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A certain unimodal conjecture in matroid theory states the number ofrramidroids on a set of sizeis unimodal in

r and attains its maximum at= |n/2|. We show that this conjecture holds uprte: 3 by constructing a map from a

class of rank-2 matroids into the class of loopless rank-3 matroids. Similar inequalities are proven for the number of
non-isomorphic loopless matroids, loopless matroids and matroids.
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1 Introduction

Let us first recall some elementary definitions (further details may be found in Gxley (1), Welsh (2) and
the excellent appendix of Whitél (3)). L&t be a finite set of siza. A matroidM on theground set $is
a collection of subsets(M) of S, satisfying

o I(M)#£0,
e if X € I(M) andY C X thenY € I(M),
o if X,Y € I(M) with |X| =|Y| + 1, then there exists€ X\Y such thaly U{x} € I(M).

Sets in/(M) are calledndependent set§herankof a setX C S,, denoted (X), is the size of the largest
independent set which it contains. The rank of the matrgidl) :=r(S,). A setX is closed(or termed a
flat) if r(XU{x}) =r(X)+1 for all x € §\X. We denote by (M) the closed sets d¥l. Theloopsof
M are the elements of the rank-0 flat. Also note thatS, is a loop if it is not contained in any of the
independent sets &A.

A certain unimodal conjecture in matroid theory states that the sequence of the number of non-isomor-
phic ranks matroids onS,, {f;(n) : 1 < r < n}, is unimodal inr and attains its maximum at= |n/2]
(see Oxley[(1) or Welstii(4) p.300). It is easily seen thénh) < f2(n) holds sincefi(n) = nand fz(n) =
p(1) +---+ p(n) —n, wherep(n) is the number of integer partitions of The step between rank-2 and
rank-3 is not as clear since the exact valuefgff) remains unknown. We show, through construction
of a map between a class of rank-2 matroids and loopless rank-3 matroids and known values of these
numbers from the On-line Encyclopedia of Integer Sequences, that this unimodal conjecture holds for
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these rank-2 versus rank-3 matroids. Furthermore, we show the corresponding inequalities hold for the
number of rank-23 non-isomorphic loopless matroidg(n) < gs(n), loopless matroids;,(n) < c3(n),
and matroidsmy(n) < mg(n).

Letbi(n) be the number of partitions of the St intoi parts andy(n) be then' Bell number. Letp;(n)
the number of partitions of the integeiinto i parts. The number of rank-2 matroids can be enumerated
through considering the points and lines of the associated geometry. Wegtaye- b(n) — 1, gz(n) =
p(n) —1 andmy(n) = b(n+ 1) — 2" (for proofs see Dukesl(5)). The main results of this paper are given in
Theorem$219-2.6. 2111 afnd 4.12.

2 Mapping rank-2 to rank-3 matroids

Let 9 (n) be the collection of rank-matroids onS,. Let 4, (n) be the collection of rank-matroids on
S, with at least one loop ang; (n) := M; (n)\ 4 (n). We define the map : 4>(n) — B3(n) as follows:
givenM € 4>(n) with loopsFp and rank-1 flatgf; (M) = {RoUFy,...,Fo UFn} defineM’ = o(M) as:

Fo(M) = {0}

f]ﬁ(Ml) . {Fo,Fl,...,Fm}

(M) = {RURLKIi<mMU{FRU - -UFRm}
Fs(M) = {S}.

It is easily checked that these collections of flats satisfy the axioms for a loopless rank-3 matroid. For
M € M, (n), let us writed(M) for the number of rank-1 flats dfl (which we will refer to as thelegree
of M). Let us mention that for any loopless matrdiy the rank-1 flats oM partition the ground set.
Similarly, for any matroid, the rank-1 flats partition the ground set less the set of loops. Also note that in
the collectionfz(M’), there are preciselgt(M) sets containingdr, 2 sets containing; (for any 1< i <
d(M)) and one set containirfg UF; (for all 0 <i # j < d(M)).

The following lemma shows that to each rank-2 matroid with at least one loop, there corresponds a
rank-3 loopless matroid (although not necessarily unique). The following lemma classifies those matroids
which map to a unique loopless matroid®g(n) and those which do not.

