,], and
for x in a domain® = D(8) C [0,1]3, we shall introduce a function(x,8) (defined in [18) below), and
let u(8) = supcph(x,0).
Theorem 1.1 There exist positive real numbedg < 8, such that:

1. The function (B) is continuous o118, 61], and for evend € [6p, 61]
E [R(gn m)] _ 2u(6)n+0(|ogn)’ 2)
where m= [8n/2]. Moreover, |{8p) > 0and 61) < 0.

2. We have
4.9893< 6p < 61 < 4.9895 3)

In the above theorem as well as in what follows, the symbol log always refers to binary logarithm. In order
to prove this result, one half of the battle is to sh@v (2), and the other half is to §how (3). The main step
in proving (3) is to show that fod = 4.9895, we havei(6) < 0. This involves considerable computation:

we are more explicit about this side of matters than has been the custom in previous papers in this area.
From the previous theorem and the Markov inequality (1) we obtain
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Corollary 1.2 Let® = 4.9895and m= [6n/2]. Then there exis > 0 such thafP [X(Gnm) < 3] <27,
for n sufficiently large.

Therefore 83 < 4.9895. Working from the foundation provided by Theorenj 1.1, we may try to improve
the bound orfj in different ways. One way involves an adequate subfamily of the rigid 3-colourings,
the “W-gadget-free” rigid 3-colourings - see the brief discussion in Seiion 7. A second way involves
considering the number of non-trivial tree components, and using the observation that any non-trivial tree
has at least two rigid 3-colourings: this approach is described in S¢ttion 6 below, and yields the following
theorem.

Theorem 1.3 Let@ = 4.98887and m= [6n/2]. Then there exis® > 0 such thaf [X(Gnm) < 3] <279,
for n sufficiently large.

Similar results can be deduced for tlyg , model. In this model, agai, = {1,2,...,n} is the set of
vertices, but now each of tr@) possible edges appears independently with probahalitWe find that
if @ = 4.98887 andp = 6/n, then there exists & > 0 such thalP[X(Gnp) < 3] < 27, for n sufficiently
large.

The main steps in the proof of Theorém| 1.1 are as follows. We first give an exact formBI&{a}; )],
wheregr’,im is a slight variation of thez, m model; see Lemmpa2.1 below. We show that we can discard
the ‘tails’ of the sum that appears there, and give good approximations to the remaining ‘central’ terms.
These terms involve probabilitiggk, a, n, 8), which are investigated in Sectigh 3. The probabilities can
be written as a sum, where the summands involve binomial coefficients and certain ‘balls-and-bins’ prob-
abilities. Again we show that we can discard the tails in the sums, and give good approximations to the
remaining central terms, now involving Stirling numbers of the second kind. We use known asymptotic
expressions for these Stirling numbers, thus expressing the summands as terf&iRe ZThis yields
an approximation foE[R(Gy )] as 2(®)n+0loan (see [2P) below) and we then obtafh (2). This part of
the proof is completed in Sectigh 4.

The remaining work to prove Theordm]1.1 is largely numerical, and is described in Sgction 5. The main
task is to show that fod = 4.9895, we havey(6) < 0. We show that, for this specifi; h(x, 8) is concave
over its domain®. We find numerically a first approximation for a point which gives the maximum value
of hiinside this area. We define a very fine grid in a box around this point, and find a gridkpohre
the maximum value ofi on the grid is attained. Then, we determine an upper bounk dorthe surface
of the box (by computing values ¢fand its partial derivatives on a fine grid and using concavity). We
find that this bound is less than the valuenadt X, and so we deduce that the box contains the maximum
of h over D. Further computations handle the region inside the box.

After completing the proof of Theorem 1.1 as described above, in S€gtion 6 we prove Thedrem 1.3, and
then we make some brief concluding remarks in Sedlion 7. Some details from earlier proofs are given in
the Appendices.

2 Starting the proofs

For the sake of simplicity, we carry out the probability calculations in dtig, model. In this model,
we form the random graph by choosing at randartimes, each time independently, uniformly and with
replacement, an edge out of t@ possible 2-subsets ®f, = {1,...,n}. We ignore any repetitions of an
edge, so the random graph may have less thadges. Our results transfer easily to tha, model - see
Lemma[4 B below. Every probability, unless otherwise stated, is meant to be taken oggrtheodel.
Let
D={(ka): 0<k<1 0<a<Kk},

and for each positive integerlet
1

n
For each(k,a) € D we definep(k,a) = k(1—a) — (k—a)>.

DM =Dpn =72
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Let C(n) be the set of all 3-colourings df,, i.e. the set of all possible mappings fréfninto {1,2,3},
or equivalently the set of all partitions ®f, into three set§;, S andS; (some of them possibly empty).
Also, for each positive integerand eachk,a) € D", let C(k,a,n) denote the set of all partitions Wf
into three set$;,$,Ss, where|S;| = anand|S; |+ |S| = kn. Let

p(k,a,n,m) = P[Sis rigid| Sis propet, 4)

whereS e C(k,a,n). Note that the above quantity depends only on the sizes of the independent sets
induced byS. Recall thatR(G) denotes the number of rigid 3-colourings®f

Lemma 2.1 For all positive integers n and m with< m< (3),

n an

N n) (kn ,
EIR(Gam)] = (1- ) M%MQQ( ) (2otka)” piko.nm),

Proof. By the linearity of the expected value, we have

BRG] = 3 Plsisigid
ScC(n

= Z P[Sis rigid|Sis prope}- P[Sis propet. (5)
sECin)

Let us take a fixed colourin® with stable setsS;,$,S3, wheres; = |S| = an, s, = |$| = pfn and
s3 = || = yn, and wherék = o + . Set

