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Joint String Complexity for Markov Sources
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String complexity is defined as the cardinality of a set of all distinct words (factors) of a given string. For two strings,
we define joint string complexity as the set of words that are common to both strings. We also relax this definition
and introduce joint semi-complexity restricted to the common words appearing at least twice in both strings. String
complexity finds a number of applications from capturing the richness of a language to finding similarities between
two genome sequences. In this paper we analyze joint complexity and joint semi-complexity when both strings are
generated by a Markov source. The problem turns out to be quite challenging requiring subtle singularity analysis and
saddle point method over infinity many saddle points leading to novel oscillatory phenomena with single and double
periodicities.
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1 Introduction
In the last decades, several attempts have been made to capture mathematically the concept of “complex-
ity” of a sequence. The notion is connected with quite deep mathematical properties, including the rather
elusive concept of randomness in a string (see e.g., [3, 10, 11]).

We are interested in studying some measures of complexity of a set of strings. We recall that the string
(sequence) complexity for a single string is defined as the cardinality of the set of distinct words (factors) of
a given string (that is, words that occur exactly once in the string) [9]. For two strings the joint complexity
is the cardinality of the set of common words to both strings, while the joint semi-complexity is the set
of words that occur at least twice in both strings. Hereafter, we mostly analyze the average joint semi-
complexity when both strings are generated by non-identical Markov sources. In fact, in this conference
version, to avoid cumbersome notation and much longer derivations, we only present (asymptotics) results
when one of the source is uniform.

String complexity has a number of applications. It captures the “richness of the language” used in a
sequence. For example, sequences with low complexity contain a large number of repeated substrings and
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they eventually become periodic (e.g., tandem repeats in a DNA sequence). In order to identify unusually
low- or high-complexity strings one needs to determine how the complexities of the strings under study
deviate from the average or maximum string complexity. On the other hand, joint string complexity is
an efficient way of evaluating similarity degree of two sequences. For example, genome sequences of
two dogs will contain more common words than genome sequences of a dog and a cat. Similarly, the set
of common words of one author’s texts is larger than the set of common words between two texts from
two different authors. Finally, as our analysis shows the joint complexity or the joint semi-complexity
can be used to discriminate between identically distributed sources and non-identical sources. Indeed, we
shall prove that for non identical sources, the string joint complexity is of order O(nκ) for some κ < 1
when both strings are of length n. When the sources are identically distributed the complexity is O(n)
(not treated in this paper). Furthermore, if both strings are identical (i.e. we deal with a single string
complexity), then the string complexity is O(n2) [9].

Single string complexity was studied extensively in the past. The literature is reviewed in [9] where
precise analysis of string complexity is discussed for strings generated by unbiased memoryless sources.
Another analysis of the same situation was also proposed in [4] where for the first time the joint string
complexity for memoryless sources is presented. It was evident from [4] that precise analysis of the joint
complexity is quite challenging due to intricate singularity analysis and infinite number of saddle points.
In this paper we deal with the joint string complexity and semi-complexity for Markov sources. To the best
of our knowledge this problem was never tackled before. As expected, its analysis is very sophisticated but
at the same time quite rewarding. It requires not only generalized (two-dimensional) depoissonization and
generalized (two-dimensional) Mellin transforms but also subtle singularity analysis and unusual saddle
point over infinity many saddle points. Furthermore, unlike other similar analyses [12] the non-binary
case leads to new oscillatory phenomenon with single and double periodicities. In the long version of
this paper, we shall also show that traditional dichotomy between rational and irrational cases must be
extended to commensurability and non-commensurability.

2 Main Results
In this section we first define precisely the joint string complexity and semi-complexity. Hereafter, we
mostly concentrate on the semi-complexity. Then we derive the basic functional equation describing the
average joint semi-complexity for two strings generated by Markov sources. Finally, in this conference
version we present asymptotic results only for a simplified version when one of the string is generated by
an unbiased source while the other source is Markovian.

We begin by introducing some general notation. Let ω and σ be two strings over alphabetA. We denote
by |ω|σ the number of times σ occurs in ω. For example, |abbba|bb = 2. By convention |ω|ε = |ω|, where
ε is an empty string.

Throughout we denote by X a string (text) whose complexity we plan to study. We also assume that
its length |X| is equal to n. We study the string semi-complexity of a single string X , that is, the set of
distinct substrings of X that occur twice in X , excluding the empty string ε. We denote this set as SX :
SX := {ω : ω 6= ε & |X|ω ≥ 2}. For example, if X = aabaa, then SX = {a, b, aa}. We also have

|SX | =
∑
σ∈A∗

1|X|σ>1 ,

where 1A is the indicator function of A. It is also related to the number of nodes in the associated suffix
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tree of X [13] (see also [5]). In passing we point out that the average string complexity for memoryless
sources was studied in Janson at al. [9] and Jacquet [4].

Now, let X and Y be two sequences (not necessarily of the same length). We define the joint semi-
complexity as the cardinality of the set SX,Y = SX ∩ SY of common words that appear at least twice in
both strings, excluding the empty string. For example, if X = aabaa ad Y = abbba, then SX,Y = {a}.
In fact, the joint semi-complexity corresponds to the number of common nodes in two suffix trees built
from X and Y (excluding the root), and

|SX,Y | =
∑
σ∈A∗

1|X|σ>1 × 1|Y |σ>1 .

In this conference paper, we only analyze the average joint semi-complexity. Extension to the joint
complexity is rather straightforward and it is left for the full paper. We now assume that both strings
X and Y are generated by two independent Markov sources with the transition probabilities Pi(a|b) for
source i ∈ {1, 2}, where (a, b) ∈ A2. We denote by P1 (resp. P2) the transition matrix of Markov source
1 (resp. source 2). The stationary distributions are denoted by π1(a) and π2(a) for a ∈ A, respectively.

We denote by Sn,m the average string semi-complexity, that is, the average number of common words
occurring at least twice in two strings generated by stationary Markov sources. As in [5], we can prove
that

Sn,m = Tn,m +O(n−ε), (1)

where Tm,n is the average number of common internal nodes between two tries T1 and T2 built over n
and m independent strings, respectively, generated by Markov sources. We should point out that a single
trie built over a Markov source was already analyzed in [8].

