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In this paper we study two lattices of significant particular closure systems on a finite set, namatyotnstable

closure systemsnd theconvex geometriedJsing the notion ofgdmissiblg quasi-closed setnd of (eletablé closed

setwe determine the covering relation of these lattices and the changes induced, for instance, on the irreducible
elements when one goes frotto ¢’ where C and ¢’ are two such closure systems satisfyifig< ¢’. We also

do a systematic study of these lattices of closure systems, characterizing for instance their join-irreducible and their
meet-irreducible elements.

Keywords: Anti-exchange closure operator, closure system, convex geometry, (locally distributive) lattice, quasi-
closed set.

1 Introduction

The notion ofclosure systengalso calledMoore family or the equivalent notions aflosure operator

or of complete implicational systeare fundamental since they very often appear in pure and applied
mathematics. For instance, an earlier result in the theory of relational databases has proved the existence
of a one-to-one correspondence betweenftitlesystems of (functional) dependencaedd the closure
systems (Armstrond [3]). Then the study of the set of all full systems of dependencies is equivalent to
the study of the set all closure systems. In particular, the changes in a full system of dependencies can
be studied in terms of changes in a closure system (see for instance [8] and [14]). It has been known for
a long time that the se¥/ of all closure systems defined on a finite Seind ordered by inclusion is a
Iatticeﬂ This lattice has been studied by many authors (see, for instance, Caspard and Marijardet [9]).

T1n 1943,0re studied the lattice of closure operators in widh a fixed point, that is a lattice dual of the lattice of closure systems
where0 is closed.
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In this paper we investigate the properties of sub-semilattice® pformed by the sets of all closure
systems satisfying some given significant properties. Namely these sets aréahetable closure sys-
temsand theconvex geometrieS he first one of these sets, ordered by set inclusion, is a lattice, whereas
the second one is a join semilattice that we transform into a lattice by adding a least element. We do a
systematic study of these lattices. We determine threucibleelements, theiarrow relationsand some
dependence relatiorisetween these irreducible elements. An essential task consists in characterizing the
covering relation of these lattices; this problem, easyin can be difficult in other cases. It is related
— but not equivalent — to the following one: if is a class of lattices anda lattice of £, what are the
minimal sets of elements &f which can be deleted froin (respectively, added to) in order to obtain a
lattice which still belongs taC ? These questions were investigated in Bordalo and Monjardet [6] in the
particular case where a unique element can be deleted or added. Answers were given for several classes
of lattices, in particular for thiower locally distributivelattices, those ones whose set representations are
the convex geometrieS’he same question was considered by Chen, Koh and_Tan [10] and by[Rival [35]
[36] and others in their study ofrattini sublatticesand on maximal sublattices of distributive lattices,
those ones whose set representation Tg-Bopology. On the other hand, Johnson and Déah [23] prove
two theorems on thexpansiorand thecontractionof a quotient of a convex geometry. As we will see
their results are contained in our characterizations of the covering relation in the lattice of all convex ge-
ometries.

The characterization of the covering relation of our two lattices allows us to determine the changes occur-
ing in such a system when one goes from this system to one covering it or covered by it. In our conclusion,
we will come back on the interest of considering these changes.

The basic tools used in this paper to get our results are the notiogeasi-closed seand of C-
admissible quasi-closed sethere( is a given class of closure systems.

2 Preliminaries

In the whole paper, all objects are assumed to be finite, so "set” (respectively, "poset”, "lattice”, etc.)
meandinite set(respectivelyfinite posetfinite lattice etc.). The set difference between two skendB

is denoted byA — B and byA — x (rather thamA — {x}) if B = {x}. Moreover the symbok will denote

the disjoint set union. We will as well writd+ x rather tharA+ {x}. At last, we writeA||B whenA and

B are not comparable (with respect to set inclusion).

