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In the present paper we consider a generalized class of extended binary trees in which leaves are distinguished in
order to represent the location of a key within a trie of the same structure. We prove an exact asymptotic equivalent
to the average stack-size of trees wdtlinternal nodes anfl leaves corresponding to keys; we assume that all trees

with the same parametemsandf3 have the same probability. The assumption of that uniform model is motivated for
example by the usage of tries for the compression of blockcodes. Furthermore, we will prove asymptotiastior the
moments of the stack-size and we will show that a normalized stack-size possesses a theta distribution in the limit.
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1 Introduction

A binary tree is a rooted ordered tree where each node has at most two descendants. Kidigital

binary tree which is used to store the set of ki€ys {kj, ..., ks} in the following manner: The prefixes of

the binary representations of the kdy,sl <i < n, considered as strings of 0's and 1's, are used to navigate
through the tree; for each 0 (resp. 1) a left (resp. right) branch is used in order to go to the next level of the
tree. The trieT for the set of keyK is the smallest tree for which all these paths are different. Thus for
P(K) the set of prefixes of the keys Ify the seiNIT(K) := {ue P(K): [{ve K:v=u-{0,1}*}| =1}
contains exactly the words that correspond to a path from the robtefone of the leaves. Note that

might have internal nodes with only one (left or right) successor. Those internal nodes are avoided by the
Patricia algorithm (see[20] for details on the implementation) in order to achieve more compact trees. In
the same manner it is possible to constructeary trie (orm-ary Patricia tries) from data which possess
anm-ary representation, like character-strings. For details on the implementatidnisee [20] and [13].
Assuming that the set of key§ is a set of random integers and we use their binary representations to
navigate through the trie, we observe that it is much more likely to get a trie which is a balanced tree than
a trie which is a linear list. The reason for this fact is that a linear structure of lengtonly implied by

at least two keys with a common prefix in their binary representation of landth two random integers

the probability for such a prefix decreases liké' 2Thus, a trie profits from properties of the input-data.

For the mathematical analysis of tries, the probability model knowBeasoulli model(see e.g. [22]),

could be used to take those phenomena into account. Parameters which were consider in this model are
for example the height of tries, the external path length of tries, the depth of leaves (keys) in tries and the
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Fig. 1: The code tree of the semi Dyck-language of length 6 (left tree), its compact representation as a trie (tree in the
middle) and the resulting Patricia trie (right tree).

size (number of internal nodes) of a trie (see elgJ[4] 51714718, 26,129, 30]). Note, that there is also a
rich literature considering Patricia tries in the Bernoulli model (see €4.019, 25, 31] and the references
given there).

Tries also appear in other fields of computer science. For example, it is common practice to represent a
binary blockcode of length by a 0-balanced binary tree of heightcalledcode tree Each leaf of this

tree corresponds to exactly one code word which is generated by the concatenation of the edge labels (0
for an edge to a left son, 1 for an edge to a right son) on the path from the root to the leaf. We can get
a compressed representation (a compressed code) by successively deleting such leaves in the tree that do
not have a brother. The resulting tree possesses the structure of a trie. The external path length of such a
trie is related to the cost for ranking the encoded objécis [21]. The preorder traversal of that trie yields a
lexicographical enumeration of all code words by writing out the related string each time a leaf is reached.
An additional compression can be obtained by the application of the Patricia algorithm which deletes the
linear lists inside a trie. In that case the deleted edge labels are attached to the corresponding internal
nodes. Figurg] 1 shows the code tree for all semi Dyck words of length 6, the corresponding compressed
representation as a trie and the resulting Patricia trie. In order to prepare this example, an edge to a left
(resp. right) son was used to represent an opening (resp. closing) bracket. With respect to the Bernoulli
model, the trie of Figurg 1 (tree in the middle) is rather unlikely. However, there is no reason why this
trie should have a smaller probability than any other trie which results from the compression of a code
tree. Thus, in the context of binary blockcodes, the assumption of a uniform distribution seems to be
reasonable.

