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Matching solid shapes in arbitrary dimension
via random sampling

Daria Schymura†

Institut für Informatik, Freie Universität Berlin, Germany

We give simple probabilistic algorithms that approximately maximize the volume of overlap of two solid, i.e. full-
dimensional, shapes under translations and rigid motions. The shapes are subsets of Rd where d ≥ 2. The algorithms
approximate with respect to an pre-specified additive error and succeed with high probability. Apart from measura-
bility assumptions, we only require that points from the shapes can be generated uniformly at random. An important
example are shapes given as finite unions of simplices that have pairwise disjoint interiors.
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1 Introduction
We design and analyze simple probabilistic algorithms for matching solid, i.e. full-dimensional, shapes in
d-dimensional Euclidean space (d ≥ 2), under translations and rigid motions. Given two shapes A,B ⊂
Rd, we search a translation (or a rigid motion) t such that t(A) and B match well. We measure the quality
of the match by |t(A) ∩B|/|A| where | · | denotes the volume (Lebesgue measure).

We assume that the shapes are given by an oracle that generates points from the shapes uniformly
at random (u.a.r.). A common representation of solid shapes, which satisfies this assumption, are finite
unions of full-dimensional simplices. A full-dimensional simplex is defined as the convex hull of d + 1
affinely independent points in Rd. The simplices of a shape are assumed to have pairwise disjoint interiors.
Hence, in two dimensions, a shape is a polygonal region, which is given as the union of triangles. It can
have holes and is not necessarily connected. This class of shapes is very rich; it contains the homogeneous
geometric simplicial complexes as a subclass.

On the input of two shapes A and B, the algorithms compute a transformation t∗ such that the volume
of overlap of t∗(A) and B is approximately maximal. For translations, the idea of the algorithm is as
follows. Given two shapes A and B, pick a point a ∈ A and a point b ∈ B u.a.r. This tells us that the
translation t that is given by the vector b− a maps some part of A onto some part of B. We record this as
a “vote” for t and repeat this procedure multiple times, say N times. Then we determine a densest cluster
of the resulting point cloud of translation vectors, and output the center of this cluster. The details of the
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algorithm are explained in Section 2. The algorithm for matching under rigid motions follows a similar
idea. It is explained in Section 3.

We show that the algorithms approximate the maximal volume of overlap under translations (or rigid
motions) in the following sense. Let topt be a transformation, i.e. translation or rigid motion, that maxi-
mizes the volume of overlap ofA andB, and let t∗ be a transformation that is computed by our algorithm.
Given an error bound ε ∈ (0, 1) and an allowable probability of failure p ∈ (0, 1), we show bounds
on the sample size and the clustering size, guaranteeing that |topt(A) ∩ B| − |t∗(A) ∩ B| ≤ ε|A| with
probability at least 1− p. In this case, we say that t∗ maximizes the volume of overlap of A and B up to
an additive error of ε|A| with probability at least 1− p. We use ε|A| and not just ε as error bound because
the inequality should be invariant under scaling of both shapes with the same factor.

In the planar case, these algorithms are instances of a probabilistic algorithmic scheme for approximat-
ing an optimal match of planar sets. Alt and Scharf [1] analyzed an instance of this algorithmic scheme
that compares polygonal curves under translations, rigid motions, similarities, and other subsets of affine
transformations.

In a previous publication [2], we considered the 2-dimensional case. Here we not only generalize
the results to arbitrary dimension d ≥ 2, but we also give new proofs that improve the bounds on the
number of random samples N. Furthermore we considerably improve the time complexity of the algo-
rithm by showing that a simpler definition of a cluster suffices to guarantee approximation. We represent
translations and rigid motions as vectors. Let B(t, δ) be the closed ball around the transformation t of
radius δ with respect to some chosen metric. The neighborhood of a transformation t is defined to be
the ball B(t, δ) of some prescribed radius δ, which is called the clustering size. In [2], that transforma-
tion was computed whose neighborhood contained the maximal number of “votes”. This boils down to
computing a deepest cell of an arrangement of boxes. For N boxes in Rk, the best known time bound is
O
(
Nk/2/(logN)k/2−1 polyloglogN

)
[3]. Here we show that it is sufficient to output the “vote” whose

neighborhood contains the maximal number of “votes”, which can be computed by brute force in time
O(N2) in any dimension. The time bound can be further improved to O(N(logN)d−1) by using orthog-
onal range counting queries [5] in the case of translations.

