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g-binary search trees are obtained from words, equipped with the geometric distribution instead of permutations. The
average and variance of the height are computed, based on random words ohjesgtvell as a Gaussian limit law.
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1 Introduction

The paper(8] introduces for the first time a meaningfunodel of binary search trees: instead of binary search
trees, one considers tournament trees, which differ only marginally from binary search trees; if one starts from
a permutatior(T%1 T?z = T’[‘n) then one inserts the numbeanstead of the numbag,. Thus, traversing the tree in
inorder, we might think of the associated permutatiophs, where 1 goes into the root, apdresp. o form
(recursively) the left resp. right subtree. We could have called this paper “The Heigffiafrnament Trees;”
however we decided not to do so since binary search trees are by far better known, both, in the community
of theoretical computer scientists, and combinatorialists. A nice reference for tournament trees and increasing
trees in general is][2].

Now instead of considering permutationst, - - - T,, we consider words over the alphalét2 3, ...}, and
(geometric) probabilities attached to the letters, i. e., the probability of lieisepq 1, with p+q=1. The
binary search tree is then constructed by writing a nonempty wasiw = xay, wherea is the smallest letter
occurring, ank € {a+1,a+2,...}* andy € {a,a+1,...}*. The lettera goes into the root andresp.y form
the left resp. right subtree.

The paper(]8] dealt with the path length; here we consider the height. The height of a binary search tree (and
thus of the trees in our model) is defined to be the largest number of nodes in a path from the root to a leaf; the
empty tree (related to the empty word) has height 0.

We will prove that the expected height, when considering random words of lenggrasymptotic topn;
the variance will also be computed as well as a Gaussian limit law. (The fettélt always denote 1-q
in this paper.) Recall that the result for traditional binary search treesciwgn with ¢ = 4.31107, seel]3];
unfortunately we do not get that result as the liqit> 1 as it so happened for the path length. However, nothing
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is wrong here, since the limg — 1 in pn simply tells us that the average height should be less than linear.
Although this original hope of getting the classical result as a corollary did not work out, we nevertheless think
that the results presented here are of independent interest. Note alpoithétie expected number of letters 1

in a (random) string of length. In our asymmetric model, they must all lie on one path.

In more detail, we will obtain the following results:
Let H, denote the height aj-binary search trees with(internal) nodes (this is a random variable, defined
on words of lengt).

Theorem 1 For every positive g 1 the height K of g—binary search trees with n (internal) nodes satifies a
central limit theorem of the form

- X—pny | _ -1/2
sufertn 0 -0 (a5 | o0, @

where®(x) denotes the normal distribution function

X
D(x) = %lme“z/zdt.

The expected value is given by
1
B —pn+0( 1) @
in which theO-constant is uniform fob < q < 1. The variance can be estimated by
VHn = pan+ Oq (nl/zlog2 n) . (3)

The O-constant in the error term of the variance is not uniform fer § < 1. The dependency aphas not

been worked out since the order of magnitude of the error term is surely not optimal. However, although the
error term for the expected value is uniform, this theorem cannot be used to cover thip-edsavhere it is

known that the expected value is given by

EH, = clogn+ O(loglogn)
(with c = 4.31107-- -, see [3]) and the variance is bounded:
VH,=0(1)

(see 5/[B]).

Intuitively, this result (and its proof) says that the height is dominated by the number of 1's in the sequence.
This seems to be due to the fact that most 1's appear consecutively in the sequence, producing rather skew
subtrees. The contribution from 2’s is asymptotically negligible since there are much fewer of them, etc.

Studying the combinatorics (of words) of geometrically distributed random variables has been a long term
project of one of us (H. P.), and further papers can be found on this author’s webpage. We do not want to
give more details here, but in all previous cases the correspondence between the model of words and its limit
(permutations) led to very satisfactory results.

We would like to cite the paper![1] which is of general interest in this context.
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2 Weak Convergence

Lemmal Let y(x) denote the generating function

Yi(X) = ZOPr{Hn <k}x".