In the present paper we therefore have a look at the combinatorics of digital tries that so far has not
been studied a lot. We will use the fact that an internal nodéa trie might have an empty successor
(aNIL-pointer) if and only if the other successorwois an internal node (otherwisewould be a leaf or
the successor of could be deleted to achieve a better compression of the eoztau(d be used to store
the data of its succeeding leaf)). Following the approach presentédiin [11], a digital trie possesses the
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C = {cy1,C,C3,C4} = {0001,00101010 1101}

C1 C2

Fig. 2. An example for a set of code words (keys)the resulting trie and the corresponding generalized extended
binary tree.

structure of an extended binary tree with colored leaves. The appropriate class of extended binary trees
has been introduced inJ23] whereganeralized extended binary treas defined as a binary tree with
colored leaves; leaves are either colored black (represensadag/hite (represented a3) in such a way

that each black leaf is the brother of an internal node. If we now assume a black leaf to represent an empty
position (aNIL-pointer) and a white leaf to represent a code word (a key), exactly those tree-structures
that can be generated by the compression of code trees (by the trie algorithm) are resembled. An example
for that correspondence can be found in Fiquire 2, wiBezan be considered either as a set of code words

of a blockcode of length 4 or as a set of binary integers for which the trie implements a dictionary.

For the sake of simplicity we will use the tergitries to denote the class of generalized extended binary
trees. AC-trie with a internal nodes anfl white leaves will be calleda, 3)-trie; we will call (a, ) the

size of such a tree. Note that23 < a + 1 must hold. Furthermore, the rapa= % which will show up

within our results, is a measure for thistanceof the trie to the corresponding Patricia trie and therefore
related to the utilization of the tree. In connection with blockcodes it thus can be interpreted as the degree
of redundancy of the code. A Patricia trie without redundancy always fyfitsa + 1 which implies a

lower bound ofp for all (a, B)-tries.

The main interest of this article is the stack-size of uniform randbtries (i.e. we assume that &tt, 3)-

tries have the same probability) where the stack-s{Z¢ of a tre€T is defined as follows:

S(T) = 1 . T is either a leaf or empty
' max(s(T.l),s(T.r)+1) : otherwise ’

HereT.l (resp. T.r) denotes the left (resp. right) subtreeTaf When traversind by means of an op-
timized] recursive procedure in preordstT) denotes the recursion-depth of the traversal; without the
application of the optimization the height ®fcorresponds to the recursion-depth. We will show results

on the average stack-size of uniform randgrtries, on the related higher moments and on the limiting
distribution. The results presented will depend on both, the number of internal actesthe number

of white leaves (keysp. So far, the stack-size af-tries has only been considered with respect to the
number of internal nodes (see][23]) disregarding the number of white leaves (keys). Up to now, there
were no results on higher moments and on the distribution.

T Applying a technique known as ‘end recursion removal’ the recursion-depth can be reducedl See [28] for details.
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T = DRD + A + A+ /Q
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Fig. 3: The construction of & -trie with at least one internal node. The 4€t1,m} represents the possibility of
choosing either a white or a black leaf.

Remark: It is also possible to interpret the stack-size of a tree in a completely different manner. If we
think of T as a syntax-tree which represents an arithmetic expregsithrens(T ) specifies the number of

cells on a stack that are needed to evaldatey means of a simple traversal algorithm (see [17, pp. 132]
for details). With respect to this notion it is possible to think of drie as a special kind of arithmetic
expression built of unary and binary operators. In this context the assumption of a uniform probability
distribution is quite natural, too. From a strict combinatorial point of view the stack-size can also be con-
sidered as theght-heightof the tree as it equals the notion of height, when only right edges, and not all
edges, contribute to the height.

In the sequel the notatiox®yP]f(x,y) is used to represent the coefficient&y? in the expansion of
f(xy) at(xy) = (0,0).