Let a ∈ A. We denote Ta,m,n the average number of common internal nodes between two tries when
all n + m independent strings start with symbol a. Notice that Ta,m,n = 0 for n,m ≤ 1. Furthermore
Ta,n,m for n,m ≥ 2 satisfies the following recurrence for all b ∈ A

Tb,n,m = 1+
∑
a∈A

∑
na,ma

(
n

na

)(
m

ma

)
(P1(a|b))na(1−P1(a|b))n−na(P2(a|b))ma(1−P2(a|b))m−maTa,na,ma

where na and ma denote, respectively, the number of “a” occurrences in the first and the second string.
Moreover, the unconditional average Tn,m satisfies for n,m ≥ 2

Tn,m = 1 +
∑
a∈A

∑
na,ma

(
n

na

)(
m

ma

)
πna1 (a)(1− π1(a))n−naπma2 (a)(1− π2(a))m−maTa,n,m.

The above recurrence follows from the fact that every strings in tries T1 and T2 have their first symbol
distributed according to the stationary distribution. The double Poisson transform of Ta,n,m

Ta(z1, z2) =
∑
n,m≥0

Ta,n,m
zn1 z

m
2

n!m!
e−z1−z2 (2)

translates the above recurrence into the following functional equation:

Tb(z1, z2) = (1− (1 + z1)e−z1)(1− (1 + z2)e−z2) +
∑
a∈A

Ta (P1(a|b)z1, P2(a|b)z2) . (3)
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Furthermore, the cumulative double Poisson transform

T (z1, z2) =
∑
n,m≥0

Tn,m
zn1 z

m
2

n!m!
e−z1−z2 (4)

of the unconditional average joint semi-complexity Tn,m satisfies

T (z1, z2) = (1− (1 + z1)e−z1)(1− (1 + z2)e−z2) +
∑
a∈A

Ta(π1(a)z1, π2(a)z2) . (5)

In the next section we shall first analyze T (z1, z2) for large z1, z2 →∞ in a cone around the real axes,
and then recall two-dimensional (double) analytic depoissonization (cf. Section 3.4) to translate T (z1, z2)
into Tn,m by observing that Tn,m ∼ T (n,m). In order to analyze asymptotically (as z1, z2 → ∞) the
above system of functional equations (3)&(5), we resort to the double Mellin transform [1, 13]. We define
the double Mellin transform of Ta(z1, z2) as

T̃a(s1, s2) =

∫ ∞
0

∫ ∞
o

zs1−11 zs2−12 Ta(z1, z2)dz1dz2. (6)

Notice that for any a ∈ A: Ta(z1, z2) = O(z21z
2
2) when z1, z2 → 0 and Ta(z1, z2) = O(|z1|+ |z2|) when

z1, z2 →∞. Thus the Mellin transform is defined for −2 < <(s1),<(s2) < −1.
Applying basic properties of the Mellin transform [1, 13] we find for all b ∈ A

T̃b(s1, s2) = (s1 + 1)Γ(s1)(s2 + 1)Γ(s2) +
∑
a∈A

(P1(a|b))−s1(P2(a|b))−s2 T̃a(s1, s2) . (7)

Let now T(s1, s2) be the vector consisting of T̃a(s1, s2) for a ∈ A. Then

T(s1, s2) = (s1 + 1)Γ(s1)(s2 + 1)Γ(s2)1 + P(s1, s2)T(s1, s2) (8)

where 1 is the unit vector composed of 1’s, and P(s1, s2) is the matrix whose (a, b) elements are
P1(a|b))−s1(P2(a|b))−s2 . In other words, P(s1, s2) = P−s1∗1 ∗ P−s2∗2 , where ∗ indicates the Schur
product (i.e. element-wise) and Px∗ is the Schur power obtained by raising all elements of P to the power
x.

Putting all together we arrive at the following matrix equation

T(s1, s2) = (s1 + 1)Γ(s1)(s2 + 1)Γ(s2)(I−P(s1, s2))−11 . (9)

Moreover, if T̃ (s1, s2) is the double Mellin transform of T (z1, z2), then from (5) we find

T̃ (s1, s2) = (s1 + 1)Γ(s1)(s2 + 1)Γ(s2)
(
1 + 〈π(s1, s2)|(I−P(s1, s2))−11〉

)
, (10)

where π(s1, s2) is the vector [(π1(a))−s1(π2(a))−s2 ]a∈A and 〈·|·〉 denotes the scalar product.
As pointed out in the introduction, we focus in this conference paper on asymptotics of a simpler model

in which one of the source is uniform and memoryless, that is, P1(a|b) = 1
|A| , or P1 = 1

|A|1 ⊗ 1, and
when P2 6= P1. To simplify our notation for all (a, b) ∈ A2 we shall write P2(a|b) = P (a|b) and
P2 = P. Therefore

P(s1, s2) = |A|s1P(s) (11)
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with P(s) = P−s2∗. We also write π(a) = π2(a) and π(s) = [π(a)−s]a∈A, thus

π(s1, s2) = |A|s1π(s2) . (12)

Let λ(s1, s2) be the main (largest) eigenvalue of P(s1, s2). We have

λ(s1, s2)) = |A|s1λ(s2) (13)

where λ(s) is the main eigenvalue of matrix P(s). We also define u(s) as the right eigenvector of P−s∗

and ζ(s) as the left eigenvector provided 〈ζ(s)|u(s)〉 = 1.
We now present a brief road map to an asymptotic analysis of Tn,n as n→∞. We shall apply (double)

depoissonization to T (z, z) as z → ∞ in a cone around the real axis. To recover T (z, z) asymptotically,
we use the inverse double Mellin transform. From (10) we find for all −2 < ρ < −1:

T (z, z) =
1

(2iπ)2

∫∫
<(s1)=<(s2)=ρ

Ξ(s1)Ξ(s2)
(
1 + 〈π(s1, s2)|(I−P(s1, s2))−11〉

)
z−s1−s2ds1ds2,

(14)
where Ξ(s) := (s + 1)Γ(s). Let now λ1(s), λ2(s) . . . , λ|A|(s)) be the eigenvalues of P(s) in the non-
increasing order of their modulus with λ(s) := λ1(s). To evaluate asymptotically the above integral,
we move the line of integration with respect to s1 from ρ to M for some M > 1. We shall notice that
(I−P(s1, s2))−1 ceases to exist at |A|s1λi(s2) = 1. These simple poles satisfy

s1 := Li,k(s2) = − 1

log |A|
(log λi(s2) + 2ikπ) (15)

for i ∈ {1, . . . , |A|} and k ∈ Z. The residues of these poles are exactly equal to

I(z, ρ) =
1

2iπ

∫
<(s)=ρ

∑
k∈Z

|A|∑
i=1

fi(s)gi(s2)Ξ(−Li,k(s))Ξ(s)

λi(s) log |A|
zLi,k(s)−sds.

where fi(s) = 〈π(s)|ui(s)〉 and gi(s) = 〈ζi(s)|1〉. Furthermore, there is a pole at s1 = 0 of Γ(s1) with
residue 1. Thus by the Cauchy residue theorem we find T (z, z) = I(z, ρ) + 1 +O(z1−M ). The final task
is to evaluate asymptotically I(z, ρ). This depends on the growth of zL(s)−s, where L(s) := −L1,0(s) =
log|A| λ(s), and poles of the gamma function at s = 0. The former is determined by the saddle point
method with saddle points coinciding with the solution of L′(s) = 1. Detailed analysis is presented in the
next section.