Cheong et al. [4] introduce a general probabilistic framework, which they use for approximating the
maximal area of overlap of two unions of n and m triangles in the plane, with pre-specified absolute
error ε, in time O(m + (n2/ε4)(log n)2) for translations and in time O(m + (n3/ε8)(log n)5) for rigid
motions. The latter time bound is smaller in their paper, due to a calculation error in the final derivation
of the time bound, as was noted in [17]. Their algorithm works with high probability.

For two simple polygons with n and m vertices in the plane, Mount et al. [11] show that a translation
that maximizes the area of overlap can be computed in time O(n2m2).

For maximizing the volume of overlap of two unions of simplices under rigid motions, no exact al-
gorithm that runs in polynomial time is known, not even in the plane. Vigneron gives an FPTAS with
relative error ε for dimension d ≥ 2 [17]. For two polyhedra P and Q in Rd, given as the union of
m and n simplices, respectively, the algorithm for approximating the maximal volume of overlap has
time complexity O

(
(nmε )d

2/2+d/2+1(log nm
ε )d

2/2+d/2+1
)
. In the plane, this can be improved to time

O
(
(n6/ε3) log4(n/ε)β(n/ε)

)
where β is a very slowly growing function related to the inverse Acker-

mann function.
We describe the algorithm for matching under translations in Section 2. We also give the main results

for translations, which are the approximation property of the algorithm and an upper bound on the time
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complexity of the algorithm. In Section 3, we present the algorithm and the main results for rigid motions,
which are again the approximation property and an upper bound on the time complexity of the algorithm.
Section 4 contains a theorem for approximating Lipschitz continuous density functions uniformly by the
empirical measure. We apply this theorem in Section 5 to give the postponed proofs of the approximation
properties of both algorithms.

2 Matching under translations via random sampling
A translation ft : Rd → Rd, ft : x 7→ x + t is identified with its translation vector t, so the translation
space equals Rd. Observe that an ordered pair of points in Rd uniquely determines a translation mapping
the first point onto the second. We denote the Euclidean norm by | · |, and the maximum norm by || · ||∞.
Let B∞(t, δ) be the closed ball around t ∈ Rd of radius δ with respect to || · ||∞.

We give a pseudocode description of the algorithm for translations, Algorithm 1.

Algorithm 1: ProbMatchT(A,B, δ,N )

Input: shapes A,B ⊂ Rd, clustering size δ > 0, sample size N ∈ N
collection Q← ∅;
for i = 1 . . . N do

point a← randomPoint(A) ; // returns a point from A u.a.r.
point b← randomPoint(B);
add(Q, b− a);

end
return FindDensestClusterT(Q, δ);

Function FindDensestClusterT(Q, δ)
Input: collection Q of points in Rd, positive number δ
Output: point t∗ ∈ Q such that B∞(t∗, δ) ∩Q has maximal cardinality

Before stating the main result for translations, we introduce some definitions. The boundary ∂A of
a set A ⊆ Rd is the set of points that are contained in its closure, but not in its interior. We measure
the boundary of d-dimensional sets by the (d − 1)-dimensional Hausdorff measure Hd−1, and denote
it slightly sloppily by |∂A| most of the time. For a definition of the Hausdorff measure and related
definitions, we refer the reader to [8]. The isoperimetric quotient of A ⊂ Rd is defined to be |∂A|d/|A|d−1.
The isoperimetric quotient can be considered as a certain measure of the fatness of a figure A.

We always assume shapes to be subsets of Rd that are Borel sets, have positive, finite Lebesgue measure
and have aHd−1-measurable and (Hd−1, d− 1)-rectifiable boundary.

Theorem 1 (Approximation property of Algorithm 1) Let A,B ⊂ Rd be shapes in constant dimen-
sion d, and let ε, p ∈ (0, 1) be parameters. There exists a universal constant C > 0 such that,
if 0 < δ ≤ 2

√
d

3(d+1) ε
|A|
|∂A| and N ≥ Cε−2 δ−2d |B|2 log 2

p , then Algorithm 1 with input (A,B, δ,N)

computes a translation that maximizes the volume of overlap of A and B up to an additive error of ε|A|
with probability at least 1− p.
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The universal constant C can be deduced from the proofs. We postpone the proof of this theorem to
Section 5. The algorithm can also provide a good estimate of the maximal volume of overlap. Let t∗ be
the output of the algorithm, i.e. the random translation maximizing the number of points in B∞(t, δ)∩Q.
The number #(B∞(t∗, δ)∩Q) · |A| · |B| (2δ)−dN−1 differs from maxt∈Rd |t(A)∩B| by at most 3

2ε|A|,
with probability at least 1− p.