&9 = 12+ S153 + s
Hence,

45— (ap+Byva) = otka)

Thus,
m -m
P[Sis propef = (ﬁ) = (2¢(k,0))™ (1— }) .
) n
Now notice that the family"(k, o, n) consists of exactly,;) - ('é[‘]) colourings. So, rephrasing the sum in

(8) in terms ofk anda we obtain the following:

ERGin] = 3 PISisrigd
ScC(n

(1— %) - (k,u;@(n) (knn> (IO((:) (29(k,0))™ p(k,a,n,m).
m

The above lemma is our starting point. We next check that in Lefmha 2.1 we may ignore the extreme
values ofa andk. We will split the sum there into two pieces. Let

D;={(ka): a>02 k<0.8 k—a>0.2} (6)

(which corresponds ta, 3,y > 0.2); and let qn) =DiNn %ZZ. Moreover, doing some elementary calcula-
tions, we obtain the following:
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Lemma 2.2 The functiong(k,a) is continuous and concave dp, for each(k,a) € D we have0 <
@k,a) <1/3, and
sup o@k,a)=0.32

(k0)eD\Dy
i k,a) =0.28.
(kngl(P( ,a)
Let . .
PPN S n n m
=00 5 () (on) otea)” pleanm, @
(k,a)eDy
and let L .
_ _\—m n n m
s=a-9" 3 () (an) @aka)” pleanm.
(ka)epM\D{"
so that by Lemma?Z.1
E[R(Gam)] = S1+S2. @)

We will see that the second ‘error’ term here is negligible for the relevant values arfid then we may
focus on the first term.

Lemma 2.3 Let4.98 < a < b. Then there exish > 0 and ny € N such that for@ € [a,b], n > ny and
m= [6n/2] we have:

S<27o
Proof. By Lemma[ZR, we have

o= sup @ko)=0.32
(k.a)eD\Dy

c ez () (o)’

Thus, we have

IN
w
>
N
S
| | =
'_\
[N
Q
N———
|

But 3 (0.64)4*3*8 < 1, and the lemma follows. O

The following standard lemma on approximating binomial coefficients may be proved using Stirling’s
formula:

Lemma 2.4 Let0 < 6 < 1/2. Then uniformly ovedn <r < (1—9)n we have

(?) — N2 (?)r <n_ir>n_r — o(nY/2) H/m),

where Hx) = —xlogx— (1 —x)log(1—x) for 0 < x < 1 (when x= 0 or x = 1, then HXx) = 0) is the
entropy function.
Form= [Bn/2], we set

p(k,a,n,8) = p(k,a,n,m) ©)

(the use of the same lettgrshould not cause confusion). Directly from the definitign (7) and the last
lemma, we have:
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Lemma 2.5 Uniformly overf in any interval[a, b] with a> 0,

si=0n) Y (2HMHHEN 2g(a,)%2)" plk,an,6).
(k,a)eD(ln)

In the next section we consider the teptk,a,n, 8).

3 Calculations for p(k,a,n,8)

In this section, we derive an asymptotic formula figk, a, n, 8), which was defined inJ9) to be equal to
P[Sis rigid|Sis propet, whereS e C(k,a,n), m= [6n/2] and we are working in th&;,, model. See
Lemmal3P below. '

For positive integers > r, we letp(t,r) denote the probability that, when we thrévealls uniformly
at random intar bins, each bin ends up non-empty. Consiflen) € D, Let L™ = L™ (k,a,8) =

{)\ : n(ln:u) <A<1-— M} ﬂ(%Z). Then

pka,n®) = % bAmm p) p(Amn(l—a)) p((1—A)m.n(1-k)), (10)
AeLm
where
p=1-((1-k)(k-a))/ok a) (11)

andb(Am; m, p) is the probability that a random variable distributed according to the binomial distribution
Bi(m, p) is equal tom. To see this, observe first that, conditioning®hbeing a proper 3-colouring, the
random variable that determines the number of edges bet®&ieand S, U Sz is binomially distributed,
namely it is B{m, p), wherep is defined in [IJ1). Once we have specified the number of edges between
S andS; U S (and, therefore, the number of edges betw8eandS; as well), the probability thabis

rigid is exactly the probability that each vertex3pU S is adjacent to some vertex 8 and each vertex

in S5 is adjacent to some vertex 8. Note that for each edge, say, betw&andS, U S, each vertex in

S U S has the same probability to be the endvertex of it. The same holds for the edges b&taadn

S3. Thus, we can think of this as a random throwing of balls into bins; each ball corresponding to an edge
and each bin corresponding to a vertex. Note that we have two independent such random experiments.
This observation yield§{10).

3.1 Discarding the tails

We next check that we may discard the extreme valuasioffLQ). This is a technical exercise for which
we need one preliminary lemma.

Lemma 3.1 For positive integers t> r

t
2(t—r)

t
pt—21r) <p(t,r) < mp(t —1r).
Proof. LetW(t,r) be the set of all arrangementstdfalls intor bins leaving no empty bins and lett,r)
be its cardinality. What we want to prove will follow from the following inequality:

rt
2t—r)

wt—21r) <w(t,r) < %W(t —1,r). (12)

To prove [IR), consider ordered pairs of balls and bins, i.&. iff the set of balls an& the set of bins,
take the Cartesian product of thét= T x R. Each such paifb, B), whereb € T andB € R, corresponds
to the fact that the balb is in bin B. For each such pair arrange the remairtirgl balls into ther bins

leaving no empty bins. Thus, we form the s¢t= {(p,w): pe P, we W(t —1,r)}. Note that we have
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a surjective mapping from the s@ onto the sew(t,r). Clearly, W is of cardinalityrtw(t — 1,r). The
mapping induces a natural partition on this set and each of the parts, which is the set of pairs that are
mapped to a specific arrangement dfalls intor bins without leaving any empty bins, is of cardinality
equal to the number of balls which are not the only ball in their bin, which is at {eastand at most

2(t —r). Thus, [IR) has been established. Therefore,

t wt—1r) < w(t,r) < towt-1r)
2(t—r) =1 = ot Tt—r =1 7
and the lemma follows. O
For (k,a) € Dy, let
L; =Li(k,a,8) = {)\ ; 2(1=0) (1+024) <A<1- 2(19_ k) (1+0.065)}, (13)
and let 1
LY =L{"(k,a,8) = L1 N (2).