Lemma2.1 Let My, M, € 4,(n) be such thatfo(My) = {F\V}, Fo(Ma) = {F{?}, A(M1) = {FM U
FY RV URG  and F(M2) = {FP UFR® . R URST, 1. Thena(My) = o(My) if and only
if d(M1> = d(Mz) =2and

{Fo(l), 1(1)7 2(1)}:{ 0(2)’ 1(2)’ 2(2)}'

Proof: ONLY IF: Let M1,M; € 4>(n) be such thaM; # M, ando(M;) = 6(My). LetM} :=o(M1) and
M5 := o(My). Then we must havéi(M}) = F1(M5) and F2(M]) = F2(M5). Now F(M]) = F1(M5) =
d(My) = d(Mg) and{FM 120 — (F@19M2) it g(M;) > 2 then we must have! " = F{® which would

imply M1 = M>. Henced(M1) = 2=d(M>). This givesf>(M) = {Fo(l) U F1(1>, (§1> U Fl(l), 0(1) U Fl(l)} =
Fa(Mp) only if {FY, FY FIY} = (R R B}
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IF: This is trivial as{Fo(l), Ffl), Fz(l)} = {FO(Z), F1(2)7 F2(2>} gives 71(M}) = #1(M5) and
B(M) = {Fél) UF1(1)7F(§1) UFl(l), (51) UFfl)}}

2 2 2 2 2 2
— (RO R, P UFP P URP)) = .

d

Thus it is seen for each matroM € o(42(n)) such thatd(M) = 2, there are precisely three different
matroidsM1, My, M3 € 4»(n) such thao(M1) = o(M3) = o(M3) = M.

Lemma2.2 Foralln >3, c3(n) > b(n+1)—b(n)— 3",

Proof: We show that the number of unique matroids in the imageLgh) undero is given byb(n+

1) —b(n) —3"1, thereby lower-boundings(n). In the enumeration below, we divide the matroids to be
counted in the image into two classes, those matrbldsith d(M) = 2 and those witld(M) > 2. The
former class projects different matroids to the same matroigim) and through the use of the previous
lemma we take care of this over-counting, hence

#{o(M)|M € A5(n)}
= #{o(M)|M € 42(n) andd(M) = 2}+_i#{0(M)|M € 4p(n) andd(M) =i}
_ %#{M|M € 2,(n) andd(M) = 2} +-i#{G(M)|M € 2(n) andd(M) = i}
_ _i#{o(mw € Ap(n) andd(M) = i} — %#{M|M € Ap(n) andd(M) = 2}
= #4(n)— %#{M|M € 4y(n) andd(M) = 2}
= b(n+1)—2"—(b(n)—1)— g#{M|M € 2(n) andd(M) = 2} .

Note that #M|M € Ao(n) andd(M) =2} = 573 (P ba(1) andba(1) = 3 527 (|) = 21— 1, giving:

#{M|M € Z(n) andd(M) =2} = nl(?)(z'—l—l)
1=2
— %(3”—2”—2n—1)—(2”—n—2)
3 n— n
= 5@ =241
Thus
#{OM)M € B(n)} = b(n+1)—2“_b(n)+1_gg(snfl_zul)

= b(n+1)—b(n)—3"1
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The corresponding inequality for the number of non-isomorphic loopless matroids is proved in [€lnma 2.3.

We do this in a similar manner as before, by showing that each rank-2 matroid (which is not a loopless
matroid) of degree greater than 3 corresponds uniquely to a rank-3 loopless matroid.

n-1
Lemma2.3 Foralln >4, gz(n) > 21 p(i)— %2(2n2+6n+3) -1
i=

Proof: We show the number of non-isomorphic matroids in the imagelgh) underc is given by
S p(i) — 5 (2n? +6n+ 3) — 1 which lower boundsis(n).

Let us identify 45(n) C A(n) by placing an ordering on the elementsSf= {xi,...,xn}. Given
M € 4,(n) with d(M) = m, loopsFp and rank-1 flatfFy U Fy, ..., FoUFn}, let M € 45(n) if and only

if Fo = {x1,...,XR}, F1 contains the nexF| elements of,, i.e. {Xry|+1,---,X|ry|+|F ) @and so forth.
Define

T(n) = {MeAn)|dM)=2and|F| <R <|F}
and for 3<i <n—1,3<j <l define
Qij(n) = {Mea(n)|dM)=j,|F|=n—iand|F|<-- <|Fl}.

Let us now write
A (m) = Tmul Ui € an).