Our algorithm can be applied to all shapes from which we can generate random sample points from
the uniform distribution. For unions of simplices, the runtime of our method depends only linearly on the
number of vertices, but it depends more significantly on fatness parameters as the isoperimetric quotient
of one of the shapes and, in the case of rigid motions, on the ratio diam(A)d/|A|.

Theorem 2 (Runtime for translations) Let A and B be shapes in constant dimension d, and let ε, p ∈
(0, 1) be parameters. Assume that we are given an upper bound KA on the isoperimetric quotient of A, a
lower bound mA on |A| and an upper bound MB on |B|. Assume further that N points from a shape can
be generated u.a.r. in time T (N).

Then a translation that maximizes the volume of overlap of the shapes A and B up to an additive
error of ε|A| with probability ≥ 1 − p can be computed in time O

(
T (N) + N(logN)d−1

)
where

N = O
(
ε−(2d+2) (KAMB/mA)2 log 2

p

)
.

If A and B are finite unions of at most n simplices that have pairwise disjoint interiors, then T (N) =
O(n+N) and the bounds KA, mA and MB can be computed in time O(n).

Proof of Theorem 2: By assumption, we are given an upper bound KA on the isoperimetric quotient of
A, a lower bound mA on |A|, and an upper bound MB on |B|. Hence we can compute a clustering size δ
and a sample size N that fulfill the bounds in Theorem 1 in constant time:

δ := 2
√
d

3(d+1) ε (mA/KA)1/d ≤ 2
√
d

3(d+1) ε
|A|
|∂A| ,

N :=
⌈
C ε−2 δ−2dM2

B log 2
p

⌉
≥ C ε−2 δ−2d |B|2 log 2

p .

With input (A,B, δ,N), Algorithm 1 computes a translation with the desired property, so we have to
upper bound the runtime of Algorithm 1. By assumption, we can generate N points from a shape u.a.r. in
time T (N). For addingN points to a collectionQ and then computing FindDensestClusterT(Q, δ), we do
the following. Let Q = {t1, . . . , tN}. We build a standard orthogonal range counting query data structure
for t1, . . . , tN in time O

(
N(logN)d−1

)
. We query the data structure N times with the cubes B∞(ti, δ).

Each query takes time O
(
(logN)d−1

)
. Hence a translation tj maximizing #(B∞(ti, δ) ∩ Q) can be

computed in time O
(
N(logN)d−1

)
for all t1, . . . , tN ∈ Rd and δ > 0. For details and references on

range counting queries, see for example [5].
It remains to show that T (N) = O(n+N) and the bounds KA, mA and MB can be computed in time

O(n) in the case of unions of simplices. Since we regard d as a constant, the volume of a simplex can
be computed in constant time, and we can compute mA := |A| and MB := |B| in time linear in n. We
do not know how to compute |∂A| in time linear in n since A is given as a set of simplices. But we can
compute an upper bound on |∂A| in linear time by adding all (d−1)-dimensional volumes of the facets of
the simplices. Obviously, this bound can be bad as many of the facets may lie in the interior of the shape,
but it can be sharp as it is matched for collections of pairwise disjoint simplices.

To generate points fromA u.a.r., first draw a simplex fromAwith probability proportional to the volume
of the simplex. Then we draw a point from this simplex u.a.r. For drawing a simplex, we use the alias
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method [18]. Let A be the union of the simplices ∆1, . . . ,∆n that have pairwise disjoint interiors. Let
pi := |∆i|

|A| . The vector (p1, . . . , pn) describes the discrete probability distribution according to which we
have to pick a random point from simplex ∆i. The alias method can be implemented such that after O(n)
preprocessing time, we can sample random points from (p1, . . . , pn) in timeO(1) [14]. Generating a point
from a d-dimensional simplex u.a.r. can be done inO(d log d) time by generating d numbers in [0, 1] u.a.r.,
sorting them 0 ≤ x1 < · · · < xd ≤ 1 and taking the spacings x1, x2 − x1, . . . , xd − xd−1, 1 − xd as
barycentric coordinates of the point in the simplex [6]. Thus generating N random points in A and B
takes T (N) = O(n+N) time. 2

3 Matching under rigid motions via random sampling
A rigid motion r : Rd → Rd is a map given by r(x) = Mx+ t for some rotation matrix M ∈ Rd×d and
some translation vector t ∈ Rd.A matrixM is contained in the group of rotation matrices SO(d) ⊂ Rd×d
if it is orthogonal, meaning MT = M−1, and detM = 1. We identify each rigid motion with the pair of
its rotation matrix and translation vector. Thus the space of rigid motions equals SO(d)× Rd.