(The extra terms 0.24 and 0.065 here are to exclude extreme values which, as we shall see shortly, are
negligible, but which would cause awkwardness later.)
It is convenient to restridd to a rangg6), 6], as we need to obtain approximations uniformly oder
We let
6 =498 6,=4.99 (14)

Lemma 3.2 Uniformly over® € [6,6,] and (k,a) € D{",

pk.a,n6) = O(1) T bAmm p) pAmn(l—a)) p((1-A)mn(1-k)).
)\eL(ln)

(Recall that p is defined i (L1).)

Proof. Within the proof, letf(A) be the general term in the sum in equatipr] (10). We will compare
the termf(A), for someA which will be specified later, with the adjacent tefrtA —1/m). Note that
f(A) =b(Am;m, p)p(t,r)p(m—t,r'), wherer =n(1—a) andr’ = n(1—k), andt = Am.

We consider the “lower” tail first. Assume that=n(1—a)+ [nn(1—a)], for somen > 0. By
LemmaC3l we have

t—r m—t+1
_ _ N < - - = —t.r).
p(t—L.r)p(m t+1,r>_2( t )(m_tﬂ_r/)p(t,r)p(m tr)
Also
b(t—1mp) = —— 1 Ppgmp), (15)

m(1-A)+1

Thus, we obtain

1 t—r m-t+1 Am 1-p
—_ )< - .
f<)\ m)_2< t > (m—t+1—r’> mi1-A)+1 p o)

Using the fact thatk, a) € D1, straightforward verification shows that fgr= 0.25 and fom sufficiently
large the factor on the right hand side is less than 1/2 (in fact it is less than 0.45), fo=dfy, 6,). (This
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is the case because the factor is increasing with respegtsee [10] for the details.) Therefore, the sum
of the terms fot fromn(1—a) up ton(1—a)+ |0.25(1—a)n| — 1 can be bounded as follows:

n(1—a)+|0.25(1—a)n|—1 . .
f(l) < (n(l a)+10.25(1 cx)nj)j

t=n(1l-a) m
by the geometric sum formula.
Following the same treatment, we can bound the other tail of the sum. Here, assume-that
n(1—k)+ [n(1—Kk)n|. Thust =m—n(1—K)— [n(1—Kk)n]. From Lemmd3]1 and{]L5), we obtain
t 2m—t+1-r) (1-A)m+1 p f( 1>

A_ =
m

f(AN) <
( )—t—r m-t+1 Am 1-p
Using the fact thatk,a) € D1, one can see that foy = 0.07 and forn sufficiently large the factor on
the right hand side is less than 1/2 (in fact it is less than 0.49), foBan}®;, 8,]. As in the previous case,
this expression is increasing with respechtor herefore, the sum of the terms foirom m—n(1—k) —
|0.07(1—k)n] 4+ 1 up to tom— n(1—Kk) can be bounded as follows:

mfn(zlfk) f (i) oy (m_n(l—k)— Lo.07(1—k)nj>7

t=m-n(1-k)“T0.07(1—k)nj+1 M m

by the geometric sum formula.

Now, the lemma follows from the above observations along with the fact that each term is non-negative,
which means that removing a few terms from the sum gives a lower bound on it. O
3.2 Introducing Stirling numbers of the second kind

For positive integers > r the Stirling number of the second kirgt,r) is defined to be Ar! times the
number of surjective functions from a set of cardinalitg a set of cardinality. Thus

pit.r) = "H0,

Hence, we may rewrite Lemnja.2 as follows:

Lemma 3.3 Uniformly over8 € [6},8,] and (k,a) € D(ln), we have:

p(kvavnae):

- on/2]\ ((A=Kk=a)\E1ED /(1K) k=) \MF]
- oW &n)(xmn/a)( ) (e )
(n(1—a))!S(ABn/2],n(1—a)) (n(L—K)IS(1-A)[8n/2],n(1—K))

(n(1— )% (n(1—k))/F1a-»)

3.3 Asymptotics for Stirling numbers of the second kind

An essential part of our probability calculations involves asymptotic expressions for the Stirling numbers
of the second kind. We need some preliminary definitions and results, see for exarmple [20].
ForO<u<1let
Eu(X) =1—e*—ux

For 0< u < 1 letxo(u) be the unique positive root &, (x) = 0. (See Figur€]1.) Note th&t (x) has the
unique rootx = 0: we letxg(1) = 0. Thenxo(u) is a continuous function of0, 1], and

X(UW+1-1/u>0
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y=1-exp(-x)

y=ux

o

Fig. 1: The functionxg(u)

foreachO<u< 1.
ForO<u<1let

1-u 1/2
fw= <XO(U)+1_1/U) ’

and letf(1) = 0. Thenf is a continuous function o0, 1], and 0< f(u) < 1 (see[[7]). In AppendiXA,
we give a positive lower bound of{(u).
It is shown in [20] that, for positive integets> r,

S(t1) = (€0 1) Go(w) ‘e it () a-eien), (16)

whereu = r /t and may-rt |€(t,r)| — 0 ast — oo,

3.4 The estimate
Recall that B andL; are defined in[{6) andT{1L3) above. Let

D=D(0) ={(k,a,A): (ka) e D;,A € L1(k,a,0)}, a7)
and let

DM = () = DN ((%ZZ) x (%Z)) = {(ka,\): (ka)eD” xel(ka,0)}.