2 The Average Stack-Size

In this section we will derive explicit formulae for the average stack-sizg-tifes. For that purpose we
need the total numbéy, g of (a, B)-tries.

Lemma 1l The number Jg of C-tries of size(a, B) is given by

T 0B+l B2 a—1
@B (B—1><G—B+1)'

Proof: Let x mark an internal node angdmark a white leaf. The construction process fof-drie as
shown in Figurg]3 translates directly into the equation

T(X,y) =Xy + (2xy+ 20 T (x,Y) +XT?(x,y),

for T (x,y) the ordinary generating function o*tries. Therefore, we find that(x,y) = 122 V1%
with K = x — x? + xy— 2x?y holds. Now we add in order to take the tree with zero internal nodes into
account. This yields

_1-2x=V1-4&  1/2-x 1-X

2X X 2X

T(x,y) V1 axy(1 201, )
Note that the term”i—’x does not contribute t@, g since it cancels when we expand the squareroot. By
expanding the other term af(x,y) in the usual way we find the statement of the lemma. O

Next, we investigate the class of thaSeries that possess the same stack-size. To determine the ordinary
generating functiory(x,y) of C-tries that could be traversed with stack-size less tharl, we have to
distinguish between the cases given in Fiduire 4. Denoting the ordinary generating fun¢fibmesf with
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Fig. 4. All possible decompositions of @-trie with 3 white leaves and a stack-size of at mksThe number inside
a triangle corresponds to the number of white leaves it has to possess, the number below a triangle determines the
stack-size of the subtree represented by it.

a stack-size of at mogtand j white leaves byl ;(x,y), these cases translate into the following set of
equations:

Lealxy) = yk>1,

Ll,j(X,y) = 0,j>2

Lj(6y) = Xj(6y) +xbeaj(y)+x 5 Liggy ()b, (%, Y)
45

= XkalA,]'(va) +X z Lk,Bl(Xay)kal,Bz(Xay) (17)()_1'
B1+B2=j
B1-B2#0

Now Ax(X,Y) = ¥ j>1Lk j(Xy) holds and thus
A(xy) =Y,
2&Xy+x—y—1
X, = -1 Jk>2.
AdxY) T X xACI(xY)
We use a result of.[23] where a general solution for continued fractions of the p&itetn= —1+

W{l(x)’ Ci1(Xx) = c3, was given. Setting; := 2xy+x—y—1, ¢z := —1+x andcz :=y implies the

following representation fofy(X,y):

1— (X+xy)S(u)
with Se(u) == %;(1+ u), u:= g;i; ande ;= /1— 4k, K := x— %% +xy— 2x%y. Our next task is to
determingx®yP] A, (x,y) for which we use the following lemma:

Lemma2 ([16]) LetSk(X) := lf—;ﬁ—l(l—# 9) with 9 := (1—+v/1-4x)/(1++/1—4x) be the generating
function of those extended binary trees that could be traversed with at most k cells of stack. Thef for i

O Ry

Lo tm) o)) :

A(Xy) =
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In order to determine the coefficient in question we expand the right-hand sige of (2) into

yi;;)(})xiyisx XVZ)Z)( JRERt

and use LemmH 2 to represent the powers of func§ioriThen it is easy to extract the coefficigrty?]
in the resulting formula. We obtain:

Scap = XUYPIA _ |
zL‘)Zb< >m>0 (B 1_J> zo(mBj1+]>(1)V(2)a—i_m_v

g Ka Ei—lm—v)d’(i’m’ k- (a R 1> (=2 (i +1,m, k)}

fora > 1andS 4 p = 84 for a = 0. Hered(i,m k) is defined as
o(i,mk) :=
z%(_l))\(l><l—-l+£>(( 2m+i-1 >_< 2m+i—1 >)
oo A i—1 m— (k—1)A —k¢ m—(k—1)A—kl—1

Applying some further simplifications leads to the following lemma:
Lemma3 The number i, g of (a,B)-tries with a stack-size k is g 1 for a = 0 and