We now summarize our main results. First, we need some properties of L(s) = log|A| λ(s). In the
Appendix we prove the following lemma.

Lemma 1 The function L(s) is convex when s is real.

Let c2 be the value that minimizes L(s)− s, that is,

λ′(c2)

λ(c2)
= log |A|. (16)

Let also c1 = −L(c2) and κ = −c1 − c2 = mins{L(s)− s}. We have κ ≤ 1 since L(0) = 1. The next
lemma is proved in the Appendix.
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Lemma 2 We always have c2 > −1. When all (a, b) ∈ A2, P (a|b) > 0, then c2 < 0.

We now can formulate our main result.

Theorem 1 Let f(s) = 〈π(s)|u(s)〉 and g(s) = 〈ζ(s)|1〉. Furthermore, with Ψ(s) being the Euler psi
function, define α2 = L′′(c2) and

β2(s1, s2) = −α2

(
Ψ(s1) +

1

1 + s1
+ log |A|

)
+ Ψ′(s1)− 1

(s1 + 1)2
+ Ψ′(s2)− 1

(s2 + 1)2

+
f ′′(s2)

f(s2)
−
(
f ′(s2)

f(s2)

)2

+
g′′(s2)

g(s2)
−
(
g′(s2)

g(s2)

)2

.

(i) If c2 < 0 and κ = −c1 − c2 with c1 = − log|A| λ(c2), then

Tn,n = nκ
f(c2)g(c2)(c1 + 1)Γ(c1)(c2 + 1)Γ(c2)

λ(c2) log |A|
√

2π(α2 log n+ β2(c1, c2))
+ nκQ(log n) + o(

nκ√
log n

) , (17)

where depending on certain properties of P(c2) the quantity
√
xQ(x) tends to a periodic or a double

periodic function when x→∞ (with amplitude of order 10−6), as detailed in Theorem 2.
(ii) If c2 > 0, then

Tn,n =
∑
k∈Z

f(0)g(0)

λ(0)

(1− L(0)− 2ikπ
log |A| )Γ(−L(0)− 2ikπ

log |A| )

log |A|
nL(0)+2ikπ/ log |A| +O(nL(0)−ε) . (18)

In order to present succinctly properties of the functionQ(x), we need to introduce more notations. We
say that matrix P is rationally balanced if there exists c ∈ A and ν ∈ R such that

ν(P (a|b) + P (c|a)− P (c|b)) ∈ Z . (19)

Notice that this property does not depend on the pivot symbol c. In fact, we apply this to a matrix log∗(M)
whose elements are logarithm of the elements of some matrix M.

Finally, let ∂K be the set of complex tuples (s1, s2) satisfying |A|s1λ(s2) = 1 such that <(s1) = c1
and <(s2) = c2. Notice that (c1, c2) ∈ ∂K. We define ∂K∗ = ∂K − {(c1, c2)}.

Theorem 2 The function Q(x) introduced in Theorem 1 can be expressed as

Q(x) =
∑

(s1,s2)∈∂K∗
eix=(s1+s2)

f(s2)g(s2)(s1 + 1)(s2 + 1)Γ(s1)Γ(s2)

λ(s2) log |A|
√

2π(α2x+ β2(s1, s2))
. (20)

If the matrix log∗( 1
P (x|x)P) is rationally balanced (i.e., rational case), then let ν be the smallest non

negative real such that

ν log(
1

P (c|c)
P) ∈ Z|A|

2

.

Then

∂K =

{(
c1 +

2ikπ

log |A|
+ 2iπ`ν

logP (c|c)
log |A|

, c2 + 2iπ`ν

)
, (k, `) ∈ Z2

}
, (21)
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and
√
xQ(x) is asymptotically double periodic. Otherwise (i.e., irrational case),

∂K =

{(
c1 +

2ikπ

log 2
, c2

)
, k ∈ Z

}
and
√
xQ(x) is asymptotically single periodic.

Fig. 1: Joint semi-complexity: three simulated trajectories (black) versus asymptotic average (dashed red); case
c2 > 0 (left) and case c2 < 0 (right).

In Figure 1 we plot the joint semi-complexity for several pairs of stringsX and Y . StringX is generated
by a Markov source with the transition matrix P, and string Y is generated by a uniform memoryless
source. We consider two Markov sources for X with the following transition matrix:

P =

[
0 0.5
1 0.5

]
P =

[
0.2 0.8
0.8 0.2

]
. (22)

For the first P (left plot in Figure 1) we have c2 > 0 (cf. Theorem 1(ii)) while for the second P (right plot
in Figure 1) we have c2 < 0 (cf. Theorem 1(i)).

3 Analysis
In this section we present the proof of our main result. We start with the double Mellin transform, followed
by a brief discussion of properties of the set ∂K of the solutions of |A|s1λ(s2) = 1. Then we turn our
attention to the saddle point method and finally the double depoissonization. Some technical lemmas are
postponed till the Appendix.

3.1 Double Inverse Mellin Transform
In (10) of previous section, we computed the double Mellin transform T̃ (s1, s2) of the double Poisson
transform T (z1, z2). We now recover T (z1, z2) for large z1, z2 →∞ around the real axes. In fact, we set
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z1 = z2 = z. Recall that by the inverse double Mellin transform [4] we have for all −2 < ρ < −1 as in
(14)

T (z, z) =
1

(2iπ)2

∫∫
<(s1)=<(s2)=ρ

T̃ (s1, s2)z−s1−s2ds1ds2 (23)

=
1

(2iπ)2

∫∫
<(s1)=<(s2)=ρ

Ξ(s1)Ξ(s2)
(
1 + 〈π(s1, s2)|(I−P(s1, s2))−11〉

)
z−s1−s2ds1ds2,

where Ξ(s) := (s + 1)Γ(s). As before λ1(s), λ2(s) . . . , λ|A|(s)) are the eigenvalues of P(s) in the
non-increasing order (e.g., λ(s) := λ1(s)) while ui(s) and ζi(s)) are respectively the right and the left
eigenvectors of P(s) associated with λi(s) subject to 〈ζi(s)|ui(s)〉 = 1. By the spectral representation
of matrices [13], we have

(I−P(s1, s2))−1 =

|A|∑
i=1

1

1− |A|s1λi(s2)
ui(s2)⊗ ζi(s2) (24)

where ⊗ denotes the tensor product. Observe that (I − P(s1, s2))−1 cease to exist at (s1, s2) satisfying
|A|s1λi(s2) = 1, that is, for s1 := Li,k(s2) such that Li,k(s2) = 1

− log |A| (log λi(s2) + 2ikπ), as already
discussed in (15).