For@ € [6},8y) and(k,a,A) € D, let

P(k.a,A,8) = (1—k)~228HM (H)T(exl_l)ua) (€2 — 1) ()% () 30N
() 8(1-2) ] ;]

Lo (AN /B(1-N)\ Z ((A-Kk-0)\2*N /1 (1-Kk-a))?
(%) %) ) (5

wherex; = Xp (%) andxy = Xg (;g:l;)) ) We shall prove the following lemma:
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Lemma 3.4 Uniformly over6 € [6},8,] and (k,a) € D1, we have:

p(k.a,n6) =0(n*?) 5 {P(ka,)6)}".
)\eLg")

Proof. In what follows, the “error” term{8n/2] — 6n/2 yields a©(1) factor for each term of the sum

in Lemma, sincék,a) € D<1n>. We use Lemm@A to give asymptotic expressions for the binomial
coefficients. Note that sinad, o) € D1 the assumptions of Lemnfia 2.4 are satisfied. This is also true for
the coefficient that involve8, sinced is assumed to be in a closed and bounded interval not containing 0.
Thus, using[(T6) and Stirling’s approximation for the factorials, Lerima 3.3 implies the following:

p(k,a,n,8) =0(n?) 5 {P'(ka,)8)}",

AeL(V
where, for@ € [6;,6,] and(k,o,A) € D
P'(k,a,A,0) =
L e e 2 (1;k>7
nz(1-—k)2 l1-a

n(2+9D) t(1—0,00/2) n(E-2 1K) ¢(1k, (1_A)e/2) -
2(1-a) 2(1-k) 5(
f< - ) f<e(1_)\)> (1—p)3an p¥
(o)A Re@ak 0 (1K 2 2(1-a) 2(1-K)
- (1-k) “ <1-a> f< o )f(eﬂ—A))X

t(1—0a,\8/2) t(L—k,(1—\)8/2) (1—p)21N p¥

NID

where
oo (x-) ooy (XY [ x
1 e X Z = ,
txy) = (€9 1) (x0) e 0 () (X)L X0)
wherexp = Xo(x/y) and wherep is defined in [[II1). Doing some calculations, we obtain:
P'(k,a,\,0) =
AZQ
= (1_k)*g 23HM) <i;) (exl_l)(l 0 (@2 — 1)K (x)"Z (xp) 51N g5 «
o}
8(1-)\)

R
S
\_/
3

>_2_ (1-p)2N p?

(%) (s
P(k,a,)\,e)f( (e)\ )>

wherex; = Xg (%) and xo = Xg (égi:)'g) For the elementary but tedious calculations see Ap-
pendix[B.
Also, note that byl?) in AppendE]A the monotonicity of the lower boundffar), whereu = (e)\ )

oru= eEl x)) and the fact thafk, a) € Dy, it follows that in both cases the functidnis at least

2
1-5

X0 (%)’




Upper bounds on the non-3-colourability threshold of random graphs 215

and so the two factors includinin the expression above yield2(1) term. This concludes the proof of
the lemma. O

4 Proof of Theorem [L.7] and Corollary 1.2
Recall tha®;, 8, were introduced in[(14) ang was defined in[(17). Fd € [6,8,] and(k,a,A) € D, let
a 6 6 0 0
h(k,a,A,8) = H(k)+kH (E) + 575 log(e) + > log <§>
+g<f)\log)\f (1—A)log(1—A)+ (1—A)log(1—k)

+(1-A)log(k— o) + Aloga +)\Iog(1—0())
8(1-A)

+(1—k)log(e? —1) — g(l—)\) log(x2) — 6(12_ ) log(1—k)+ > log(1—A)
+(1—a)log(e® —1) — g log(x1) — % log(l—a)+ % logA, (18)

wherex; = X (2<19;“>) andx; = Xg (g((i:';)) ) (Recall that the functiomp(u) was defined at the start of

Subsectio3}3 ) We will prove the following:

Lemma 4.1 Uniformly overf € [6/,8,],
S1=0(n"3?) z oh(kae)n
(ka,\)eDM
Proof. LemmagZ]5 and 3.4 imply that uniformly ov@e [}, 6,]:

s= o)y (202 ek a)® Pkae))
(ka,A)eDm

— o ¥? oh(kaA0) ”,
(k,a,)%e@(”)< )

since for(k,a,\) € D,

MK KH(E) 20k, )2 P(k,a,\,8) =

;]
= 0 kHE) gk o)) f 23HO) (1)~ (11—")7 (€ — 1)) (g _ 1)K
—a

o\ 2 fe-n\ 7

A8 2 ) — [} A8

o) ® poyfan e ()7 (HIZH) T gt p

= 2 PRHIE) 23 28HM) (1K) (k—0)) N (a(1-a)F (1K)~ 2 (1-a) % x

8(1-1)