Sap = Z\Z) (>m>O<B T—J)

“ 2, <m_ B\T ) ) (—1)“(—2)““"“‘V(a Ei__lr;i\/)d)(i,m, K)

fora > 1. |
Now, for § 4 g = 0, the average stack-size is given by the quantity
Tog > KSap—Sciap) =@+ —|Tapl™ Y Scap
1<k<o+1 1<k<a

for Ty g as given in Lemm@ 1. Using our representatior§gf g and performing a lengthy computation
similar to that in [23] we find:
Theorem 1 Under the assumption of the uniform model, the average stack-siz@of gtrie is equal to

{32262 (M) )
X (—1)V(_2)a7ifm—v)\go(_1)>\+1 (;) gl { (er:njﬂl—: )\1) B (m2£n€++i )\— _1 1)]

y < 1+d )\)}Tué
ar
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with T, g as given in Lemmg 1. O

This result does not give us a lot of information about the behavior of the average stack-size since it is too
complicated. Thus we have to derive an asymptotic equivalent.

3 Asymptotical r-th Moments and Limiting Distribution

In this section we will consider asymptotics for all moments of the stack-size and we will prove that a
normalized stack-size possesses the theta distribution in the limit. Similar observations concerning the
height of trees can be found ifl [9]. The usage of moments about the origin proved to be the method of
choice in our context.

Please recall that= % for e = /1— 4k andk = x— x? 4+ xy— 2x%y. We definef(x,y) to be zero and
set
__ (A=x=xuy __ Ux=1)+xy _ U= (X+xy)(1+u)
I (xxy) (L) U= (xrxy) (W) u(l— (xrxy)(I+u)
and p b
— ac u
= > 1.
MO =T T 1o P2

By using the relatiomp(x,y) — Ap(x,y) = a (sincea = y+ T(x,y) holds, —Ap(x,y) is the generating
function of C-tries with a stack-size greater thahone easily realizes that the generating function of the
r-th moment

z]_ pr (AD(X7 y) - Ap—l(x7 y))
p=

for r > 1 can be rewitten as

a3 3 (7)p Ao @

p=1

We have to consider the functidf, (X,y) i= — 3 ;=1 p"Kp(x,y). Using (2) we find that

My(Xy) = — (a+ 2) n;u”c%cd (g)v

—_— ——
=:q(w)

holds. We will use the-transfer method as presented(in[10] together with the saddle point method (see
[2]) to obtain an asymptotic for the coefficiei®y?]M, (x,y). For this purpose we considsf, (x,y) as

a function inx with complex parametey and determine the dominant singulangy(y) of My (x,y). Itis
sufficient to restrict our attention tpwith |y| = 1/(2(p — 1)) for a fixed ratiop := a/B > 1. Obviously,

My (x,y) converges (and thus is an analytic functionujf< 1 and|c| < 1 hold. Conversely, fon=c=1

My (x,y) becomes divergent and thus singular. The latter occurs foxy(y) := 1/(2+ 4y). In order

to apply theO-transfer method we must be able to extend the function analytically beyond its disc of
convergence. More precisely the function musteanalytic, i.e. it must be analytic in the open domain

A(@R):={z]|Z <R z# n(y),|argz—2(y))| > ¢}
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for someR > |z(y)| and 0< @ < 7. Itis not hard to show thgu| < 1 for O(x) < Zl:‘ll);‘/l and(x) #0

and thatju] < 1 for O(x) = 0 andO(x) < %‘H)’l' Furthermore|c| < 1 as long ag](x) < zljm‘. Thus it

is obvious that we can chooseand @ such thatM, (x,y) is A-analytic. Next we need an expansion of
My (X, y) atXo(y) which we will derive by means of the Mellin summation technique. Weiseexp(—t)
within ¢, then we compute the Mellin transform of the resulting sum with respect to vatiétble factor
—(a+b/c) will be considered later). We find

—t ﬂ) r —s d D v.
G ©3n %C (5)

Due to properties of the Dirichlet convolution and the application of the/ éogptrick we find a simpler
representation of the transform, namely

F(S)Z(s—v)_Z)Ini(c)Z(s— i)/il.