It is obvious that no two matroids ffi (n) are isomorphic to one-another. Similarly wily | (n). We have
simply reduced our class of matroids frofia(n) to A43*(n) in the same manner as one moves from the set
of partitions of a finite set of sizeto the set of integer partitions of

The unions in the definition ofi3*(n) are strictly disjoint and no isomorphisms may occur between
matroids in different classes or matroids in the same class. The same is true of the imigt@ptinder
the mapo. We may directly enumerate the number of non-isomorphic matroids(in) in the image of
A3*(n) undero as

n—1 i

p3(n) + i; J_; pj (i)
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The rightmost term is bounded below;

E:ipj(i) = E:{P(i)pl(i)pz(i)}
i=3 = =

n-1
= Zz{p(i)*lﬂi/ZJ}

n-1 ) n—l_
= *(0*3)+i;p(')*i;b/2j
stdp(i) - M2 g neven,
) { Sidp(i)— MY g nodd,
nt (n+1)2

> i; () =%

for all n > 2. As for pz(n), from Hall (6) [p.32], we have
|n?/12], for n# 3(mod 6),
Pl = { m2/12],  forn=23(mod 6),

n
2 1_2_1)

and so

n-1 ) n2 (I’H— 1)2

gs(n) > p(i)+ = — -1
i; 12 4
n-1 1 )
= p(i) — —=(2n“+6n+3) — 1.
i; 12
O

2.1 Matroids

The following lemma is needed in order to support the theorem which follows it.
Lemma24 Foralln>1 b(n+1)—2">2"—(1+n).

Proof: We have thab(i) > 2 for alli > 2. Sincen > 2, it follows that
nen-2 = 5 (M) on-1
b(n+1)-2" = (.)bi—l

i; !

- 5]

= 2"—(1+n).
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Theorem 2.5 For all n > 4, c3(n) > c2(n).

Proof: From Lemmd 2]2 we have theg(n) > b(n+ 1) —b(n) — 3""1. We knowc,(n) = b(n) — 1. It
suffices to show that

b(n+1)—b(n)—3"1 > b(n)—1
for all n > 4. Let us look at the valug(n+ 1) — 2b(n) — 3" 4 2n-1:

s iz S0 B EO K

n-2

=y (”Tl) (b(i+1)—2)

e
— 3”1—2”+1—r:2(ni_1>i
= 31- (n+3)2”|‘:2+n.

The problem has been reduced to showifig'3- (n+3)2"24-n> 2"~1 — 1 for alln > 5, which is easily
shown by induction. a

and using Lemma32.4,

WV

We now show the number of rank-3 matroids dominates the number of rank-2 matroids by using two
things: the first is the result proved previously, that the number of rank-3 loopless matroids is at least as
large as the number of rank-2 loopless matroids; the second is the first few known values of the numbers
cz(n) andcz(n). The latter knowledge makes the inequality strict.

Theorem 2.6 For all n > 5, mg(n) > my(n).
Proof: The number of rank-matroids orS, is related to the number of loopless matroidsJQiy

m(n) = i(r.‘)c,(i).

[
I=r

In Theoren{Z]5 we showed thai(n) > cy(n) for all n > 5. Replacing = 3 in the above expression and

using the first few values af(n) (taken from row 3, table A058710, of Sloane (7)),

mo(n) = Z (7)eat)
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A simple check shows that 880) + 75(2) —3(3) —3(3) — (5) is greater than zero and increasing for all
n> 7. From Table 1 (see Appendix), the result is also seen to hold f06,6. Equality holds only for
n =5, for all other values of the inequality is strict. a

2.2 Non-isomorphic matroids

Proving the corresponding inequalities for the non-isomorphic numbers is more difficult. We first prove
several lemmas related to the numbpfs) which we will need in the proofs of the two remaining theo-
rems.

Lemma2.7 Foralln>1, p(n+1) > p(n)+ L%J

Proof: The number of partitions of the integer 1 whose first part contains the integer 1 is precisely
p(n). The number beginning with for any 2< i < |25 | is at least 1 since we can have the partition
n+1=i+(n+1-1i). Also, the numben—+1 is a partition by itself, hence,

p(n+1) > p(n)+ QﬁzlJ —1) +1

= p(n)+ {%J .

2

Lemma28 Foralln>1, p(n) > 1+ |3][5] > =

Proof: From Lemmd&=217 we have
n+1
pn+1) > p-+ | "5 |

for all n > 1. Applying this lemma recursively gives

p() > pn-1)+ 3]
n-1 n

> Pn=2)+ {2J +3)

> p(lﬂl%lp...q“;HgJ
> 1+{1%1J+ J{n%lJﬂgJ (1)

Now we wish to evaluate the Sufif_, | 5 |. Letn = 2m+ 1 for somem> 1, then
n \f 2m+1\‘iJ
02 2i+1
5[2)+ %
nirn
= Lllal

N
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For then = 2m case withm > 1, we simply remove the last term in the previous expression, thus

0l ) 2m+1
AR
nirn
= [2) 2]
Continuing to the inequality in Equatidh 1 above,
n-1 n
ﬂzJ*bJ

p(n) > 1+ {TJ

= 1) 2]

foralln>1. If nis even, then| 3| [5] = “742. If nis odd, then|[5|[3] = ”;21% In either case,
1+ (3] 151 > 1+ 52, 0

2
Lemma29 Foralln>5, p(n+1) < 2p(n) — 4=,

Proof: Letx;+X2+...+X =n+1 be a partition oh+ 1 with 1< x; < ... < Xc. There are precisely
p(n) partitions withx; = 1, sincex+...+x=n+1—1.