(€1 1)) (g _ 1)1 (Xl)—ég (Xz)—g(l—x) e 3 ()\29>7 (6(12)\))—2—

wherep is defined in[I1). Hence, the lemma has been established. O
By the last lemma,

n
S1 = ¢(no) max {Zh(K“’A’e)} =¢(n, ) 24&mn, (19)
(kaA)epm
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wherec(n,8) = Q(n~%/2), ¢(n,8) = O(n®?) and

nen = max {h(ka) 8}
(kaA)enm

Let D(®) = liminf D™ and note that it is the set of rationals containedimnd, therefore, it is dense
inside it. Then, we have

lim u@,n)=u®) = sup h(ka,A,8)= max h(ka,\,6),
e (ka\)eD(e) (kaMeD

since for each fixe® the functionh(k,a, A, 8) is continuous or, which is a compact subset BE. In
fact, we can say a little more than this. We know thi, a, A, 8) attains its maximum at an internal point
of D, sayx*. Note that this is a stationary point and one can also sedtisatifferentiable on?» and its
derivatives are continuous. The latter implies that for any0 there exists an open ball containingx*
where| 0h|| < . Forn sufficiently large, there is a point, € D™ NU with

) 1\* [/1)\? 1 4\
o =1 < (2(%) +(7) )S (+a)™

1 4\Y2 |
(1L AV
(0.) > () s(2+9|2) ot

and then

by the Mean Value Theorem. Hence,

sup Nn(u(8) —u(6,n) = o(1).
0<(6),0]

This fact along with[[119) imply the following:
Lemma 4.2 Uniformly overf € [6/,8,],

S = 2p(0)n+0(|og n) )

Sinceh(k,a,A,0) is continuous on its domaim, andh as a function o® is also continuous, the

) ) )

functionp(B) is continuous as well. As we shall see later, 8= 4.9893, we have

Ll(eo) > 0. (20)
The numerical investigation in the next section shows that
M(82) <O, (1)

for 6, = 4.9895. By Lemm3, there exigis> 0 such thats, = O (2*8"), uniformly over6 € [6,8,].
We setd = min{d, —p(6,)}. Let
01 =1inf{0>06p: uoO) < -8/2}.
Note that [2D) and (21) imply th&@ < 81 < 8. Thus, we have(6;) = —&'/2 andu(B) > —&'/2 for each
6 € [B0,01]. Therefore, Lemmp 4.2 implies that uniformly ovéee [6g,0:], we have
ER(G: )] = oH(ON+O(logn) | ¢ _ HH(B)N+O(logn) 4 (2—6’n) _ 2p(9)n+0(logn)’

that is

E[R(Gp )] = 24Om+0loam. (22)

Now, to establish Theore 1.1, i.e. to show that this result in fact is also true ig.thenodel, we
have to do a little more work. We prove the following:
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Lemma 4.3 Let6, < b < «. Uniformly overb € [6/,b] we have

E[R(Gnm)] = O(1) E[R(Gnm)],
where m= [Bn/2].
Proof. To see the one direction note that
ER(Gam)] = ER(Gam)[[E(Gam)l = M P[E(Gam)| = M = E[R(Gnhm)] P[[E(Gam)| = M.

Here,E(G) denotes the set of edges of a graphRecall that Iif1 —x) > — %, > —2x, for0<x < 1/2.
Hence, if < (3),

(2)

PE(Giml =M = H(“%g))zem(‘%—g))'

This expression is bounded away from 0 uniformly &dn the closed intervaB, b].
The other direction is a little more tricky. To see this note as before that
P[Se R(Gnm)] =P[Sis proper forGnm| P[S€ R(Gnm)|Sis proper forGn m).

By Lemma[2.R, we have(S) = nPg(k,a) > 0.28n?, for a colouringS € C(k,a,n), where(k,a) € Dy,
whence we obtaie(S)/m? > n > 0, for somen (depending only oib). Thus (once & < &(9)),

o mA\" _m _ 2/
(1 e(S)) _exp<mln(l e(8)>>2exp( 2n?/e(S)) > e 2N,
Hence, for such aB, we have

P[Sis proper forGnm] = e((i) e((ri)_llme((i)_r:ljj
2) 2 2

() (-a3))’

e 2" P[Sis proper forG; .

v

v

On the other hand,
P[S€ R (Gnm)|Sis proper forGnm > P[S€ R (Gnm)|Sis proper forGy |,
since adding edges to a proper 3-colouring increases the probability that this is rigid. Therefore,
P[S€ R(Gam)] < €/ P[SE R(Gom)].
Finally, by LemmdZ]3, sincé > 4.98,
ERGim)] = (I+0() Y Y PSER(Gim)

k,a,
(k,G)EDgn)SEC( ,G,I‘])

< (4om)en Y S BiSE R(Gan)
(ka)epiM Sec(kan
< (1+0(1)) ez/f] E[R(gn,m)}.

d

Thus, Lemmd4]3 along witi {R2) and inequalities (20) dnd (21) conclude the proof of Thgorem 1.1.
Corollary[L:2 follows immediately.
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5 Numerical Computations

Let us quickly dispose of the easy res{ilij (20). As abovéjet 4.9893. Also, we set=0.698,a = 0.362

andA = 0.691. We find using Maple with 10 digits precision tlk, a,A,8) > 0. In fact, to one digit

it equals 5x 10°. Moreover, for the same values kfa andA and for@ = 4.989, h(k,a, A, 8) equals

7 x 1075, to one digit, and s@(4.989) > 0 (yielding the result stated in brackets in the abstract). These
values fork, a, A were found using the Complex methad [6]: for details of this and other computational
matters se€[10].

To complete the proof of Theorem]L.1, and thus of Corol@ry 1.2, it remains to estgblish (21). Let
h=h(k,a,A) =h(k,a,A,8,), where as above, = 4.9895. Therhis continuous ovef), and we shall see
in Appendix[T that it is strictly concave over the interior®f Thus, if C C D andy € C° (the interior
of C) are such thalt(y) > h(x) for everyx in the boundary ot", thenh has a unique maximum poirt
over D andx* € C°. Using concavity, we can estimate numerically where the maximumisfocated,
and give an upper bound d¢rover this domain, as follows.