The algorithm for rigid motions works similarly as the algorithm for translations. We draw a rotation
matrix M ∈ SO(d), a point a ∈ A and a point b ∈ B u.a.r. Then we register the unique rigid motion that
has M as rotation matrix and maps a onto b as a “vote” in the transformation space. After many rounds,
we determine the best cluster in the space of rigid motions.

Within the algorithm, rotation matrices are drawn u.a.r. To define the uniform distribution on SO(d), a
volume has to be defined. The group SO(d) is a

(
d
2

)
-dimensional manifold. We measure the volume | · |

in SO(d) by the
(
d
2

)
-dimensional Hausdorff measure [8], which is a Haar measure on SO(d).

For a matrix M = (mij)1≤i,j≤d, let ||M ||2 =
√∑

1≤i,j≤d(mij)2 be the Frobenius norm. For M ∈
SO(d) and t ∈ Rd, let B2(M, δ) and B2(t, δ) be the closed balls of radius δ with respect to the metrics
induced by the Frobenius and the Euclidean norm. We define a metric on the space of rigid motions,
which depends on the input shape A, by

dist
(
(M,p), (N, q)

)
= max{∆A||M −N ||2, |p− q| }

for some given ∆A ≥ diam(A). We define a δ-neighborhood of a rigid motion (M, t) by B
(
(M, t), δ

)
=

B2(M, δ/∆A)×B2(t, δ),which is the closed ball with respect to the metric dist around (M, t) of radius δ.
The radius of the rotational part of the neighborhood depends on the diameter of A because it should not
change if A is scaled. The “rotational distance” of shapes does not depend on their absolute size. The
center of a best cluster is a random rigid motion (“vote“) whose neighborhood contains the maximal
number of random rigid motions. We give a pseudocode description of the algorithm for rigid motions,
Algorithm 3.

Theorem 3 (Approximation property of Algorithm 3) LetA,B ⊂ Rd be shapes in constant dimension
d, and let ε, p ∈ (0, 1) be parameters. There are constants C,C ′ > 0 such that, if 0 < δ ≤ Cε |A||∂A| and

∆ ≥ diam(A) and N ≥ C ′ε−2 δ−d
2−d ∆d2−d |B|2 log 2

p , then Algorithm 3 with input (A,B, δ,N,∆)

computes a rigid motion that maximizes the volume of overlap of A and B up to an additive error of ε|A|
with probability ≥ 1− p.
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Algorithm 3: ProbMatchRM(A,B, δ,N,∆)

Input: shapes A,B ⊂ Rd, clustering size δ > 0, sample size N ∈ N, diameter bound ∆
collection Q← ∅;
for i = 1 . . . N do

// randomRotation() returns a rotation matrix u.a.r.
rotation matrix M ← randomRotation();
point a← randomPoint(A);
point b← randomPoint(B);
add(Q, (M, b−Ma));

end
return FindDensestClusterRM(Q, δ,∆);

Function FindDensestClusterRM(Q, δ,∆)

Input: collection Q of points in Rd×d × Rd, positive numbers δ and ∆
Output: point (M, t) ∈ Q such that the neighborhood B2(M, δ/∆)×B2(t, δ) of (M, t) contains a

maximal number of points from Q

We postpone the proof of this theorem to Section 5 and continue by discussing an upper bound on the
runtime of Algorithm 3.

