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It is proved that a complete graph ar(> 4) vertices can be properly edge-colored with 1 colors in such a way
that the edges can be partitioned into edge disjoint multicolored isomorphic spanning trees whésnavyeower of
two or five times a power of two. A spanning tree is multicolored ifnal 1 colors occur among its edges.
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1 Multicolored parallelisms in complete graphs

Throughout this papédfs denotes the complete graph swertices. We color the edges i§f, with 2n—1

colors by assigning one color to each edge. Basic terminology and notation on graph theory is found
in Berge (1971). The coloration foper if whenever two edges that have one vertex in common carry
different colors. A spanning tree is calletulticoloredif no two of its edges have the same color. Two
trees areedge disjoinif they do not share common edges. Two graphs with colored edgéesoanerphic

if there exists a bijectioro between the sets of vertices and a bijectipivetween the sets of colors

such that(i, j) is an edge of coloc if and only if (o(i),a(j)) is an edge of colon(c). We investigate

the possibility of producing a proper edge-coloratiorkef such that its edges can be patrtitioned into
edge disjoint isomorphic multicolored spanning trees. [By isomorphic multicolored spanning trees we
understand a set of spanning trees, each of which is multicolored, any two spanning trees of the set being
isomorphic as uncolored spanning trees.] When this is possible to accomplish we obtain what we call a
multicolored tree parallelisnfior Kop.

When no coloring is involved, it is well-known, and a classical result of Euler, that the eddes of
can be partitioned into isomorphic spanning trees (paths, for example). Each of these spanning trees can
easily be made multicolored, but the resulting edge coloratidfp@lisually fails to be proper. Indeed,
there exists a proper coloration 6§ that does not admit a multicolored path; see Buliga (2002), [8]. By
an inductive construction we demonstrate that a partition of the eddgsinfo edge-disjoint isomorphic
multicolored spanning trees that induce a proper coloratid0§ possible wheneven (> 4) is a power
of two, or five times a power of two.
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Such a partition of the edges Kf, can be viewed as a parallelism as defined in Cameron (1976), [9],
with an additional property due to color. Specifically, finding a partition as described above corresponds
to an arrangement of the edgeskaf, into an array of & — 1 rows andn columns such that each row
contains all edges of some color (these edges form a perfect matching due to the fact that the graph
is properly colored) and the edges in each column form a (necessarily multicolored) spanning tree the
isomorphism type of which does not change from column to column. We ask, therefore, for a double
parallelism ofKz,, one present in the rows of the array (perfect matchings) and the other in the columns
that consist of edge disjoint isomorphic spanning trees.

The generating function of the multicolored spanning trees in any edge colored graph can be expressed
as a sum of formal determinants; cf. [2] and [3]. These results have been used in constructing multicolored
tree parallelisms for complete graphs on a small number of vertices. Algorithms for finding multicolored
spanning trees are discussedlin [6]. We applied the algorithm writtedl by [8] to obtain tree parallelisms
for complete graphs on a small number of vertices. An application of parallelisms of complete designs to
population genetics data is found in [1]. Parallelisms are also useful in partitioning consecutive positive
integers into sets of equal size with equal power sums;cf. [12]. Discussions of colored matchings and
design parallelisms to parallel computing appeafin [11].

2 A multicolored tree parallelism for powers of two

Our main result is the following

Theorem 1 If m# 1,3 and a multicolored tree parallelism fordg exists, then a multicolored tree
parallelism for Krpy, exists, for all r> 1.

Proof: Starting with a multicolored tree parallelism f&by, it suffices to prove that we can obtain a
multicolored tree parallelism fdfs4m. To complete the proof we simply iterate the process. Take a copy

of the multicolored tree parallelism fdf,y, and call itL. Take another copy of the multicolored tree
parallelism forKom, on a disjoint set of vertices from thoselobut using the same set of colors, and call

it R The graph havindg. UR as vertices, with edges connecting any vertek ofith any vertex ofR, is
calledB. It is apparent that we have thus constructed a giaphon the vertex set UR. Edges ofB

are still to be colored. Color the edges®in accordance with a pair of orthogonal Latin squaresr

a definition and basic properties of orthogonal Latin squares the reader is refered to [10] (p. 366). Itis
well known, cf. [5], that a pair of orthogonal Latin squaresrosymbols exists for alh =~ 2,6. Further
specificity on the type of such Latin squares appear& in [7]. The rows of the Latin squares are indexed
by the vertices oL, the columns by the vertices & Colors used are disjoint from those used on the
edges ot andR. Entries in the first Latin square represent the assignment of colors to the edges. We have
thus completed an edge colorationkay,. It is a proper coloration, since it is proper withinandR by
assumption, and the distribution of colors in accordance with the entries of the first Latin square ensures
that edges emanating from each vertex carry all possible colors. We now describe the spanning tree
decomposition that produces a multicolored tree parallelisnKigr In general denote bg(M) the set

of multicolored spanning trees present in the multicolored tree parallelism of completeMraghB(i)

be the set of edges & associated to positions in which symbalccurs in the second of the orthogonal
Latin squares; ¥ i <2m. Consider any bijection between the set of symbols in the second Latin square
and the ses(L) Us(R). The sets(L UR) is now described as follows:

S(LUR) = {B(I)UTG(|> 1<i< 2m}
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Elements of(L UR) are spanning trees &fuR. Any one of them consists of a spanning tre¢.@or R)

appended with a set of pendant edg¢s for somei. They are therefore isomorphic as uncolored trees.