A poset(X, <) will often be simply denoted b)X. The associated covering relation will be denoted
by < (x<yif x<z<yimpliesx=2). A (closed interval of X is a set[x,y] = {ze X :x<z<y}
for somex andy of X satisfyingx <y. An element of a poseX is join-irreducible (respectivelymeet-
irreduciblé) if it is not the join (respectively, the meet) of elements different from itself. Otherwise it
is calledjoin-reducible(respectivelymeet-reducible If the poset is a latticé, meaning that every pair
{x,y} of elements of has goin x\Vyand ameet x\y, the set of its join-irreducible elements (respectively,
of its meet-irreducible elements) will be denoted Jpy(respectivelyM, ). In this case and as usupt
(respectively,m™) will denote the unique element covered by the join-irreduciblgespectively, the
unigue element covering the meet-irreducitme

We recall the definition of tharrow relationsof a latticeL defined onJ. x M) and of thedependence
relationsd andp. Let j be a join-irreducible andn a meet-irreducible of a lattice. We write j T m
(respectively,j | m)if j £ mandj <mt, i.e. if jvm=m" (respectively, ifi € mandj~ <m, i.e. if
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jAm=j7). We writej [ mif j 1 mandj | mare simultaneously satisfied. Now fpandj’ € J, we set
joj’ if there existam € M, such thatj T mand j’ £ m. Dually for mandm € M_ we setmBn if there
existsj € J_such thatj | mandj £ m.

Remark: For the basic properties on the arrow relations, see for instance Ganter and Wille [21]. The
dependence relatiohdefined onJ. has been introduced by Monjardet [30] in order to stadpsensus
problemsin Iatticeﬁ (see [31] for some results on this relation). The relaffodefined onM_ is a
dependence relation, dual from the relatt®nThere is another dependence relation, denotedyland
defined onJ_ by j&qj’ if there existan € M such thatj T mandj’ | m. This relation was introduced by

Day [13] in his study of lower bounded lattices. A latticas atomistic if and only ifd = &g on J_ (see

(31]).

A set systeron a selSis a family C of subsets o6. A closure systeng” on a sefSis a set system o8
satisfying the two following properties:

1. SeC
2. q,CGeCc=CnNCeC

Example: For anyA C S, we write Ca the set systenta = {A,S} and for allA,\BC S, Cag is the set
system defined byag = {X CS: AZ X or BC X}. Clearly Ca and Cap are closure systems and we
will use them later in the paper.

The sets of a closure systafrare called thelosed setsf C. A closure systeng’ is a lattice(C, C, A, V)
(often simply denoted by’) with
CinC=C1NC, CiVC=[{CeC:CluC, CC}

A closure operatolo on a setSis a map defined oR(S), which is isotoneX CY = a(X) C a(Y)),
extensive X C (X)) and idempotentq?(X) = o(X)). Equivalentlya is a closure operator if we have
(X Ca(Y)ifand only if o(X) C a(Y)), for all X,Y C S The fixed points of a closure operatori.e. the
setsX such thaiX = g(X), are called thelosed setsf o.

It is well known that closure operators are in a 1-1 correspondence with closure systems by the map
associating to a closure operatothe set systend; of its closed sets and, conversely, by the inverse map
associating to a closure systehthe operatoo - defined byo(X) =N{C C C: X CC}.

We need to recall several classical notions relative to closure systems or closure operators.

Definition 1 Leto be a closure operator on S.

1. For AC S, an element g A is anextreme elemenif A (w.r.t.0) if 6(A—x) C a(A). We denote by
exsA, or if no ambiguity occurs, by exA the set of all extreme elements of A (wat. to

2. Aset AC Sisfreeif A=exA, i.e. if for every x A, x¢ o(A—x). A set idependenif it is not free.

* The problem of consensus in a latticeonsists in defining consensus functions.gie. functionsF : L" — L satisfying "good”
properties, for instancenanimity(F(x,...,x) = X). The fact that the dependence relatidsr  are — or are not — strongly
connected plays a significant role in the latticial theory of consensus. dee [27] and [33].
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3. Abasis(or minimal generating sgbf a closed set C af is a subset B of C such tha{B) = C and
satisfyingo(B —x) C o(B) for every xc B.