Before we can use the Mellin summation formula givenlin [8] we have ta seexp(—t) within In(c)
also. An expansion of the resulting expressionh-at0 yields the appropriate approximation

x(1+vy)

I =-2———="
n(c) 1-—2x—2xy

t+0(t3).

Now, according to the methodology, an expansiog(ef!) att = 0 is given by the sum of the residues of

t=Sr(s){(S—V) Tiso0 (—Zlf(zl)fgxyt)l {(s—i)/il. For eachi fixed andv > 1 the most significant contribu-

tion of that sum of residues is of the ordeft—(V='+1)). Thus, for the leading term, only the summand for
i = 0 contributes. In that way we find that the most significant term of the expansion of our sum is given
by

Frv+1Z(v4+ )t O+ v >1.

Contributions of lower significance will result from different choicesifands. However, in this case we
wont need a precise representation of the coefficients since they will only be used to depiteramfor
the asymptotic. Fov =i we have a pole of order 2 at=i + 1 which implies as the dominating part of

its residue ,
2 x(1+y) \'In(t)
( 1-2x— 2xy) t
This term will provide the contribution of highest significance Yo 0, the term of second order for
v = 1 and the term of third order far= 2. Forv = 0 the term of second order is implied by the residues
fori=0,s=0andi =1, s=1; again we do not need a precise representation, it is sufficient to know that
those residues are of constant order. The resulting expansiafs bf aroundt = 0 can be transformed

into an expansion around the dominant singulaxityy) = Tﬂy because& = 0 corresponds ta =1 and

1 = 1holds. The transformation is done by repladiry 2V2(Y1+2) Wil/z for&:=1—(2+4y)x.
y

=777y

ul

Furthermore, we have to expano(a+ %) anda aroundx = (2+4y) 1. The related expansions are given
by

~(a+2) =2vaarzye s o?) and
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a=2y—/2y(1+2y)EY2+ 0(¥).

Combining all the results we get the following expansiond/gfx,y) atx = (2+4y)~! (terms relevant
for the asymptotic only)

_1+_22y|n(2)+,:1§1/2+0(53/2) v=0,
F+2y) (2 ﬁ—yzy)flz—l/%len(EHO(El/z) - v=1,

I 2@ (2/2) et Re o) v=z @
L+ 120+ 1)(2/ ) EV2HFEVD240E 022 L v>3

HereF, 1 <i < 4, denotes some factors possibly depending éor which we have not determined a
precise representation. Let us assume that we have chosen theRaxfitise A-domain such that the
expansion [(4) is valid foxk with |x—xo(y)| < R/2. In order to apply the>-transfer method it is not
sufficient to know the expansion of a function at its dominant singularity. We also need to know that the
O-term of the expansion is valid for the entifledomain. We will just consider the case> 3 to show

how this can be concluded, the reasoning for the other cases would be exactly the same. We have to show

that
My (X,y) — (1+2y)l (v+1)Z(v+1) (2\ / ﬁ—y2y> AR H S

for someC uniform iny. Since|&|~(V-2/2 is bounded foix in the A-domain with|x — xo(y)| > R/2 it
is sufficient to show that the left-hand side of the inequality is bounded also. We knoMfaty) is

-V
bounded for those values gfin question. Obviously, als@l + 2y)I (v + 1){(v + 1)(2 1%)/) §-v/2

andF,&~(V-1/2 are bounded fox in the A-domain with|x— xo(y)| > R/2. Thus, the left-hand side of the
inequality is bounded and we can fin€auch that the above inequality is valid. Since we only consider
a restricted domain for it is obvious thatC can be chosen uniformly.

Now we can apply th&-transfer method in order to approximate the coefficjghitM, (x,y) for largea.