By construction it is evident that they are multicolored. It follows that they are isomorphic multicolored
spanning trees. Moreover, they are edge disjoint. The only possible overlap may occur among the edges
in B. But the orthogonality of the Latin squares ensures that an edge occurs in precisely one such spanning
tree. This completes the proof. O

Start out with the tree partition &g written below. Rows represent colors, columns spanning trees. It
may easily be verified that we have a proper coloratiokgfthe four columns representing edge disjoint
isomorphic multicolored spanning trees.

18 34 56 27
17 36 28 45
16 38 47 25
26 15 48 37
23 14 58 67
46 78 35 12
57 24 13 68

Using this multicolored tree parallelism f&g as theKy, in Theoren{]l we obtain
Corollary 1 Forn > 2 the graphKs>n admits a multicolored tree parallelism.

A proper coloration of Ko, with rows representing colors and columns representing isomorphic span-
ning trees, appears below:

12 34 90 56 78
24 13 69 57 80
60 58 14 79 23
37 89 15 40 26
49 25 70 38 16
50 46 28 17 39
67 30 18 29 45
68 19 47 20 35
59 27 36 48 10

TheorentIl allows us now to conclude as follows.

Corollary 2 Forn> 1 the graph K.,n admits a multicolored tree parallelism.

3 Edge disjoint multicolored isomorphic spanning trees

Whereas the previous section offers a multicolored tree parallelism for powers of two, and five times
powers of two, this section examines settings where we fall short of a multicolored tree parallelism but
are able to construct, within the context of a proper edge coloration, a large number of edge disjoint
isomorphic multicolored spanning trees. It is easy to see that for an odd number of vertices any proper
edge coloration oKymy1 using 2n+ 1 colors can yield at mosh edge disjoint multicolored spanning

trees. Unlike in the case of an even number of vertices these spanning trees never partition the edge set
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of Komy1. At leastm edges remain uncovered. By ancoloration of K, we understand a proper edge
coloration onK,, with s colors, if one exists. By a method similar to that used in the previous section we
demonstrate the following

Theorem 2 If a (2m+ 1)— coloration of Km 1 that admits m edge disjoint isomorphic multicolored
spanning trees on the same set 2of colors exists, then there also exist§2m+ 1)2"— coloration of
Kimry2r thatadmit2'm edge disjoint isomorphic multicolored spanning trees, for(atlr) # (1,2).
Furthermore, all the2'm spanning trees of ,,1)>r in question involve the same set(@m+1)2" —1
colors.

Proof: Let Abe a copy of the giveKon.1 andB another copy on a disjoint set of vertices with an obvious
color preserving bijectiory between the vertices & andB. Consider the grapA. Edges carrying the
same colok form a matching ofm edges and an isolated vertex; we call the isolated vertex gertex

It is clear that ifv is ac—vertex of A theny(v) is ac—vertex of B. Them spanning trees oA have edges
colored with the same set ofricolors. We denote bgthe extra color that occurs in none of the spanning
trees. Connect every vertex Afto every vertex oB and denote the set of resulting edge<hyVe color

the edges irC in accordance to a pair of orthogonal Latin squares, which exist $mgg # (1,2), as
follows. Label the rows of the Latin squares by verticed\@nd columns by the corresponding vertices

in B. We can select without loss the first Latin square to have all symbols different on the main diagonal.
Symbols in the first Latin square are the colors assigned to the edgesTok colors in the first Latin
square are all different from the colors used on the edgés(of B). The graphAuBUC, isomorphic

to Kai2my 1), has all its edges colored with then2-1 colors inA plus the 2n+ 1 new colors irC. This
coloration is not proper, however. The following change will render a proper edge coloration: recolor the
diagonal entry in the first Latin square that corresponds to the vertexwpajitvi)), with v a c—vertex,

with color c. Do this for all diagonal entries in the first Latin square. A spanning tree of the type we want
is obtained by pairing up one of the given spanning tree& @ B) with nondiagonal edges in the first
Latin square that carry the same symbol in the second Latin square. By construction it follows that these
spanning trees are isomorphic, multicolored, edge disjoint amahZyumber. None of these trees have
edges colored with the extra colerWe now iterate the construction to obtain the stated result. This ends
the proof. a

The premise of Theoref 2 can be verified for small values.dh particular, it is not hard to check
that this is the case fan = 2 and 3 As a consequence we obtain

Corollary 3 For a (2p+1)2'— coloration of Ky, 1) there exist @' edge disjoint isomorphic  mul-
ticolored spanning trees each on the same sef2gf+1)2" — 1 colors.

Though a large number of spanning trees can be obtained by the construction of Theorem 2, in general
this construction is suboptimal. We can see this even in the casg Gfur construction yields two edge
disjoint isomorphic multicolored spanning trees. It is not hard to see that three such trees can actually be
constructed.

A small case that poses some difficultykig,. We were able to produce a proper coloratiorke$
that allows a partition of its edges into multicolored edge disjoint spanning trees but not all trees are
isomorphic. It is listed below.
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7-8 10-12 35 1-2 4-6 9-11
1-6 2-3 10-11 89 712 45
3-4 2-6 1-5 8-12 9-10 7-11
1-3 5-6 8-10 11-12 79 24
8-11 7-10 3-6 2-5 1-4 9-12
2-8 5-11 1-7 3-9 410 6-12
1-8 4-9 2-7 6-11 5-12 3-10
5-7 6-8 3-11  4-12 2-10 1-9
3-12 6-7 2-9 1-10 4-11 5-8
5-9 1-11 4-8 2-12 3-7 6-10
5-10 6-9 1-12 4-7 3-8 2-11
The construction given in this paper does not applgigsince it relies on orthogonal Latin squares of
order 6; but Euler proved that they do not exist. Nevertheless, we state as follows:

Conjecture 1 Any proper coloration of the edges of a complete graph on an even number of (more than
four) vertices allows a partition of the edges into multicolored isomorphic spanning trees.
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