The eigenvalues λi(s) are individually analytic functions of s as long as they are strictly decreasing
(i.e. |λi−1(s)| > |λi(s)| > |λi+1(s)| for all i). But any function of the form

∑
i f(λi(s)) is analytic

even when the eigenvalue sequence is not strictly decreasing, as long as f() is analytic. To simplify our
analysis, we also postulate that none of the eigenvalue is identically equal to zero, that is, we assume
log λi(s) exists except on a countable set R = {s : ∃i : λi(s) = 0}. It should be pointed out that there
are cases when some eigenvalues are identically equal to zero. For example, for memoryless sources we
have for all i ≥ 2: λi(s) ≡ 0. But these cases are easy to handle by just excluding these null eigenvalues;
we will not address it here (see [4]).

Let fi(s) = 〈π(s)|ui(s)〉 and gi(s) = 〈ζi(s)|1〉. Define

I(z, ρ) =
1

2iπ

∫
<(s)=ρ

∑
k∈Z

|A|∑
i=1

fi(s)gi(s2)Ξ(−Li,k(s))Ξ(s)

λi(s) log |A|
zLi,k(s)−sds . (25)

Lemma 3 For any M > 0 and ρ ∈]− 2,−1[, we have

T (z, z) = I(z, ρ) + 1 +O(z1−M ) . (26)

Proof: As discussed in the previous section, to evaluate asymptotically (23), we move the line of in-
tegration with respect to s1 from ρ to M for some M > 1. There are simple poles at Li,k(s2) for
i ∈ {1, . . . , |A|} and k ∈ Z with residues equal to I(z, ρ) as in (25). Furthermore, there is a pole at
s1 = 0 of Γ(s1) with residues 1. Thus by the Cauchy residue theorem the estimate of T (z, z) becomes

T (z, z) = I(z, ρ) +
1

2iπ

∫
<(s2)=ρ

Ξ(s2)z−s2ds2 +O(z1−M ). (27)

But the above integral is equal to 1 +O(z1−M ) (from the pole at s2 = 0). �
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Our task is to estimate asymptotically the integral I(z, ρ) for z → ∞ which depends on the growth
of zL(s)−s. We already know that c2 defined in (16) is the real saddle point determining the asymptotic
behavior for c2 < 0 (see Section 3.3 for details). But c2 /∈] − 2,−1[ and I(z, ρ) may have additional
singularities when ρ moves towards c2 that we must take this into account. When c2 > 0 the important
contribution is at ρ = 0 due to the simple pole of function Ξ(s). This case will be treated separately.
Nevertheless, in the Appendix we prove the following lemma. The proof is rather technical since we have
to cope with potential singularities between ρ and c2.

Lemma 4 If c2 < 0, then for all M > 0 we have T (z, z) = I(z, c2) + 1 +O(z1−M ).

3.2 Properties of ∂K set
Recall that ∂K is the set of complex tuples (s1, s2) satisfying |A|s1λ(s2) = 1 such that <(s1) = c1 and
<(s2) = c2. Its structure is crucial for our asymptotic analysis, so we discuss it in this section. Among
others, we show that if (s1, s2) ∈ ∂K, then (s1 + 2ikπ

log |A| , s2) ∈ ∂K for all k ∈ Z. We also show that the
main eigenvalue of P is the dominant singularity. Throughout this section we assume that c2 < 0.

Let us start with the structure of the set ∂K. Let P be a matrix on A × A of complex coefficients pab
for all (a, b) ∈ A2. Let Q be a matrix qab. In the following we say P and Q are conjugate if there exists
a non-zero complex vector (xa)a∈A such that qab = xa

xb
pab. We say that such matrices are imaginary

conjugate if |xa| = 1 for all a ∈ A.
Observe that: (i) two conjugate matrices have the same eigenvalue set; (ii) if u = (ua)a∈A is right

eigenvector of P, then (xaua)a∈A is right eigenvector of Q. Similarly, if (ζa)a∈A is left eigenvector of
P, then ( 1

xa
ζa)a∈A is the left eigenvector of Q.

The following lemma is essential and adapted from [8]. We prove it in the Appendix.

Lemma 5 Let M = [mab](a,b)∈A2 be a matrix such that mab ≥ 0. We assume that 1 is the largest
eigenvalue of M. Let Q be a matrix with coefficients qab = eiθabmab where θab is real. The matrix Q has
eigenvalue 1 if and only if Q is imaginary conjugate to matrix M.

Corollary 1 Let c ∈ A. The matrix Q has eigenvalue 1 if and only if for all (a, b) ∈ A2:

1

2π
(θab + θca − θcb) ∈ Z . (28)

Proof: We have ei(θa−θb) = eiθcb

eiθca
, thus ei(θcb−θca) = eiθab . �

Lemma 6 Let c ∈ A. A tuple (s1, s2) belongs to ∂K iff for all (a, b) ∈ A2 we have

=(s1)

2π
log |A| − =(s2)

2π
log

P (a|b)P (c|a)

P (c|b)
∈ Z . (29)

Proof: Set M = P(c1, c2) and Q = P(s1, s2) for (s1, s2) ∈ ∂K. Then, it follows directly from
Corollary 1 with eiθab = |A|i=(s1)(P (a|b))−i=(s2). �

Now we focus on proving in Lemma 10 that the main eigenvalue is well separated.

Lemma 7 For all s2 such that <(s2) = c2, we have 6 ∃s1 : (s1, s2) ∈ ∂K ⇐⇒ |λ(s2)| < λ(c2).
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Proof: By the Perron-Frobenius, we have |λ(s2)| ≤ λ(c2) since <(s2) = c2 and |P(s2)| = P(c2) (by
taking the modulus element-wise). If |λ(s2)| = λ(c2), then there will be t1 such that |A|it1λ(s2) = λ(c2),
and therefore (c1 + it1, s2) ∈ ∂K. �

Lemma 8 We have λ(c2) > λ2(c2).

Proof: It follows from Perron-Frobenius that the main eigenvalue is unique. �

Let U be a complex complex neighborhood of 0 such that ∀s ∈ U : |λ(c2 + s)| > |λ2(c2 + s)|. In the
Appendix we prove the following lemma.