We find that{x*|My (x,y) ~

< CJg|" -2/

r2)@)+2y) (2 rzgy)*l CAE + R B 4 o(BAE) D=1,
r@)1E)a+2y) (2 %)72 (2+4y)° + F 225 1 o( (245 L v=2,
Fv+1)Z(v+ 1)(2 1%) 7\)% +F4(2+4y)%aV-3/21.0((24 4y)%aV-4/2) 1 v>3,

for a — o andFj, 1 <i < 4, some factors possibly dependingyomhich result formF and the application

of the transfer. We can use the saddle point method in order to determine the coeffidiéntfraim

the above asymptotics. In all cases we need to determine the coefficient of a function of the pattern
V(y) = A(y)B(y)? for largea. This can be done by the Cauchy integral

= L
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whereyy is the saddle point of the functid(y)®y P which is given by the solution of the equation

YoB'(yo) B

Byo) a

As a special case of the results in [6] we find that

_ A(yo) o,,—B -1
YV (y) = aeC(y0) B(yo)"Yo " (1+0(a™7)), )
for C(y) = y?B"(y) —Y?B'(¥)?/B(y)*+yB(y)/B(y), § > 1 anda — o. This formula can be applied

to the two Ieadlng terms of each of the asymptotics[¥8fM, (x,y). Note that we always get a factor of
the order ¥/a when we apply this procedure. In order to handle ¢hterms we just use saddle point
bounds like those given in Theorem 6.1 bfl[12]. In this way we find that

YP1O((2+4y)%) = O((2+4y0)%Y, ). (6)

In such a case we do not get a factgk/, that is why it was not sufficient to consider the leading term
of the expansions only.

In all cases where we will us€] (5B(y) is equal to(2+ 4y), the corresponding saddle point is given by
Yo :=1/(2(p—1)) and the resultin€(yo) is given by(p — 1)/p?. Recall thaip = % was restricted to be
fixed and greater than 1 such tlyatis always well-defined.

Returning to [B) we conclude that the case 1 corresponds ta+ My(x,y). Since the expansion af
possesses a term of ordg¥? it provides a contribution to the term of second order of the asymptotic
for the coefficient ak® which we do not consider explicitly since it will vanish in tlieterm. By the
application of [P) and|]6) we find that f(%* > 1 fix the coefficient in question is given by

2(1+B—3/2(p _ 1)B—u pCH-Z
Va(p —1))3/2
Forr > 2 we observe that for each- j > 2 fixed the contribution to the generating function for thih
moment is given b)( )Mr i(X,y). Therefore, for > 2 fixed, the most significant contribution is implied
by the choicej = 1, | e., we have to sat:=r — 1 to use the appropriate asymptotic. Again we apply

the saddle point method via equatidh (5) in order to get an asymptotic for the coefficiényfatThis
procedure yields

Y IMe_1(xY) ~
2u+871/2(1(r73)/2(l’71)(p 1)[3 a— 1p(2a+r+3)/2r( +1)z()
m/a(p—1)

YP] (a+Mo(x.y)) = +0(a2(2+ 4y0)%y, P).

+0(a5)/2(2 4 ayp)?y, P,

forr>2,p= % > 1 fix anda — . To find an asymptotic for the-th moment this quantity must

be divided by the asymptotical number @f, 3)-tries. This number can be determined in exactly the
same way as done in the previous calculations. We expdrgd) as given in L) around the dominant
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singularityx = (2+ 4y)~1 yielding —/2y,/I+ 2y&%/? for the term that contributes most significantly to
the asymptotic. Afterwards we apply tiietransfer method and the saddle point method to find

T 20(+B—3/2(p _ 1)[3—(] p(}+3/2

oR o2m(p —1)3/2

Remark: Note that we could also use Stirling’s formula together with the representatifypas given
in Lemma[l in order to derive the asymptotical numbefaff)-tries. Choosing this procedure and not
approximating the factorigbt — 3+ 1)! appearing ir\(qﬁg}rl), the resulting asymptotic is valid uniformly
for arbitrary choices oft andp, a,3 — .