Then we havegx) =0, y(0) = 1and

Y 1(X) = PXYk(X)Yk(AX) + Yiet-1(0X) (4)
fork> 0.
Proof. The proof is a straightforward translation of the basic decompositienxay. If a= 1 (described
by px), then the left subtree consists only of letter{}3,... }, described by (qx), but the right subtree can

have any letters, which is describedygyx). However, ifa > 1, we get the terngi1(gx) (we might then think
of all letters being reduced by 1). a

If we write this in the form
Yk 1(X) — Yier1(9X)

= Yk(AX)Yk(X),
=) Y (aX)Yk(X)
then the limitg — 1 gives
)/k—}—l(x) = yﬁ(x)v
the usual recursion in the instance of binary search trees. (Rec Uha 3’() =: (Dqf)(x), andDgq is called

the g—difference operator.) Also, if we write
W)=Y ax,
0<j<2k
then we get, by comparing coefficients,
p i ;
=7 » &iakj-1-iq  forj>1,
+1,] 1—q 0§Z<j oK, j—1—i

andaxg = 1 for allk > 0. Thus, Theorerf] 1 may be reformulated in termsygf. However, in this paper we
will not make use of this notion.

Lemma?2 The generating functiong(x) (k > 0, 0 < x < 1) are bounded above by

1 X px k
yk(x)<1—x_1—x<1—qx) ' ®)

Furthermore, this inequality is also true on the level of coefficients, i. e. forlrand k> 1

Pr{Hn <k} = [X")yk(X)
k
o X pX
S1_[X]1Tx<1—qx> ©)

k-1 n—1 L
_ < | >plqnll.
|

Il
o
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Note that this upper bound is an exact binomial distribution function which is asymptotically normal with
meanp(n—1) + 1= pn+qand variancegg(n—1).
Proof. Sinceyi(x) < 1/(1—x) we get from [#) that

pX 1

Yir1(x) <

Thus, () follows by induction. Note that any step in these calculations is also true on the level of coefficients.
Thus,

Pr{Hy <k} < 1— [X7-> ( pX )k.

1-x\1-0gx
Set k
_ 1 X px
Y = 1-x 1-x (1—qx)
and k
— _ 1/ px
Bl = W) ~¥e-10 = ( 1_qx> |
Since
XA (X) = (:_ i) pkflqnfk’
(8) follows immediately. -

Lemma 3 The generating functionk k) (k > 0, 0 < x < 1) are bounded below by

1 X pX k
() = 1-x 1-x <1qx)

a2 (%) — ("

1—gx lf’éx—qx
- (1 )(%)k*qx)k

1-x\1—gx lf”éx—qx
X ( pX )kl—(qX>"
1-x\1-0gx 1-gx

()

+

Furthermore, this inequality is also true on the level of coefficients.
Proof. First we use the trivial lower bound

1_Xk+1
1-x

Yk(X) >
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and the upper bound](5) to obtain the inequality

Yir1(X) = PXK(X)Yk(AX) + Y1 (aX)
(qx)k+1 1 (qx)k+2

1
ZX(]-*Q)Yk(X) <1_qx ]_—qX > + 1—qX7 ]_—qX

px
1—gx 1—-gx

Cpd @1 x (px V) (@
1-gx \1-x 1-x\1-qx 1-qgx’

Now ([7) follows by induction. As in the proof of Lemnfia 2 it can be observed fhat (7) is also true on the level
of coefficients. O

In order to obtain proper error terms for the lower bounddofHy < k} which may derived from Lemm@ 3
we make use of the following lemma.