Lemma 9 Let sk be a sequence such that <(sk) = c2 and |λ(sk)| → λ(c2). Then for all s ∈ U we have

∀i : lim
k→∞

λi(sk + s)

λ(sk + s)
=
λi(c2 + s)

λ(c2 + s)
, (30)

and

lim
k→∞

L(sk + s)− L(sk) = L(c2 + s)− L(c2) (31)

lim
k→∞

L′(sk + s) = L′(c2 + s) . (32)

where the convergence also holds for any further derivative of function L′(s).

In passing, we have L′(sk)→ 1 and L′′(sk)→ α2. Finally, we prove in the Appendix our second main
lemma of this section.

Lemma 10 There exists ε > 0 such that for all i 6= 1 and for all s such that <(s) = c2 :

|λi(s)| < λ(c2)− ε . (33)

Proof: This is a consequence of previous lemmas. Suppose that there exists sk such that |λ2(sk)| →
λ(c2). This implies that |λ(sk)| → λ(c2), but by previous lemma |λ2(sk)| → λ2(c2) = λ(c2)− ε. �

3.3 Saddle Points Analysis
We shall complete the proof by the saddle points analysis. We recall that for all M > 0: T (z, z) =
I(z, c2) + 1 +O(z1−M ) where I(z, c) is given in (25). We assume c2 < 0.

Lemma 11 There exists ε > 0 such that

T (z, z) =
∑
k∈Z

1

2iπ

∫
<(s)=c2

f1(s)g1(s)Ξ(−L1,k(s))Ξ(s)

λ1(s) log |A|
zL1,k(s)−sds+O(zκ−ε) (34)

where κ = −c1 − c2.

Proof: By Lemma 10 for all i 6= 1 we have log|A| |λi(s)| < log|A| λ(c2) − ε for some ε > 0, thus other
eigenvalues contribute negligibly. Let

Hi(s, z) =
∑
k∈Z

fi(s)gi(s)

λi(s) log |A|
Ξ(−Li,k(s))zLi,k(s) . (35)

The contribution of
∫
<(s)=c2 Hi(s, z)Ξ(s)z−sds is of order

∫
<(s)=c2 |Ξ(s)|z<(Li(s)−s)ds which in turn

is of order zL(c2)−c2−ε = zκ−ε. �



Joint String Complexity for Markov Sources 313

3.3.1 The Rational Case
We assume now that the matrix log∗( 1

P (c|c)P) is rationally balanced. The matrix P(s + 2iπν) is then
imaginary conjugate with the matrix P (c|c)2iπνP(s) and L(s + 2iπν) = L(s) + 2iπν logP (c|c). Thus
<(L(c2+it)) is periodic in t with period 2πν. Furthermore, L′(s) is also periodic with period 2πν. Thus,
s` = c2 + 2iπ`ν for ` ∈ Z are saddle points of zL(s)−s.

We concentrate on the term k = 0 of the right-hand side of (34). Define

b2(s) =
d2

ds2
log

(
f(s)g(s)

λ(s)
Ξ(−L(s))Ξ(s)

)
. (36)

Notice that b2(s) = β2(−L(s), s). Since the function

log

(
f(s)g(s)

λ(s)
Ξ(−L(s))Ξ(s)

)
has bounded variations, we have the classic saddle point result [2, 13]

1

2iπ

∫
<(s)=c2

f(s)g(s)

λ(s)
Ξ(−L(s))Ξ(s)zL(s)−sds =

=
∑
`

f(s`)g(s`)

λ(s`)
Ξ(−L(s`))Ξ(s`)

zL(s`)−s`√
2π(α2 log z + b2(s`))

(1 + o(1)). (37)

Notice that <(L(s`) − s`) = κ. When adding the contribution from the L(s) + 2ikπ
log |A| we obtain the

expression for Q(log z) with ∂K = {(−L(s`)− 2ikπ
log |A| , s`), (k, `) ∈ Z2}. The double periodicity comes

from the fact that
√
xQ(x) =

∑
k,` qk,`e

i(kα+`β)x + o(1) when x → ∞ for some incommensurable(i)

pair of real numbers (α, β) and complex numbers {qk,`}(k,`)∈Z2 .

3.3.2 The Irrational Case
We now turn to the irrational case. Let A > 0 be a number such that for all |s| ≤ A we have |λ(c2 +s)| >
|λ2(c2 + s)|; thus by Lemma 9 L(c2 + s) is analytic. We assume that c2 < 0 is the only saddle point on
<(s) = c2 for |=(s)| ≤ A. We also postulate that there is α3 > 0 such that

|t| ≤ A⇒ <(L(c2 + it)− L(c2)) ≤ −α3t
2 . (38)

From the previous analysis we know that

1

2iπ

∑
k∈Z

∫
<(s)=c2,|=(s)|≤A

f(s)g(s)

λ(s) log |A|
Ξ

(
−L(s)− 2ikπ

log |A|

)
Ξ(s)zL(s)−s+2ikπ/ log |A|ds =

= Q(log z)(1 + o(1)). (39)

(i) A pair of numbers (α, β) is commensurable if there exists a real number ν such that the vector (να, νβ) ∈ Z2; otherwise the
pair is incommensurable.
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Assume now (38) and define

ξ(s) =
∑
k∈Z

∣∣∣∣Ξ(s− 2ikπ

log |A|

)∣∣∣∣ . (40)

The function ξ(s) is continuous and bounded as long as <(s) is bounded. Our aim is to prove that

1

2iπ

∫
<(s)=c2,|=(s)|>A

∣∣∣∣f(s)g(s)

λ(s)

∣∣∣∣ ξ(−L(s))|Ξ(s)|z<(L(s))−c2ds = o(
zκ√
log z

) , (41)

which completes the proof of Theorem 1.
We know that |f(s)g(s)| ≤ f(c2)g(c2). In addition, we know that for <(s) = c2 we have <(L(s)) <

L(c2) as long as =(s) 6= 0. We also have |λ(s)| > ε′ for some ε′ > 0 since the matrix P(s) stays away
from the null matrix. Therefore, we need to estimate∫

<(s)=c2,|=(s)|>A
|Ξ(s)|z<(L(s))−c2ds . (42)

For any ε > 0, the portion of the line<(s) = c2, where<(L(s)) < L(c2)−ε, contributes zκ−ε to T (z, z).
Our attention must turn to the values of s on this line such that <(L(s)) is arbitrary close to L(c2). In
particular, we are interested in the local maxima of <(L(s)) that are arbitrary close to L(c2). Indeed,
these local maxima play a role in the saddle point method.