)

Now everything is prepared to conclude the main theorem of the present section. Dividing the asymptotics
derived fromM, (x,y) by the asymptotical number ¢f, 3)-tries provides the following theorem.

Theorem 2 The r-th moment of the stack-size(af 3)-tries is asymptotically given by

Tpa+ O(1) L or=1,
{Z(r)r(r—l)r(%)p5a5+()(q(r1)/2) L r>2,

forp= % > 1fixed,a — o, O

Note that the limitr — 1 applied to our result far > 2 yields the leading term of the expected value.

It is possible to derive terms of lower significance from our formulae. For example, the term of second
order of the expectation is implied by the expansiora@nd the residues of our Mellin transform for
i=0,s=0andi =1,s=1. Those imply the term

VI+2y(2+y) £1/2
V2y

for the expansion at= (24 4y)~! and thus a contribution cg — 2p for the average value. Investigating

the leading term of our asymptotic expansion more precisely proves that it does not provide any contribu-
tion to the term of second order for the asymptotics.

The class ofa,a + 1)-tries is equal to the class of ordinary extended binary treesawittternal nodes.

Since limy_ GLH = 1 holds, those trees would correspond to the gasel. However, even if we are
formally not allowed to do so, it is sufficient to spt= 1 within the asymptotic of the expectation in

order to rediscover the result df [2] (leading and constant term); there it has been shown that the average
stack-size of extended binary trees is asymptotically giver/byx— % Furthermore, we can use our
representation for the moments to determine an asymptotic for the variance. We find:

Corollary 1 The variances?(a, B) of the stack-size dfx, B)-tries is asymptotically given by
o%(at, B) ~ (%ﬂp— p) o,

forp = % > 1 fixed,a — oo. O

Note, that agaip = 1 leads to the well-known result for ordinary extended binary trees (see_€.g. [15]).
Let thenormalized stack-sizef a (a,p)-trie T be defined as(T) :=s(T)/,/0p for p = % Then we
obviously find that theé-th moment of the normalized stack-size is asymptotically given by

r

r(r—l)F(E)Z(r)
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in the limit. Those are exactly theth moments of the theta distribution-[27] whose cummulative distri-
bution function is

H(x) = 4x 32 %kz exp(—k?1e /x?)
k>

with the corresponding density

h(x) = 4x 5 K*(2k*% — 3) exp(—k>). (8)
k>1

Therefore we can conclude:

Corollary 2 The normalized stack-size @f, )-tries

admits a limiting theta distribution with density functic{lp (8) o= % > 1fixed,a — oo. O

See [15] for the related result for ordinary extended binary trees whiakdvecovelby settingp to 1.

As already mentioned within the introduction there are also studies for combinatorial tries where only
the number of internal nodes is used to determine the size of a tree. In the sequel we wilCeall a
trie with a internal nodes and an arbitrary number of white leavestae. Since there are no results

on higher moments, distribution or variance for the stack-size of uniform raredtmes, we will use

our computations in order to derive the related approximations. Setting within the asymptotic for
[X%]M;_1(x,y) yields the corresponding asymptotic foitries

—(r-1) ; _
3rr(n)(r) (%x/@) 6“0(2‘gr‘1<%) .
Dividing this quantity by the asymptotical numberatries
V66"
2vmad

leads to the approximation of tmeh moment given in the following corollary.

Corollary 3 Forr > 2 fixed, the r-th moment of the stack-sizedfies is asymptotically given by

L) = (g)%%r(;),

o — 00, O

Note, that even if we only considered> 2 for thea-tries, the limitr — 1 is equal to the well-known

approximation for the average-valqé%mx which was first proven inf[23]. Furthermore, it is obvious to
normalize the stack-size of-tries in order to find again a limiting theta-distribution. Moreover, we can
use our results to prove an asymptotic for the variance. We find:
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Corollary 4 The variances?(a) of the stack-size af-tries is asymptotically given by
1
En(n— 3)a, a — oo.