> Yk(X) +

Lemma4 Let0 < q< 1be given and let Fx) be a function which is analytic fgx| < 1+ € for somee > 0.
Then there exist & 0 andn > 0 (depending on q) such that

11700 (125) = 0 (- 2emn(- (ko0 @
and .
pX _ k
[x”}F(x)W = 0(n2exp( = (k—pn)?) ) +O(df) ©)

T—gx gx
uniformly for|k— pn < nnas n— co.
Proof. By using standard saddle point asymptotics (compare Wwith [4]) it follows that

e (:55) = an J o)

|Z=%0

k
— O —1/2 —nN ( pXO ) ,
(n o\ 1o

where the saddle poixt= xg = (1— %) /qis determined by the equation

d px
Xgx (1—qx) n
— =
1—-gx k

In particular we havep = 1 if k/n= p. Finally a local expansion of

(%)
_ - n—k k
=0/ (15" ()
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completes the proof of}(8).
The proof of [P) runs along similar lines. However, we have to be a little bit more careful. The reason is that

the denominator
pz

1-qz

is singular forz; = 0 and forz, = (—1+2q) /0. Nevertheless the whole part
k
(%) - (@
T2

is regular for|z| < 1/q. Note that|z| > 1 for 0< q < v/2—1 and thatz| < 1 for v2—1< q< 1. Thus, if
0+ v/2— 1 we get similarly to the above

k k
W € A € ) L
k
Pz
3 epdr®) e 1o, b a
2m . e —qz2"1 2m . e — gz M+t
|z=xo d 12 =0 q
k
_ 1 (Z)<1qz> dz 1 ( )qiz)k az
2ri 2L _qzz2"1  2m 2% _ gz
1Z=%0 ¥ 4=1 ¥

k
el

Note that we just shifted the paths of integration in regions of analyticityisfchosen sufficiently small such
that|xo — 1] < |[1—2|.

If g=+/2— 1 then there are polar singularitieszat= —1 after splitting the integral. However, the residues
of the functions involved (a¢ = —1) are both of order

O((vV2—-1)*) = 0(d"),

which implies that we get the same error term as in the qaée/2 — 1. a

Note further that (with a little bit more effort) we could have been much more precise. However, the bound
given by LemmdJ4 is sufficient for our purposes.

Lemma5 For every0 < g < 1 there exist ¢ 0 andn > 0 (depending on q) such that

Pr{H, <k} — Ii (n|—1> plgn! ‘ =0 (n‘”%xp(—% (k— pn)2)> (10)
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uniformly for|k— pn| < nnand
P
\Pr{|Hn—pn2m}|:O(exp(—cF)> (11)

uniformly for|m| < nn as n— oo,

Proof. First we note thatf[{9) of Lemnia 4 applies to the function

(@02 (1"Ex)k— (@9

1-qgx 1qx —Qgx

Thus we obtain

k
(o2 (1%) ~ ("
1-qgx 1qX — QX

X" =0 (n*1/2 exp(—% (k— pn)z)) +0(d)

uniformly for |k— pn| < nnasn — o,
The remaining terms will now be treated in the same way as in the proof of Lémma 4:

o \K k
o) (px (25) -~ (@ R S e S 2
1-x\1-gx 1Eéx—qx 1-x\1-gx/ 1-0gx

k
/ q (%) *(qz)k_ qZ pz \*1— (g2 dz.
2TI] 1 qz 1_p—fqz—qz 1-z\1-qz) 1-qz |2

|lZ=1-¢
/ qz 1 g2 1 pz kE
~om 1 gz ——qz 1-z1-qz/\1-qz/ 21
|Zl=xo
1 / @ ((pz\ (@ dz
211 1-z\1-qz 1£—qzz“+l
|z7=1-k1
s / aZ [ pz \* (@ dz
2 1-z\1-qz) 1-qzz+!
l7=1-k1

k
el e

For the first integral we use the fact that the function

F(2) = qz pz 1 g2 1
S 1-z\1-0qz 1——qz 1-z1-qz
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is regular az = 1 und thus bounded in a vicinity af= 1 (compare with the proof of Lemnia 4). The second
and third integrals are easy to estimate. We only have to apply the trivial bounds

max |——| =Kk,
lZ=1-k1|1-2
max zk‘ =0(1)
|z2]=1-k-1
and .
pz 1\ K
max = (1+0(k = 0(1).
e | = Lok h) = o)

Finally observe that in the randle— pn| < nnwe surely have

ko= 0 (n‘l/zexp(—r—c1 (k— pn)z))

which completes the proof of {[LO).
The proof of [1]L) is now easy. We just have to combine a proper tail estimate for the binomial distribution,

‘ G

with (I0). O

We are now able to complete the first part of Theofem 1. It is well known that the distribution function of the
binomial distribution can be estimated by the distribution function of the normal distribution up to a uniform
error of ordero(n~%/2), i. e., asn — oo,

n—-1 1 X—pn
Z( | >plqn1|¢< p)
I pan
compare with([7, p. 542].