Let us consider the sequence of those maxima denoted by s` for ` ∈ N such that <(L(s`)) → L(c2).
By Lemma 9 we know that for all real t L(s` + it)−L(s`)→ L(c2 + it)−L(c2) and that L′(s` + it)→
L′(c2 + it). Therefore for all real t such |t| ≤ A

lim sup
`→∞

(<(L(s` + it))−<(L(s`))) ≤ −α3t
2 (43)

We define I(A) to be the set of complex numbers s such that <(s) = c2 and min`{|s− s`|} > A.

Lemma 12 There exists ε such that for all s ∈ I(A): <(L(s)) < L(c2)− ε.

Proof: Assume s ∈ I(A). Since s is not a local maxima, we study the variation of <(L(s)) around the
local maxima s`. Without loss of generality we assume that s` − A is between s and s`, thus <(L(s` −
A)) > <(s). Since lim sup<(L(s` −A)) < L(c2)− α3A

2 < L(c2)− ε the lemma is proven. �

In view of the above, we conclude that∫
<(s)=c2,|=(s)|>A

|Ξ(s)|z<(L(s))−c2ds ≤
∑
`

∫
|t|≤A

|Ξ(s` + it)|z<(L(s`+it))−c2dt+O(zκ−ε) . (44)

Since Ξ(s) = (s+ 1)Γ(s) on the line <(s) = c2, there exists a real B > 0 such that ∀s:

<(s) = c2 ⇒ max
|t|≤A

{|Ξ(s+ it)|} ≤ B|Ξ(s)| . (45)

Therefore, our analysis can be limited to∑
`

∫
|t|≤A

|Ξ(s`)|z<(L(s`+it))−c2dt . (46)
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Lemma 13 For ` tending to infinity, the s` are separated by a distance at least equal to A.

Proof: First, let us assume that `, `′ →∞ and |s` − s`′ | → 0, then we have

L′(s`′) = L′(s`) + (s`′ − s`)L′′(s`) +O(|s` − s`′ |2). (47)

Since L′′(s`) → α2 6= 0, then we cannot have L′(s`′) = 1, thus s`′ cannot be a local maximum of
<(L(s)). Second, if lim inf |s` − s`′ | > ε for some ε > 0 with |s` − s`′ | < A, then using the inequality

lim sup<(L(s`′))−<(s`) ≤ −α3|s` − s`′ |2 < −α3ε
2 (48)

we cannot have <(L(s`′))→ L(c2). �

The consequence of the previous lemma and the properties of function Ξ(s) is that
∑
` |Ξ(s`)| < ∞.

Therefore,∑
`

∫
|t|≤A

|Ξ(s`)|z<(L(s`+it))−c2dt = zκ
∑
`

|Ξ(s`)|z<(s`)−L(c2)
∫
|t|≤A

z<(L(s`+it))−<(L(s`)dt . (49)

Since lim sup`→∞ <(L(s` + it))−<(L(s`) ≤ −α3t
2, we have [13]

lim sup
`→∞

∫
|t|≤A

z<(L(s`+it))−<(L(s`)dt ≤ 1√
πα3 log z

, (50)

and since limz→∞ z<(s`)−L(c2) = 0, by the dominating convergence theorem, we arrive at∑
`

|Ξ(s`)|z<(s`)−L(c2)
∫
|t|≤A

z<(L(s`+it))−<(L(s`)dt = o(
1√

log z
) . (51)

The case c2 > 0 is discussed in the Appendix. It relies the singularity method.

3.4 Double Depoissonization
To complete the proof of Theorem 1 we need to translate T (z1, z2) into the original Tn,m. We accomplish
it through a two-dimensional (double) depoissonization that we discuss next.

Let an,m be a two-dimensional (double) sequence of complex numbers. We define the double Poisson
transform f(z1, z2) of an,m as

f(z1, z2) =
∑
n,m≥0

zn1
n!

zm1
m!

e−z1−z2 .

It is relatively straightforward to extend the one-dimensional depoissonization result of [6] to the two-
dimensional case [4, 7]. In the Appendix we prove the following.

Lemma 14 Let Sθ be a cone of angle θ around the real axis. Assume that there exist B > 0, D > 0,
α < 1 and β such that for |z1|, |z2| → ∞:

• if z1, z2 ∈ Sθ: |f(z1, z2)| = B(|z1|β + |z2|β);
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• if z1, z2 /∈ Sθ: |f(z1, z2)ez1+z2 | = Deα|z1|+α|z2|;

• if zi ∈ Sθ and zj /∈ Sθ for {i, j} = {1, 2}: |f(z1, z2)ezj | < D|zi|βeα|zj |.

Then

an,m = f(n,m) +O

(
nβ

m
+
mβ

n

)
.

This leads to our final result of this section.

Lemma 15 Generating function T (z1, z2) satisfies the condition of Lemma 14 with β = 1. Therefore,

Tn,m = T (n,m) +O
( n
m

+
m

n

)
.
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Appendix
Proof of Lemma 1: We have

λ(s) = 〈ζ(s)|P(s)u(s)〉 =
∑
a,b ζa(s)ub(s)P (a|b)−s,

λ′(s) = 〈ζ(s)|P′(s)u(s)〉 =
∑
a,b ζa(s)ub(s)P (a|b)−s(− logP (a|b)),

λ′′(s) = 〈ζ(s)|P′′(s)u(s)〉 =
∑
a,b ζa(s)ub(s)P (a|b)−s(logP (a|b))2.

(52)

Let xa,b = 1
λ(s)ζa(s)ub(s)P (a|b)−s, we have

∑
a,b xa,b = 1. Also

L′′(s) =
∑
a,b

xa,b(logP (a|b))2 −

∑
a,b

xa,b logP (a|b)

2

. (53)

By the Perron Frobenius theorem ζ(s) and u(s) have positive coefficients. Hence, by the convexity of the
quadratic function we must have L′′(s) ≥ 0. �

Proof of Lemma 2: For c2 > −1 it suffices to show L′(−1) < 1. Since λ(−1) = 1, we we only need to
prove that λ′(−1) < log |A|. We also have ζ(−1) = 1. Observe

λ′(−1) =
∑
a,b

ζa(−1)ub(−1)(−P (a|b) logP (a|b)) . (54)

Since
∑
a,b ζa(−1)ub(−1) = 〈ζ(−1)|1〉〈1|u(−1)〉 = |A|, and by concavity of the function −x log x on

the interval [0, 1] we have

λ′(−1) < −

∑
a,b

ζa(−1)ub(−1)P (a|b)

 log

∑
a,b

1

|A|
ζa(−1)ub(−1)P (a|b)