From an initial approximation to the maximum B, using the Complex method![5] (see al$b [6]),
our attention is directed to the culgeC D, where 06980< k < 0.6981, 03622< a < 0.3623 and
0.6910< A < 0.6911. Divide the surface of the culgginto squares of side= 5 x 10°6. For a square
centred at, by the concavity oh we obtain

h(b) < h(a) + (s/v2)[|Oh(a)]|

for each poinb in the square. By checking each square, we findhibat < —3.937721x 10~ for each
point x on the surface of the cuh@. But there is a poiny inside C with h(y) strictly greater than this
bound. More specifically, we may define a cubic grid insitleach cube having side equal t«306.
The maximum value we find by searching this grid is equat80937414x 10~° and it is strictly greater
than the upper bound dnon the surface of’. Sinceh is concave oD, it follows as noted above thét
attains its maximum oveb insideC.

Now we obtain an upper bound drinside C, using the aforementioned grid. By concavity, for each
pointb in the sub-cube with its centre locatedaadind edge of length equal pwe have

h(b) < h(a )+£S||Dh( a)ll.

By checking through each sub-cube, we find that) is less than-3.9 x 107>, for eachx € ¢, and thus
for eachx € D.

6 Proof of Theorem

Lett(G) denote the number of components of the gr&ptiat are non-trivial trees (that is, trees with at
least one edge).

Lemma 6.1 For any t> 0 and any positive integers n and m wah< m < (5),

P[X(Gam) < 3] < 2" E[R(Gnm)] +Pt(Gam) <t].

Proof. Any non-trivial tree has at least 2 rigid 3-colourings. Thus, for a g@phx(G) < 3 andt(G) > t,
thenR(G) > 2'. Hence,

Lxo<anie):=t <2 'R(G).
Now, we apply this result tg;, n and take expectations. We obtain:

P[(X(Gnm) < 3) A (t(Gnm) > 1)] < 27 E[R(Gam)],

and the lemma follows. O
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For® > 0 let
] etfleftett72

O=y

t=
andm= [Bn/2]. We shall use standard methods to prove:

Lemma 6.2 Let® > 0. For anye > O there exist$, > 0 such that
Pt(Gom) <T(B)n—en] = O(e*5m).

Proof. LetT be atree on vertices 1.,t, wheret is constant. Then

( ("2") ) g\t 1
P[T is a component of m] = L — (—) e ™ (1+0(1)),
(@ An
by standard approximations. Now we may multiply ﬁ&)tt‘z to see that the expected number of tree

components with vertices iNnGnm is (1+0(1)) ne'~1e~®t'=2/t1. Since the number of tree components
of Gnm with at least vertices is at mogt/t, it follows that (see alsd[4] p.96):

E[t(Gam)] =N <tiet1e9ttt2/t!> (1+0(1)) =n-1(8) (1+0(1)).

The following lemma will complete the proof, since@ is obtained fromG by adding an edge and
deleting an edge thdt(G) —t(G')| < 2. O
The following lemma is a special case of Theorem 7.40f [16].

Lemma 6.3 Let f be a function on graphs such that, if i obtained from G by adding an edge and
deleting an edge, thelf (G) — f(G')| <c. Let y=E[f(Gnm)]. Then for any x> 0

P[f(Gnm) — > X < exp(—2x?/mc)
and
P[f(Gnm) — < —X < exp(—2¢/mE) .
Proof. Given anmrtuple x of distinct edges oK, let G(x) be the graph od1,...,n} with edges those
mentioned inx (ignoring the order), and let(x) = f(G(x))/c. Then|f(x) — f(y)| < 1 if x andy differ

in exactly one co-ordinate, or if they differ in exactly two co-ordinates and the values there are swapped.
Thus we may apply Theorem 7.4 6f[16], see also Example 7.3 there. O

Therefore, setting = 1(8)n— en, for somee > 0 which will be specified later, in Lemnja®$.1, and using
also Lemmag§ 6.2, 4.2 and 4.3 along with equatjpn (8) we obtain the following:

PX(Gom) <3 < 2 OHME[R(Goym)] +O ()
—  2tn o—n(8)+0(1) (an(e)+0(|ogn) +5)+0 (e_éln) ' (23)

We now fix0 = 4.98887.

From the proof of Lemm@&2.3 we may see tsat< 1, for n sufficiently large. We keep the definition
of the regionD unchanged. Insid®, we may perform numerical investigations similar to those in the
case of the rigid 3-colourings. We consider the same sub-Cusebefore, and find again thak, o, A, 8)
attains its maximum inside€. We can check through the same family of sub-cubes and see that the
maximum valuei(8) of h(k, a,\,8) over D satisfiegu(8) > 0, butt(8) —u(8) > 10-°. Then by [2B) with
€= w, we obtain:

P[X(Gom) < 3] <2 TN 0 (efaln) .

Choosingd < min{g, 5, loge}, we conclude the proof of Theorgm]1.3.
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7 Concluding remarks

We considered the adequate family consisting of the rigid 3-colourings of a graph, and investigated care-
fully the expected number of such colourings in the random ggaph We thus obtained an upper bound

on the non-3-colourability threshoRl, which appears independently in’[14]. We then improved this
upper bound slightly, by taking into account the number of non-trivial tree components.