The following lemma recalls some elementary properties concerning these notions.
Lemma 1 Leto be a closure operator on S. The following holds:

1. Forevery ACS,0C exa(A) CexACAC a(A).

2. An element x of a closed set C is an extreme element of C if and onlyxfi€closed.

3. BC Siis a basis for a closed setoff and only if B is free.

4. IfCis aclosed set af then exC=N{B: B basis of G.

The following (and less classical) notion gfiasi-closed sas fundamental in this paper.

Definition 2 Let C be a closure system on S aag the associated closure operator. €5 is aquasi-
closed sefw.r.t. to C) if Q ¢ C and if C+ {Q} is a closure system on S. Moreoveoi(Q) = C, we say
that Q is a Cquasi-closed set

It will follow from Lemma@ (given below) that any closure system distinct frofra@mits at least one
quasi-closed set.

Proposition 1 Let C be a closure system on &, the associated closure operator, Q a subset of S with
Q C 0,(Q) =C. The following properties are equivalent:

1. Qis aC-quasi-closed set (w.rf),
2. For every closed set G satisfyinggQG, GNQ € C +{Q},
3. For every closed set G such that3C, GNQ € C,
4. For every closed set G such thae5(C—A) <C, (Q—A) € C,
5. Forevery XC Q, if o-(X) C C theno(X) C Q.
Proof:
[@. = [2. Immediate from the definition of @-quasi-closed set.
2. —B. 0-(Q)=CandG < Cimply Q¢ Gand soGNQ # Q. Thus by itenf PGNQ € C.
B. =M. Immediate sinc& =C—-AandQc Cimply GNQ=Q—-A

M. —[B. Let X C Q such thao(X) € C=0-(Q). Then there exist& € C, such thao(X) C G =
C—-A<C. SoX CQ-Awhichis aclosed set. Then-(X) CQ—-ACQ.
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B. = [0. We prove that” + {Q} is a closure system by showing tH@&N Q) € C+ {Q} foranyG € C.
If G andQ are comparable the result holds. Otherwise we laveQ C Q and soc-(GNQ) C
6.(Q) =C (indeedo~(GNQ) = a-(Q) would imply Q C a,-(Q) =o-(GNQ) C G, a contradic-
tion). Then by iteth po~-(CNQ) C Q. Soo(CNQ) C CNQ, whichmean€NQ=0-(CNQ) € C.

d

Remark: In [22] Guigues and Duquenne definedaturated gapas a seQ satisfying item[b. above.
In [20] Ganter proved the equivalence between itgmis 1.[&nd 5. (see also Wild [39] and Caspard and
Monjardet [9]).
Lemma 2 Let C be a closure system on &; the associated closure operator and Q a subset of S.
1. If Q is a C-quasi-closed set, then ex@Q C C and, for every x exC,(Q—X) € C.

2. If QCc C=0,(Q) =o,(ex], then [Q is a C-quasi-closed set if and only if for everg exC,
(Q—X) € (. (In particular exC is a C-quasi-closed set if and only if for every &xC, eXC—x) €
0).

Proof:

(@ SinceexCis the intersection of the bases@fwe haveexCC Q c C and, ifx € exG thenC—x € C
andsoC—x)NQ=Q—xe C.

@ By item[1, we only have to prove the sufficient condition. Assume@hatC = 0,(Q) = o (exC).
We prove thaQ satisfies Condition]3 of Proposition| 1, i.e. that for every closedssstich that
G <C,GNQe C. ltis sufficient to prove that a closed 98tis covered byC (if and) only if
G = (C —x) with x € exC (since therGNQ = (C—x)NQ=Q—x€ (). If G<C = o,(ex0),
exC¢Z G. Then there exists € exCsuch thak ¢ G. SoG C (C—x) < C and finallyG =C —x.