 = log |A| ; (55)

the inequality is strict because the P (a|b)’s are not all identical.
For c2 < 0, when all P (a|b) > 0, it suffices to prove that L′(0) > 1. Then by the increasing nature

of L′(s) we will necessarily have c2 < 0. We have P(0) entirely made of ones, thus λ(0) = |A| and
u(0) = 1

|A|1 and ζ(0) = 1. By convexity of − log function, and since the P (a|b)’s are not all identical

λ′(0)

λ(0)
= −

∑
a,b

1

|A|2
logP (a|b) > − log

∑
a|b

1

|A|2
P (a|b)

 . (56)

Since
∑
a,b P (a|b) = |A| we get λ

′(0)
λ(0) > log |A|. �
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Proof of Lemma 4: We move the integration line in I(z, ρ) from the vertical line <(s2) = ρ to the
vertical line <(s2) = c2. The function

Jk(s, z) =
∑
i

fi(s)gi(s)

λi(s)
Ξ(−Li,k(s))zLi,k(s) (57)

satisfies the (somewhat complicated) identity

Jk(s, z) = 〈π(s)|(P(s))−1 exp

(
− log z

log |A|
(logP(s) + 2ikπI)

)
Ξ

(
− 1

log |A|
(logP(s) + 2ikπI)

)
1〉 ,

(58)
knowing that any analytical function f can be applied to matrix P(s) as long its eigenvalues do not cor-
respond to a singularity of f . Therefore the only singularities that we meet when we move the integration
line of I(z, ρ) are the elements ofR = {s : λi(s) = 0, for some i}.

We have
I(z, ρ) =

1

2iπ

∫
<(s)=ρ

∑
i

Hi(s, z)Ξ(s)z−sds . (59)

If θ ∈ R, and we have λi(θ) = 0, then the function Li,k(s) = 1
− log |A| (log λi(s)+2ikπ) is meromorphic

around θ. However if θ is a simple root of λi(s), then moving around θ would be equivalent to add 1 to
the integer k: log λi(s) → log λi(s) + 2iπ. If the root if of multiplicity ` it is equivalent to add ` to the
integer k. In any case the function Hi(s, z) being invariant when ` is added to k, turns out to be fully
analytic around θ, and the integration path in I(z, ρ) can be moved over θ.

However, the function Hi(s, z) is still singular on s = θ, hence there will be a contribution coming
from the integration of Hi(s, z)Ξ(s)z−s on an arbitrary small loop around θ. Since <(Li,k(s)) → −∞
when s → θ, having <(Li,k(s)) < −M will guarantee that the contribution is in O(z1−M ) and can be
included in the error term. �

Proof of Lemma 5: Let u = (ua)a∈A be the right eigenvector of M and (va)a∈A be the right eigenvector
of Q. Let also va = xaua. If 1 is the eigenvalue, we have for all c ∈ A:

(1− eiθccmcc)uc =
∑
b 6=c

mcbube
iθcb

xb
xc

. (60)

If eiθcc 6= 1, then
|(1− eiθccmcc)uc| > (1−mcc)uc. (61)

By the Perron-Frobenius theorem all ua are real non negative. Suppose that |xc| = maxa∈A{|xa|}. If
∃d ∈ A: |xd||xc| < 1 or if (b, b′) ∈ (A− {c})2: eiθcb xbxc 6= eiθcb′

x′b
xc

. Then∣∣∣∣∣∣
∑
b6=c

mcbube
iθcb

xb
xc

∣∣∣∣∣∣ <
∑
b6=c

mcbub . (62)

But we also know that
(1−mcc)uc =

∑
b6=c

mcbub . (63)
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Therefore, we have eiθcc = 1 and for all b ∈ A: |xb| = |xc|, and for all (b, b′) ∈ (A− {c})2: eiθcb xbxc =

eiθcb′
x′b
xc

. But since for all b ∈ A |xb| = |xc| every symbol inA can play the role of c. Since for all c ∈ A

(1−mcc) =
∑
b6=c

mcbube
iθcb

xb
xc

=
∑
b 6=c

mcbub , (64)

we simply have ∀(a, b) ∈ A: eiθab xbxa = 1. Denoting xa = eiθa we get the expected result. The inverse
proposition is immediate. �

Proof of Lemma 9: Consider the matrix 1
λ(sk)

P(sk). Since the coefficients of this matrix are bounded,
there is no loss in generality to consider the sequence of matrices converging to a matrix M. The matrix
M and matrix Q = 1

λ(c2)
P(c2) defined in Lemma 5 are imaginary conjugate i.e. the coefficients of M

are of the form

ei(θa−θb)
1

λ(c2)
P (a|b)−c2 (65)

for some vector of real numbers θa. Therefore, M and 1
λ(c2)

P(c2) have the same spectrum. The spectrum
of 1

λ(sk)
P(sk) converges to the spectrum of M. Furthermore, the right eigenvector u(sk) converges to

the vector eiθaua(c2) and the left eigenvector ζ(sk) converges to e−iθaζa(c2).
For any complex number s we have the identity

1

λ(sk)
P(sk + s) =

1

λ(sk)
P(sk) ∗P(s) . (66)

Thus 1
λ(sk)

P(sk + s) converges to M ∗P(s) and is conjugate to 1
λ(c2)

P(c2 + s). Hence, the logarithm of
the eigenvalue L(sk + s)−L(sk) converges to L(c2 + s)−L(c2). The property |λ(c2 + s)| > λ2(c2 + s)
for all s ∈ U implies the analyticity of L(c2 + s), and therefore L′(c2 + s). Since the eigen spectrum of

1
λ(sk)

P(sk + s) converges to the eigen spectrum of 1
λ(c2)

P(c2 + s), we also have λ(sk + s) > λ2(sk + s)

when k is large enough which implies the analyticity of L(sk+s). Thus by Ascoli theorem the derivatives
converge, too. �

Proof of Theorem 1 for the case c2 > 0: While moving the integration path from<(s) = ρ to<(s) = c2,
as in Lemma 4 we meet the pole of Ξ(s) at s = 0. There, the function

∑
iHi(s, n)Ξ(s)n−s has residue∑

iHi(0, n). Thus for all M > 0:

T (n, n) =
∑
i

Hi(0, n) + I(c2, n) +O(n1−M ) . (67)

We notice that I(c2, n) = O(nκ) which is O(nL(0)−ε). Furthermore,

∑
i

Hi(0, n) =
∑
i

fi(0)gi(0)

λi(0)

∑
k∈Z

Ξ

(
−Li(s)−

2ikπ

log |A|

)
nLi(0)+2ikπ/ log |A|, (68)

and for i > 1, Li(0) < L(0)− ε. Thus T (n, n) = H1(0, n) +O(nL(0)−ε). �
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Proof of Lemma 14: Let
fn(z2) =

∑
m

an,m
zm2
m!

e−z2 .