If the normalizedstack-size5(T) of aa-trie T is defined as§(T) :=s(T)/ (\/75\/6), then§(T) admits a

limiting theta distribution with density functiof] (8) for— co.
O

We will finish this section by providing some plots and tables related to the results presented. Irf]Figure 5

0.2 / / // // /
b / / / /
/ [/ // ’/ //

‘ //

.15

0.14

OO

J/)
Ll L B -
o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Fig. 5: The density and the distribution function f@r, 3)-tries forp = 30 andp = {—5 i =5,6,...,10. The solid lines
represent the asymptotics, the circles are used to plot the exact values.

we find the asymptotical density and distribution function for the stack-size @)-tries for = 30 and

p restricted to some fixed values compared to the exact values of the density and distribution. For the
density (left picture of Figurf 5) the highest graph corresponds to thepcadeand the lowest one to the

casep = 2. For the distribution function the leftmost graph belongs to 1 and the rightmosttp = 2. In

both pictures the asymptotic is only compared with the exact values in th@ eage As you can see our
predictions are very close to the real values everCtries of relatively small sizes. In Figufg 6 similar

plots are pictured for the case of the normalized stack-sizeifiores of size 50. Again, we find that

the presented asymptotics are very accurate. Finally, the table of FFj]gure 7 shows some exact numerical
values of the distribution function for the normalized stack-size-tries together with the corresponding
approximations.

4 Concluding Remarks

In this paper we have investigated the average stack-size of uniform ragiddes witha internal nodes

and white leaves (keys). Our result improves the one presentediin [23] because the number of white
leaves (code words, keys) withinatrie has been introduced as a new parameter. With respect to the
application of tries to the compression of blockcodes the gatio % can be considered as the degree of
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2.8 a 1 2 3 4

6 0.213| 0.981| 1.000| 1.000
24 || 0.073| 0.907 | 0.999| 0.999
54 | 0.038| 0.867 | 0.999| 0.999
96 || 0.025| 0.842| 0.998| 0.999
150 || 0.019| 0.825| 0.998 | 0.999

216 || 0.015| 0.814| 0.997 | 0.999

1.6

1.2

o | 0.003| 0.743| 0.995| 0.999

Fig. 6: The density and the distribution function Fig. 7: Some values of the distibution function
for a-tries of size 50. The solid lines represent of the normalized stack-size. The last row rep-
the asymptotics, the circles and crosses are used resents the asymptotic values for— .

to plot the exact values.

redundancy of the compressed code. Thus, the introduction of the new parameter makes it possible to
quantify the additional costs, which are implied by a certain amount of redundancy. Furthermore, it was
possible to determine the distribution (in the limit) of the stack-size for the claggiés. All the results

for (a,B)-tries presented in this paper can be considered as a generalization of related results for ordinary
extended binary trees published in [2] and [15]. We rediscover those results by setting tr% t@tlo

within our formulae. A similar parameter, the so-called Horton-Strahler number, has been considered in
[24]. In this paper the author has proved that (under the same assumptions as in Theorem 2 of the present
paper) the average Horton-Strahler number of lafgees is independent of the number of white leaves.

This supports the conjecture statedlin [23] that there is no simple relation between extended binary trees
and C-tries (colored extended binary trees), which would allow us to conclude our results from the well
known related results for extended binary trees; such a relation should work in the same manner for both
parameters.

There is a recent work by J. Bourdon, B. \é&land the authofl[3] in which we investigated the stack-
size of mary tries under probability models which are more natural for tries considered as an efficient
implementation of a dictionary. We have shown lin [3], that the stack-size of a trie built irkays
independently emitted by a source has an expectation of ordaraod a probability distribution which

is asymptotically of the double exponential type.

Acknowledgements: | wish to thank Michael Drmota for some useful hints concerning multivariate
asymptotics and also the anonymous referee, whose suggestions helped me to improve the quality of the

paper.
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