Theorem 4 (Runtime for rigid motions) Let A and B be shapes in constant dimension d, and let ε, p ∈
(0, 1) be parameters. Assume that we are given an upper bound ∆A on diam(A), an upper bound KA on
the isoperimetric quotient ofA, a lower boundmA on |A| and an upper boundMB on |B|. Assume further
that N points from a shape can be generated u.a.r. in time T (N). Then a rigid motion that maximizes the
volume of overlap of A and B up to an additive error of ε|A| with probability ≥ 1 − p can be computed
in time O

(
T (N) +N2

)
where N = O

(
ε−(d2+d+2)Kd+1

A Dd−1
A (MB/mA)2 log 2

p

)
and DA := ∆d

A/mA is
an upper bound on the ratio diam(A)d/|A|.

Note that a bound ∆A can be computed in linear time in the case of unions of simplices by com-
puting the maximal distance D of a vertex from the origin. W.l.o.g. the shape contains the origin.
Then 1

2 diam(A) ≤ D ≤ diam(A), and we take ∆A = 2D as the upper bound on the diameter of A.
Hence the bounds ∆A, KA, mA and mB can be computed in linear time.

Proof of Theorem 4: We can compute in constant time a clustering size δ and a sample size N that
guarantee approximation by Theorem 3, using the given bounds ∆A, KA, mA and MB , similarly as in
the case of translations.

There are many methods to generate uniformly distributed random orthogonal matrices described in
the literature, the first being [10, 15]. A simple method to generate an orthogonal matrix u.a.r. is to
compute

(
d
2

)
random rotations of two axes, while all other axes are fixed [6]. The time needed is constant

since we regard the dimension as constant.
To determine the densest cluster, we simply check by brute force for every pair {r, r′} of random rigid

motions that is generated in the algorithm if dist(r, r′) ≤ δ. One test can be done in constant time. So we
can determine a densest cluster in time O(N2). 2
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In the 2-dimensional case, the results can be significantly improved by representing a rigid motion by
the pair of its rotation angle (instead of the rotation matrix) and the translation vector, as it was done
in [2]. The running time then becomes O

(
T (N) + N(logN)2

)
. In dimension 3, the running time can

be improved to O
(
T (N) + N(logN)5

)
by representing the rotation by three angles. In both cases,

the improvement comes from the fact that the different representation of rigid motions allows to use
neighborhoods for the clustering that are boxes in R3 or R6, respectively. Then orthogonal range counting
queries can be used as in the case of translations. For details, see [13, Section 8.5].

4 The probabilistic toolbox
Let µ be the probability distribution on the transformation space that is induced by the random experiment
in the algorithm, and let µN be the empirical measure. The main idea is to prove that the density function
of µ is proportional to the objective function, that is the function that maps a transformation t to |t(A)∩B|.
Thus the goal is to find a transformation at which the density function is approximately maximal.

Conceptually, the density function is approximated in a two step process. Let B(t, δ) be a ball of
radius δ, centered at t, with respect to some metric. For translations, we choose the metric that is induced
by the maximum norm. First, f(t) · |B(t, δ)| is close to µ(B(t, δ)) if f is nice enough and δ is sufficiently
small. Second, the probability of a small cube µ(B(t, δ)) is close to µN (B(t, δ)) ifN is sufficiently large.

The analysis of the algorithm is based on these simple ideas. The details are hidden in the following
longish theorem that follows from theorems in [7, Chapters 2 and 4]. For the definition of the Vapnik-
Chervonenkis dimension (VC dimension), see [16].

Theorem 5 (Probabilistic toolbox) Let Ω ⊆ Rk be a metric space, let δ > 0, and let Bδ be the set of
balls of radius δ in Ω. Let vol be a measure on Ω such that there is vδ > 0 with vol(B) = vδ for all
B ∈ Bδ. Assume further that B has finite VC dimension V.

Let µ be a probability measure on Ω that has a Lipschitz continuous density function f with Lipschitz
constant L. Let X1, . . . , XN be i.i.d. random variables taking values in Ω with common distribution µ
and empirical measure µN .

Let j ∈ {1, . . . , N} be such that µN
(
B(Xj , δ)

)
= max{µN

(
B(Xi, δ)

)
: 1 ≤ i ≤ N}. There is a

universal constant c such that, for all τ > 0, with probability ≥ 1− 2e−2Nτ2

, we have

f(Xj) ≥ f(x)− 2(c
√
V/N + τ)/vδ − 3Lδ for all x ∈ Ω. (1)

We cite two results from [7], which we will use to prove Theorem 5.