Let us sketch now some related ideas that also will improve the upper bound slightly. When we consid-
ered the number of non-trivial tree components in Sediion 6, in the proof of Lémina 6.1 we used the fact
thatR(T) > 2 for any non-trivial tred. We can be more precise; for examp@ ) > 3 unlessT is a star.

By computing the value dR(T) for each ‘small’ non-trivial tree (say those having at most 5 vertices), and
then following the general approach in Sectibn 6, it is possible to obtain a slight improvement on Theorem
3 (seel10] for further details).

We may also consider an adequate subfamily of the rigid 3-colourings of a Gtapimely thdeftmost
3-colourings. These are the proper 3-colouriBg$,, S3 where|Ss| is minimal and, subject to thiss| is
minimal. Note that any such 3-colouring must be rigid and, further, this family is adequate. Unfortunately
it seems to be hard to study leftmost 3-colourings, but we can work with related families such as those
defined in terms of W-gadgets”.

Given a 3-colourings;, $, S3 of a graphG, aW1o-gadget is a component of the subgraph induced on
S US, which is a star with centre if; and at least 2 leaves (which must belondgth We may define
W;3- and Wy3-gadgets similarly. Call a rigid 3-colouring/-gadget freef there are noW;, or Wi3 or
W,3 gadgets. Note that these 3-colourings form an adequate family, since each leftmost 3-colouring is
W-gadget free. By analysing such families of 3-colourings we may reduce the upper bogfidlaghtly
- see [T11] and[10].
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Appendices

A A note on Subsection 3.3
We setu = r/t. Recall that(u) = xo(r,t) is the root of the following equation:

Eu(X) =1—e*—ux=0, (24)
for 0 < u=u(r,t) < 1. Letxp = xo(u) throughout this Appendix. Suppose tlyas eitherr ort. We have
.. OXp 0u 0Xo
X0 _— — _— =
e ay dy Xo— U 3y 0.

Therefore,
0%  (9u/dy)%o

- en_u (25)
Again, using [Z4) we have
€0 _1—-e%ux =0.
So,
u=e (€0 - 1)x;.
Thus, (Zb) becomes
o (8u/ay)xo
oy e —e%0(e0 — 1)x;t
_ €°(3u/dy)xg
- SIS, (26)

The denominator is negative, since-ky < €9. Thus, the sign of this expression depends upon the sign
of du/dy. We shall use these expressions for the derivativeg(of) with respect to the variables on which
it depends in Appendik]C.

Now, we shall give a lower bound of(t,r) and we will study its monotonicity. In fact we shall work
with

f(t,r)?=fu?=———,
whereu =r/t. We have
1-u u(l—u) ul—-u) 1-u

f(u)? = > = .
) Xo— t+1ux—(1-u) uxo X0

Thus,
1—u

f(u)?> (27)

In what follows, we are trying to investigate the monotonicity of the latter function. The derivative of this
with respect talis

(1—u)'_ —xo—(1-u)g2
X ) X '

We have to determine the sign of the numerator. Uding (25), we obtain

_XO_(l—u)%—XS —% (1+<1—u)exolu) =% <1+(1‘“)Tiou)

Xo | 1+ 1
1-7%5%0
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Sincexp # 0, the expression on the right hand side is 0 if and onkg i 2(1—u)/u. That is

_2(1-u)

l-e v —2(1-u)=0.

But the function 1-e " — 2(1—u) is strictly less than zero fan < 1, and its only root in(0,1] is
u= 1. This follows from the monotonicity of + e~ a5 2(1—u) with respect tau. Note, also, that
for u= (1—e72)/2, we havex, = 2. Sinceu < 1/2, the monotonicity ofy with respect tau implies
thatxo(1/2) < 2. This observation along with the above result yiejd> 2(1 — u)/u, which implies that
1+ Eli_m <0, for 0< u < 1. Hence, the derivative dflL — u)/xo with respect tau is positive, and,

therefore, this is a strictly increasing function with respectitorhus, foru < 1, this is an increasing
function. We will use this fact to obtain a lower bound fit, r) for specifict, r.

B Some calculations from Subsection 34

In this Appendix we present the elementary but tedious calculations for the fultigm,\) on D, as
it was defined in Subsectian'B.4:

P(k,a,\) =
;]
n(z_a_k)(l_a)<1e—u>(1—5)(1_k>e‘<2‘“‘k> SSHM (1;">7
nz(1-k)z 1-a
n(%+93) 11— a,n0/2) n(3- %210 ¢k (1-1)8/2) x
;]

() (E) (M) )

Q- 0a-KiRe @k o1k F2(1-a) 21-K)
- DY & (1—a> f< o) )f(eu—m)
(1—K)(k—a)) 22N (1-K)(k—a))?
t(1—a,A8/2) t(1—k, (1—A)8/2) ((p(km ) (1(p(k7a) > ,
where
x\Y x O\ *Y)
txy) = (€92 (o) *e 00 Gy (B (LX)
wherexy = Xo(X/y). Thus, for(k,a,A) € D we have
P'(k,a,A) =
(1- )0 -kONe@ah o 1 kN e (g
R (1-k)} 2 (1—0() (84— 1)) (xg)~ 7 e (2401 x
oA (2 +a-1) A9\ L A8 (% +a-1)
(5 1) (aa) (92"+§_1> x

6_6a

(exz _ 1)(1—k) (XZ)—g(l—)\) e7(§7771+k) «

0_0) (5-2-1+k)
0 O\ (8-2-140 rg1_p)\ @M 8(1-2)
(22 (2aw) ((Hk)) :

() 1 (3) (S (s e)?