For all those partitions witkx; > 2, we see that reducing by 1 will yield a partition ofn. Thus
an upper bound on the number beginning with> 2 is p(n). For all partitions starting with; = 2,
we see thai, # 1, thus we may remove all those sequences with- 1 < x3 < --- < X such that
2+1+x3+...+X% =n+ 1. Reformulated, this means all those partitions wigh-... +x« =n—2 and
1< X3 < -+ < X of which there arep(n— 2).

Thus we see thap(n+ 1) < p(n) + p(n) — p(h—2) = 2p(n) — p(n—2). From lemmd_Z]8 we know
that forn > 3,

(N—22+3 nm—4an+7
-2)> = .
p(n—2) 2 2

Now, we see that the simple inequalin— 13)(n—1) > 0 holds for alln > %3, i.e. w > (42

From above, this gives

p(n+1) < 2p(n)—p(n—2)

2 _
< 2p(n)— (n jn+7)
g 2p(n) - (n;2)7

for all n > 5 and we are done. A check of the first few valep(@fi) shows the stated inequality to hold
foralln> 2. |

Lemma2.10 Foralln > 7, 375 p(i) > p(n) + &(2n? + 6n+ 3).
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Proof: By simple induction. The result is true far= 7 sincep(1) + p(2) + - -- + p(6) = 30 andp(7) +
L (2(7)?+6(7) +3) < 27. Suppose it to be true for some= m > 7, then:

¥
Zi p(i) = p(m+ Zl p(i)
> p(m)+ p(m)+ 1&2(2n12+6m+ 3)
= 2p(m)+ %Z(Zmz+6m+ 3)
and using Lemm§a32.9, )
m-+
3
= p(m+1)+ %Z(Z(m+ 1)24-6(m+1)+3).

1
> p(m+1)+ +1—2(2rr12+6m+3)

Theorem 2.11 Foralln > 5, g3(n) > gz(n).

Proof: We have thagz(n) = p(n) — 1. Also, we know from Theorerh 2.6 thgg(n) > S p(i) —
1 2 —1 /i 1 2

&(2n? +-6n+3) — 1. From Lemmd 2.30, we havg"{ p(i) > p(n) + #5(2n?+6n+3) foralln > 7.
Combining these facts gives

n-1 . 1
g(n) > i; p(i) — ;5 (2n*+6n+3) -1
> p(n)-1
which isgy(n). From Table 1, the result is also seen to holdrfer 5, 6. O

Theorem 2.12 For alln > 5, f3(n) > fa(n).

Proof: The number of non-isomorphic rank-3 matroidsSyrin terms of loopless non-isomorphic rank-3
matroids is given through the relatida(n) = S 5gs(i) for all n > 3. The valuefz(n) = p(1) + p(2) +
...+ p(n)—nforall n> 2. From Theorem 2.11 we hage(n) > gz(n) for all n > 7. Applying the above
expression fof3(n), using the known value fagz(n) (from Sloane((7), row 3 of A058716) and assuming
nz7v,

B~ 38+ 3 6
> 23+_igg(i)

5,000

which is preciselyfa(n). From Table 1, the result is seen to hold foe= 5,6. Note that the above
inequality is strict fom > 6 and equality holds only fan = 5. O
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Note that, by duality, an immediate Corollary of Theordms 2.6 2.12 is the following.
Corollary 2.13 For all n > 6,

foa(n) < fa2(n) < faog(n)

M_1(n) < my2(n) < mMy_3(n).

3
=
NN
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Appendix
| n |2 3 4 5 6 7 8 || OLEIS Number Row/|
M 1 2 4 6 10 14 21 A058716 2
g3(n) 1 3 9 25 70 217 A058716 3
fn) [1 3 7 13 23 37 58 A053534 2
f3(n) 1 4 13 38 108 325 A053534 3
c2(n) 1 4 14 31 202 876 4139 A058710 2
cs(n) 1 11 106 1232 22172 803584 A058710 3
mp(n) |1 7 36 171 813 4012 20891 A058669 2
ma(n) 1 15 171 2053 33442 1022217 A058669 3

Table 1: Known values for the number of rank-2 and rank-3 matroids taken from Sioane (7).
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