Theorem 6 ([7, Chapter 2]) Let N ∈ N and let X1, . . . , XN be i.i.d. random variables taking values
in Rk with common distribution µ and empirical distribution µN . Let C be a class of subsets of Rk. For
all τ > 0,

P

(∣∣∣sup
C∈C
|µN (C)− µ(C)| −E

(
sup
C∈C
|µN (C)− µ(C)|

)∣∣∣ > τ

)
≤ 2e−2Nτ2

.

Theorem 7 ([7, Chapter 4]) Let X1, . . . , XN be i.i.d. random variables taking values in Rk with com-
mon distribution µ and empirical distribution µN . Let C be a class of subsets of Rk with VC dimension V.
There is a universal constant c such that

E
(

sup
C∈C
|µN (C)− µ(C)|

)
≤ c
√
V/N.
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The constant c could be bounded explicitly. Using an inequality of Haussler [9] (cited from [7, Chapter
4]), one can show c < 75.

Proof of Theorem 5.: Because of the Lipschitz continuity of f and the definition of the density function,
for all B ∈ Bδ with center x holds

|f(x) − µ(B)/vδ| ≤ Lδ. (2)

By the triangle inequality and Theorems 6 and 7, we know that with probability at least 1− 2e−2Nτ2

for
all B ∈ Bδ

|µ(B) − µN (B)| ≤ c
√
V/N + τ. (3)

Let η = (c
√
V/N + τ)/vδ. If f(x) ≤ η + Lδ for all x ∈ Ω, then Equation (1) is true because f is

non-negative. Assume that there is an x ∈ Ω such that f(x) > η+Lδ. Let x̄ ∈ Ω be a point for which f is
maximal. If f does not attain its supremum, then let ε′ > 0 and let x̄ be a point such that f(x̄) > η + Lδ
and f(x̄) + ε′ > f(x) for all x ∈ Ω.

Let B̄ = B(x̄, δ). By the triangle inequality and Inequalities (2) and (3), we have

f(x̄) ≤ µN (B̄)/vδ + η + Lδ,

which implies µN (B̄) > 0. Therefore there is an i ∈ {1, . . . , N} such that Xi ∈ B̄. Since f is Lipschitz
continuous, we have

|f(x̄)− f(Xi)| ≤ Lδ. (4)

We put things together now. First we use Inequality (4). Second we use Inequalities (2), (3) and the
triangle inequality. Third we use the assumption onXj . Lastly we use Inequalities (2), (3) and the triangle
inequality again. We get that with probability at least 1− 2e−2Nτ2

the following holds:

f(x̄) ≤ f(Xi) + Lδ

≤ µN (B(Xi, δ))/vδ + η + 2Lδ

≤ µN (B(Xj , δ))/vδ + η + 2Lδ

≤ f(Xj) + 2η + 3Lδ.

Since this holds for all small ε′ > 0, it implies f(x) ≤ f(Xj) + 2η + 3Lδ for all x ∈ Ω and thus
Inequality (1). 2

5 Analysis of the algorithms (Proof of Theorems 1 and 3)
The key lemma for applying Theorem 5 to the analysis of Algorithms 1 and 3 states that the density
function of µ is proportional to the objective function.

Lemma 8 (Key lemma)

(i) Let X be the random vector on Rd that draws translations t = b− a where (a, b) ∈ A×B ⊂ R2d

is drawn u.a.r. The density function of X is given by f(t) = |t(A)∩B|
|A|·|B| .
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(ii) Let Y be the random vector that draws rigid motions (M, b−Ma) ∈ SO(d)×Rd where (M,a, b) ∈
SO(d)×A×B is drawn u.a.r. The density function of Y is given by g(r) = |r(A)∩B|

|SO(d)|·|A|·|B| .

Proof: (i) Translations. Let Z be the random vector that draws points (a, b) ∈ Rd × Rd u.a.r. Its
density function fZ is given by fZ(x) = χA×B(x)

|A| |B|) . Let ϕ : A × B → A × (−A ⊕ B) be the func-

tion defined by ϕ(a, b) = (a, b − a). Let J =

(
Id 0
−Id Id

)
where Id denotes the (d × d)-identity

matrix. We have ϕ(x) = Jx and det J = 1. By a simple transformation rule for integrals, the
density function of Y = ϕ(Z) equals fY (a, t) = χA×B(a,a+t)

|A| |B| . Let π be the projection defined by
π : A× (−A⊕B)→ (−A⊕B), π : (a, t) 7→ t, and define X = π(Y ). The density function f of X
equals

∫
Rd fY (a, t)da. Since χA×B(a, a+ t) = χA(a)χB−t(a) = χA∩(B−t)(a), we have

f(t) =

∫
Rd

χA∩(B−t)(a)

|A| |B|
da =

|A ∩ (B − t)|
|A| |B|

=
|(A+ t) ∩B|
|A| |B|

.