Furthermore, by[{10) we get a similar result for the distributiofgf

sup
XER

=o(n"?), (12)

sup
XeR

Pr{Hh<x}— % (nl_ 1) p q“l" — o(n%?). (13)

1<x
Note that [I0) provideg (IL3) just farwith |[x— pn| < nn. However, by [T1) we know that
|Pr{|Hn— pn| > nn}| = O (exp(—cnn)).
By the monotonicity of the distribution function this implies that fowith |[x— pn| > nn we also have
|Pr{|Hn— pn| > x}| = O (exp(—cn?n)).

Thus (IB) follows.
The first part of Theorerf 1, i. €f](1), is now a trivial consequencg®f (12)[and (13).
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3 Convergence of Moments

LemmatdR ang] 3 can be easily used to get quite tight bounds for the expected value. Note that

S EHe - 5 (1_1X w(x)) . (14)

Lemma6 The expected value of;idan be bounded by
1
pn+g<EH, < pn+0<5>. (15)

Proof. Set

Then by [) we obtain

k
o= %5, (%)

which is also true on the level of coefficients. Thus, we have
EHn > pn+q.

Similarly we get the upper bound. From

_ 2
E(X)SX(l qX)‘l‘(qX) 1qx<l_1px - ! )

(1—x)2 1—qx(1f>éx) T 1—0OX
N gx ( pX ) 1 < 1 1 )
1-x\1—0gx (1'_))(;x)—qx 1—1[”;)( 1—0gx
agé 1 1 1
1-x1-0x 1—12—)&71_qu(_1(]—)(®
_x(1-9¥ (a%)?
C(1-x2  (1-x(1-g¥)
N po¥ S N 9
(1=x2(1-a) (1-%? (1 x) (17 fﬁq’gx)
_x(1-g¥ ¢(1-ax)

T2 @) (1 gx— pg?)
we directly obtain
EHy < pn+O(I—1)> .
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This completes the proof of Lemnih 6. |

Unfortunately it seems that we cannot prove similarly tight estimates for the variance. However, we can
obtain a non—trivial result:

Lemma7 The variance of Hcan be bounded by
VHn = pgn+ Oq (nl/zlog2 n) . (16)

Proof. If F(x) = Pr{X < x} denotes the distribution function of a random varia¥léof compact support)
then the variance of can be represented by

EX ©
vx=2/" aEx—y)F(y)dy+2/EX<y—E><><1—F(y))dy.

We apply this formula for the heighi, where we have very precise estimatesIfibt,, and its distribution
function Fy(x) = Pr{Hn < x}, compare with LemmB 5 and Lemrfia 6.
Letu < ny/nbe a parameter to be defined later. By applying Lerfima 5 and Ldinma 6 we get

"EHn—uy/n
2/O (EHn —y)Fn(y)dy= 0 (ne*cuz) ,
EH
n pgn 2
2/ EHn —y)Fa(y)dy= —+ O (u“v/n),
EHn—uﬁ( n—Y)Fa(y)dy 5 T (u?vn)
]Eanu\/ﬁ n
2[ - EH) - Ry dy= P2+ O (PVR).
and
n
2/ — EHn)(1—Fa(y))dy= 0 (ne ) .
1wy ~ER (A= Foy))dy = 0 (ne <)
Choosingu = log® n gives the result. a

It should be further mentioned that it is quite easy to get asymptotic relations for all central moments of the
form
E(Hn—EHn)kN Ck<pqn)k/2 (N— o)
by the method as described in Lemfiha 7, whete= (2k)! /(2k!) andcx,1 = 0. Thus we have not only a
weak convergence result fbt, (properly normalized) but convergence of moments, too.
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