We notice that f(z1, z2) is the Poisson transform of the sequence fn(z2) with respect to the variable z1.
First depoissonization. For z2 ∈ Sθ we have the estimates

z1 ∈ Sθ : |f(z1, z2)| < B(|z1|β + |z2|β)

z1 /∈ Sθ : |f(z1, z2)ez1 | < D|z2|βeα|z1|.

Therefore, from the one-dimensional analytic depoissonization of [6, 13] for z2 ∈ Sθ, we have for all
integers k > 0

fn(z2) = f(n, z2) +O

(
nβ−1 +

|z2|β

n

)
+O(|z2|βnβ−k).

Similarly, when z2 /∈ Sθ we have

z1 ∈ Sθ : |f(z1, z2)ez2 | < D|z1|βeα|z2|

z1 /∈ Sθ : |f(z1, z2)ez1+z2 | < Deα|z1|+α|z2|.

Thus for all integer k and ∀z2 /∈ Sth

fn(z2)ez2 = f(n, z2)ez2 +O(nβ−1eα|z2|) +O(nβ−keα|z2|).

Second depoissonization The two results on fn(z2), respectively for z2 ∈ Sθ and z2 /∈ Sθ, allow us to
depoissonize fn(z2). For all k > β:

• for z2 ∈ Sθ: fn(z2) = O(nβ + |z2|β);

• for z2 /∈ Sθ: fn(z2)ez2 = O(nβeα|z2|).

These estimates are uniform. Therefore,

an,m = fn(m) +O

(
nβ

m
+
mβ

n

)
+O

(
nβmβ−k) .

Since

fn(m) = f(n,m) +O

(
nβ−1 +

mβ

n

)
and setting k > β + 1, we prove the desired estimate. �

Proof of Lemma 15: To prove the lemma, we need to establish three conditions (i)-(iii) of Lemma 14. We
accomplish it through a generalization of the so called increasing domain approach discussed in [6, 13].

We first prove the lemma for the generating functions Ta(z1, z2) for every a ∈ A. Assume now that
r = max(a,b)∈A2,i∈{1,2}{Pi(a|b)}. We denote Sk part of the cone Sθ that contains points such that
|z| < ρ−k. Notice that Sk ⊂ Sk+1 for all integer k. We also notice C(z1, z2) = O((|z1| + |z2|)2) when
z1, z2 → 0, therefore we can define

Bk = max
a∈A,(z1,z2)∈Sk×Sk

|Ta(z1, z2)|
|z1|+ |z2|

<∞ .
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We use the functional equation (3):

Tb(z1, z2) = (1− (1 + z1)e−z1)(1− (1 + z2)e−z2) +
∑
a∈A

Ta (P1(a|b)z1, P2(a|b)z2) . (69)

In the above equation, we notice that if (z1, z2) ∈ Sk+1 × Sk+1 − Sk × Sk, then for all (a, b) ∈ A2

(P1(a|b)z1, P2(a|b)z2) are in Sk × Sk and therefore we have for some fixed β > 0 and for all b ∈ A:

|Tb(z1, z2)| ≤ Bk(
∑
a∈A

P1(a|b)|z1|+ P2(a|b)|z2|) + β = Bk(|z1|+ |z2|) + β (70)

since |1 − (1 + zi)e
−zi | is uniformly bounded for all integers k by some

√
β for both i ∈ {1, 2} when

(z1, z2) ∈ Sk. Thus, we can derive the following recurrent inequality:

Bk+1 ≤ Bk + β max
(z1,z2)∈Sk+1×Sk+1−Sk×Sk

{ 1

|z1|+ |z2|
} = Bk + βρk . (71)

We should notice that
min

(z1,z2)∈Sk+1×Sk+1−Sk×Sk
{|z1|+ |z2|} = ρ−k (72)

because maybe only one of the number zi has modulus greater than ρ−k. It turns out that limk→∞Bk <
∞, establishing condition (i) of Lemma 14.

Now we are going to establish condition (iii). For this end we define G as the complementary cone of
Sθ and Gk as the portion made of the point of modulus smaller than ρ−k. We will use cos θ < α < 1,
therefore ∀z ∈ G: |ez| < eα|z|. We define Dk as

Dk = max
a∈A,(z1,z2)∈Gk×Gk

|Ta(z1, z2)ez1+z2 |
exp(α|z1|+ α|z2|)

. (73)

We define Ga(z1, z2) = Ta(z1, z2)ez1+z2 , we have the equation

Gb(z1, z2) = (ez1 − 1− z1)(ez2 − 1− z2) +
∑
a∈A

Ta (P1(a|b)z1, P2(a|b)z2) e1−P1(a|b)z1+(1−P2(a|b))z2 .

(74)
We notice that if (z1, z2) ∈ Gk+1 × Gk+1 − Gk × Gk, then all (P1(a|b)z1, P2(a|b)z2) are in Gk × Gk and
therefore we have for all b ∈ A:

|Gb(z1, z2)| ≤ Dk

(∑
a∈A

exp ((P1(a|b)α+ (1− P1(a|b)) cos θ)|z1|+ (P2(a|b)α+ (1− P2(a|b)) cos θ)|z2|)

)
+(ecos θ|z1| + 1 + |z1|)(ecos θ|z2| + 1 + |z2|).

We notice that ∀(a, b) ∈ A2 and ∀i ∈ {1, 2}:

Pi(a|b)α+ (1− Pi(a|b)) cos θ − α ≤ −(1− ρ)(α− cos θ) , (75)
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We also have ecos θ|zi| + 1 + |zi| ≤ ecos θ|zi|(2 + 1
e cos θ ), therefore

|Gb(z1, z2)|
exp(α(|z1|+ |z2|))

≤ Dk|A|e−(1−ρ)(α−cos θ)(|z1|+|z2|) + (2 +
1

e cos θ
)2e−(α−cos θ)(|z1|+|z2|) . (76)

Since (z1, z2) ∈ Gk+1 × Gk+1 − Gk × Gk implies |z1|+ |z2| ≥ ρ−k it follows

Dk+1 ≤ max

{
Dk, |A|Dke

−(1−ρ)(α−cos θ)ρ−k + (2 +
1

e cos θ
)2e−(α−cos θ)ρ

−k
}
. (77)

We clearly have limk→∞Dk <∞ and condition (iii) is established.
The proof of condition (ii) for z1 and z2 being in Sθ and G is a mixture of the above proofs. Furthermore,

the proof about the unconditional generating function T (z1, z2) is a trivial extension of the one in (5). �
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