(ii) Rigid motions. The random experiment consists in drawing points from Ω = SO(d) × A × B
uniformly at random. Our goal is to determine the density function fY of the random variable

Y : Ω→ SO(d)× Rd, Y : (M,a, b) 7→ (M, b−Ma).

The density function of Y can be expressed in terms of the conditional densities of the two random
variables

YSO(d) : Ω→ SO(d), YSO(d) : (M,a, b) 7→M,
YA×B : Ω→ Rd, YA×B : (M,a, b) 7→ b−Ma.

The density function of Y is the joint density of the random variables YSO(d) and YA×B . The conditional
density function can also be expressed in terms of the joint density function

fA×B(t | YSO(d) = M) = fY (M, t)/fSO(d)(M). (5)

Clearly, fSO(d) ≡ 1/|SO(d)|. The conditional density function fA×B(t | YSO(d) = M) equals the
density function of the translational case for the shapes MA and B and thus is |(MA+t)∩B|

|A| |B| . Therefore,

fY (M, t) = |(MA+t)∩B|
|A| |B| |SO(d)| . 2

Furthermore we have to show that the density functions f and g are Lipschitz continuous. We show this
by using the following theorem that gives upper bounds on the volume of sets A4 t(A) for translations
and rotations t. Therein 4 denotes the symmetric difference. Let Hd be the d-dimensional Hausdorff
measure. For Lebesgue measurable sets in Rd, the d-dimensional Hausdorff measure and the Lebesgue
measure coincide.

Theorem 9 [12] Let A ⊂ Rd be bounded.

(i) For all translation vectors t ∈ Rd, we haveHd
(
A4 (A+ t)

)
≤ |t|Hd−1(∂A).

(ii) Assume that A has an (Hd−1, d − 1)-rectifiable boundary. For all rotation matrices M ∈ Rd×d,
we haveHd(A4MA) ≤ maxa∈∂A |a−Ma|Hd−1(∂A).
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Corollary 10

(i) The function f, as defined in Lemma 8, is Lipschitz continuous with constant L =
√
d |∂A|

2|A|·|B| with
respect to the metric that is induced by the maximum norm.

(ii) The function g, as defined in Lemma 8, is Lipschitz continuous with constant L = |∂A|
|SO(d)|·|A|·|B|

with respect to the metric defined by dist
(
(M,p), (N, q)

)
= max{∆A||M −N ||2 , |p− q| }.

Proof: Let s, t : Rd → Rd be translations or rigid motions. Then∣∣|s(A) ∩B| − |t(A) ∩B|
∣∣ =

∣∣|(s(A) \ t(A)) ∩B| − |(t(A) \ s(A)) ∩B|
∣∣

≤ max
{
|t(A) \ s(A)|, |s(A) \ t(A)|

}
= 1

2 |s(A)4 t(A)| = 1
2 |A4 (s−1 ◦ t)(A)|.

(i) Translations. The map s−1 ◦ t corresponds to the translation vector t − s. By the above inequality
and Theorem 9, we have

∣∣|s(A)∩B| − |t(A)∩B|
∣∣ ≤ 1

2 |t− s| · |∂A|. Because of |t− s| ≤
√
d||t− s||∞,

the claim is proved.
(ii) Rigid motions. Let s = (M,p) and t = (N, q). The map s−1◦r is a rigid motion with rotation matrix

N−1M and translation vector x := N−1(p−q).We have |x| = |p−q| and |a−N−1Ma| = |Na−Ma|.
Therefore, by the above inequality, the triangle inequality and Theorem 9, we have∣∣|s(A) ∩B| − |t(A) ∩B)|

∣∣ ≤ 1
2 |A4 (N−1MA+ x)|

≤ 1
2

(
|A4 (N−1MA)|+ |(N−1MA)4 (N−1MA+ x)|

)
≤ 1

2

(
|p− q|+ max

a∈∂A
|Na−Ma|

)
|∂A|.

≤ 1
2

(
|p− q|+ max

a∈∂A
||N −M ||2|a|

)
|∂A|.