224 Nikolaos Fountoulakis and Colin McDiarmid

A8
— (1-k)228H0 (i_k> ? (€1 — 1)"-9) (ge _ 1)K (x) % (x,) 31N g8
—a

(o) (pa )™

T (28,
_ _ S(-») _ _ ¥
(e (ke

wherex; = Xg (2%;\0‘) ) i.e. it is the positive root of the equation
v 2(1-0a)
— X_ —
l-e N x=0 (28)
andxz = Xg (38:')?)) i.e. it is the positive root of the equation
« 2(1-k)
—_ X —_ =
l-e 9(1—)\)X 0. (29)

C The concavity of h(k,a,A) over D

In this Appendix, we show that the functitigk, a, M) as it was defined in Secti¢h 5 is strictly concave over
the interior ofD, whereD was defined in[(37). (Recall that the functibtk, a, A, 0) was defined in[(18),
and we have fixe® = 6, = 4.9895 to obtairh(k,a,A).) This treatment improves the proof in an earlier
version of this paper; and was inspired by the correctioh [12] o [14]. We split the funiotion, A)
(multiplied by In 2 to change to natural logarithms) into four parts. Namely, for(kiyy,A) € D, we have

In2 h(k,a,A) = hy(k,a,A) +ha(k,o,A) +ha(k,a,A) + %h4(k7a,)\),

where

h(ka,A) = —(1—k)|n(1—k)—(k—u)ln(k—a)—alncx+(%—%Iog(e)—i—%log(%))mz,
ha(k,a,\) = (l—k)ln(eXZ—l)—9—22(1—)\)Inxz—wwl—k)—k@ln(l—)\y
ha(k,a,A) = (l—a)ln(e?‘l—l)—)\—gzlnxl—)\—gzln(l—a)Jr)\—gzln)\,

ha(k,a,A) = —AINA—(L=A)In(1=A)+(1=A)In(1—K) + (1= A)In(k—a) + Alna+Aln(1—a),

andxz, X2 are defined in[(28) andl (R9), respectively. Ferl, ..., 4, we set; = hi(k,a,A). We prove that

each of these functions is concave over the interiabpfvith hy being strictly concave there. To prove

that a suitably differentiable function is concave (strictly concave, respectively) over an open domain,
we have to prove that its Hessian matrix (i.e. the matrix of the second partial derivatives) is negative
semidefinite (definite, respectively) over this domain (see for exarnple [21], Theorem 5.5.5 p. 230). By,
for example, Theorem 6E in19] (p.339), to check negative semidefiniteness (definiteness, respectively)
of a real symmetric matrix it is necessary and sufficient to show that the principal minors have alternating
signs (and are non-zero in the case of definiteness), the first one being non-positive. Thus, we may deal
with hy, ..., hy as follows (for further details of the calculations see [10]).

1. Observe thah; does not depend ok. It can be easily checked that it is concave ofer The
elements of the Hessian matrix with respedtenda are the following:

9%hy 1 1 1

K 1k ko) k-a)
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%hy 1

okda  k—a’

2y 1 1 1
a2~ a k—a  (k—a)

2 2h. A2 2 2 .
Thus"a% <0 and%%—hzl - (%) > 0, and so is concave ové?.

2. Next we consider the functid®, which does not depend @n After doing some algebraic manip-
ulations and usind{29) anfi{26), we obtain:

Py & 1A %

k2 2 (1-K21+x—ee
Similarly,

62h2 B 0 X2

A2 2(1-A)1+x—ex’
and

h &1 %

okon 21-kldxp—e2

2h . : 2, 6%h Php\2 i
Clearly we havel2 < 0 and itis easily checked from the above tAgg 2% — (ﬁ) is identi-

cally 0 over®D; and soh; is concave there.

3. The functionhz has precisely the same form lag where 1— A has been replaced By Thus, we
deduce thahs is also concave over the interior @f.

4. We show thah, is strictly concave over the interior @p. Its Hessian matrix is:

Phy 0%y O%hy B 5 N £ 1-A 11
a2 Okda  OKoA (1-K2 ~ (k—a)? (k—a)2 Tk ka
ohy  0%hy  ha | 1-) 1A A 111
okoa azaZ 900\ (k—a)? (k—0)2 o2 5170)2 k—a "o 1-a
?hy  0%hy %My L1 1 .1 1 11
OkoA 000N  9AZ 1-k —a k—-a " a 1-a A 1A

To show strict concavity, it suffices to show that the principal minors are non-zero and have alter-
nating signs with the first one being negative. It is easy to see that the first two principal minors are
. . 2 2 . . L . . .

as required, smc%% and%m—hz4 are strictly less thar-—1=2,. The third principal minor, which is

(k—a)?"
the determinanh of the matrix, satisfies

1-Na?(1—a)?+4ra(l—a)(k—a)(1—k) —22%(k—a)(1—k)
M2(1-a)?(k—a)2(1—-k)2 ’

and this can verified e.g. by using Maple (or see [10] for the details). The denominator is always
strictly positive, so it is sufficient to show that the numerator in negative for(lwy,A) € D.

Let us fixa,A < 1 and express the numerator as a quadratic functidy &r o <k < 1. We
obtain—k2n +k(a+1)n— ((1—A)a?(1—a)?+an), wheren = (4a(1—a) —2\)A. If n =0, then
obviously this expression is negative. On the other hand foo or k= 1, the above expression is
equal to—(1—A)a?(1—a)? < 0. So, to show that this quadratic function is negative it is sufficient

to prove that at its stationary poikt= (a + 1)/2 this is negative. But the value of the function at
this point is

-

—(1—)\)0(2(1—0()2+)\0((1—0()3—)\2(172_0()2 = —(1—0()2(%2+%(a—)\)2><0,

and this concludes the proof of the strict concavityhpbver D.
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