Since w.l.o.g. A contains the origin, we have maxa∈∂A |a| ≤ diam(A). This implies

|p− q|+ max
a∈∂A

||N −M ||2|a| ≤ 2 dist(s, t),

and thus the claim. 2

Proof of Theorem 1: We apply the probabilistic toolbox Theorem 5 to the translation space (Rd, || · ||∞).
Let Bδ be the set of closed balls that have radius δ. For every B ∈ Bδ, we have |B| = 2dδd. The VC
dimension of the class of rectangles in Rd equals 2d [7].

Let X1, X2, . . . , XN be the random translations in the algorithm. Denote their common distribution
by µ. By Lemma 8, the measure µ has a density function f that is given by f(t) = |t(A)∩B|

|A| |B| , and by

Lemma 10, f is Lipschitz continuous with constant L =
√
d|∂A|

2|A| |B| .

Let µN be the empirical measure of µ. Algorithm 1 computes a B∗ ∈ Bδ such that µN (B∗) =
max{µN (B(Xi, δ)) : i = 1, . . . , N}. Let t∗ be the center of B∗. By Theorem 5, there is a constant
c > 0 such that, for all τ > 0, with probability at least 1− 2e−2Nτ2

, we have

f(t∗) ≥ f(t)−
(

2c
√

2d√
N(2δ)d

+
2τ

(2δ)d
+ 3Lδ

)
for all t ∈ Rd. (6)
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Let ε, p ∈ (0, 1). We want to keep N as small as possible as the runtime of our algorithm grows with N.
We determine the minimal value of N and a compatible value of δ for which we can guarantee that with
probability at least 1 − p the error is at most ε|A|. For the sake of clarity, we compute N only up to a
constant.

Since p ∈ (0, 1) is the allowable probability of failure, we should have 2e−2Nτ2 ≤ p, which is

equivalent to τ ≥
√

1
2N log 2

p . The larger τ is, the larger is the error term in Inequality (6), so we set

τ =
√

1
2N log 2

p . Substituting τ, L and the definition of f shows

|t∗(A) ∩B| ≥ |t(A) ∩B| −
(√

2 |A| |B|√
N(2δ)d

(
2c
√
d+

√
log 2

p

)
+

3

2

√
d δ|∂A|

)
. (7)

We want the additive error in Inequality (7) to be at most ε|A|. Therefore it is necessary that δ <
2ε|A|

3
√
d|∂A| . Let η ∈ (0, 1) be such that δ = η 2ε|A|

3
√
d|∂A| . Then as condition for N we get the following:

√
2 |A| |B|√
N(2δ)d

(
2c
√
d+

√
log 2

p

)
< (1− η)ε|A|.

There is a universal constant C > 0, such that this condition is fulfilled if

N ≥ C(1− η)−2ε−2 δ−2d |B|2 log 2
p .

Differentiating with respect to η shows that η = d
d+1 minimizes the bound on N, so we use this value,

which gives δ ≤ 2
√
d

3(d+1)
ε|A|
|∂A| . 2

Proof of Theorem 3: The proof works similarly as in the case of translations. We apply Theorem 5 to
(SO(d)×Rd,dist), using Lemma 8 and Corollary 10. The class C = {B(r, δ) : δ > 0, r ∈ SO(d)×Rd}
has VC dimension ≤ 3(d2 + d+ 2) log(3(d2 + d+ 2)) [13, Lemma 8.11]. For fixed δ, the balls B(r, δ)
have the same volume for all r since we measure SO(d) by a Haar measure. For sufficiently small δ, the

volume of B(r, δ) is bounded from below by C∆
−(d

2)
A δ(

d+1
2 ) for some C depending on d [13, Appendix

A]. Due to lack of space, we omit the calculations. They can be found in [13, Chapter 8]. 2

6 Open problem
We studied a probabilistic algorithmic scheme for the case of matching solid shapes in arbitrary dimension
under translations and rigid motions. A similarity σ : Rd → Rd is a map given by σ(x) = λMx + t
where λ ∈ R, M ∈ SO(d) and t ∈ Rd. It is natural to apply the algorithmic scheme to similarities since
an ordered pair of points in each shape (a1, a2) ∈ A2, (b1, b2) ∈ B2 uniquely determines a similarity that
maps a1 onto b1 and a2 onto b2. It is an open problem which objective function the resulting algorithm
optimizes.
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