O
Lemma 3 Let C be a closure system on S&CC and xe (C—exQ).
1. (C—x) is a C-quasi-closed set if and only if [for everyeaC with G < C and xe G, then x¢ exG].
2. LetCe C such that C is a minimal dependent closed set. Therx@s a C-quasi-closed set.
Proof:

[ By Propositior 1, iterh|3. and Lemrh(C — x) is aC-quasi-closed set if and only if for every closed
setG such thatG < C, GN(C—x) = (G—x) € C, if and only if for every closed seB such that
G<C,xeexG

If x e Gwith G < C, thenx € exG= G, sinceG is free. Then by iterp]1(C — x) is aC-quasi-closed set.
O

Remark: Since the closed sets of a closure syst€rare all free if and only ifC = 25, item@. of the
above Lemma proves the previous assertion that any closure system (distincPfraanits quasi-closed
sets.

We now define a converse notion (in some sense) of the notion of quasi-closed set.
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Definition 3 Let C be a closure system on S.CC is a deletable closed set (w.r.¥) if (C—C) is a
closure systemon S.

The following result is obvious.

Lemma 4 Let C be a closure system on S.€C(C is a deletable closed set (w.rf) if and only if C is a
meet-irreducible element of the lattice

We denote byM the set of all closure systems defined on aSeEhe poset 4/, C) is a well studied
lattice (see for instance Caspard and Monjardet [9]) and we recall some of its properties below:

Theorem 1 The latticeM of all closure systems defined on a set S of cardinality n satisfies the following
properties:

1.
2.
3.

10

Its greatest element is the Boolean algeBrand its least element is the closure systegh
Its atoms are th€2" — 1) closure systeméa = {A,S}, for AC S.

Its meet-irreducible elements are th@h— 1) closure systemgax = {X CS: AZ X or xe X},
for AC S—x and xe S (with upper coverggfx = Cax+{A}).

.Porallc,c’eM,cnc’=cncC andCcv(C ={CnC,CeC,C e’}
C=<C <= thereexists a quasi-closed set Q (w.r.t. C) such that
C'=Cc+{Q}
<= there exists a meet-irreducible element Qbtuch that
c=C—{Q

. (Cal Gexifandonly ifBCAC S—x)and (Ca 1 Caxifandonly if Ca | Gax if and only if B=AC

S—X).

. CadCgifand only if AC B C S (so the dependence relatidis isomorphic with the Boolean lattice

25, without the greatest element).

. The dependence relatifins symmetric and strongly connected.

. The latticeM is atomistic and lower bounded and, consequently, lower locally distributive, meet-

semimodular, ranked and join-pseudo complem@ned

. The rank of the closure systgmin 2 is r(C) = |C| — 1 and the length of\f is 2" — 1.

Notation: In the following, we omit the bracketings in the set notation. Tfas will be denoted bya
and{b,c} by bc.

The setMp of all the closure systems containifigs a lattice. Indeed, it is clear thatp is the sublattice
[{0,S}, 29 of (M,C,N,V). Then from Theorerﬁ]l we easily obtain the following resultign

Corollary 1 1. The atoms of\p are the2" — 2 closure systemépp = {0,A, S}, for0C AC S.

8 For

the definition of these classes of lattices see for instance [9] br [19].
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2. The meet-irreducible elements®fy are the r(2”*1 — 1) closure systemga x with @ C A C S—x
and xe S.

C=<C <= there exists a quasi-closed set Q for C with= C+ {Q}
<= there exists & My with ¢ = ' — {Q}.

4. My is atomistic and lower bounded. It is therefore lower locally distributive, join-semidistributive,
join-pseudo complemented, meet-semimodular and ranked ({@ih= |C| — 2).

5. The dependence relatidnis isomorphic with the Boolean lattic®®, without the greatest and the
least element.

6. The dependence relatifiis symmetric and strongly connected.

Remark: Everything that has been said in this section can directly be dualized to the union stable set
families which contaird. Let us call these set familietual closure systermend denote byl the set of

these families.(U, C) is obviously a lattice dual t¢, C). Moreover, if C is a dual closure system, a

dual notion of a quasi-closed set for a closure system would be the notehrabfuasi-closed sdor C
defined as a sd® C SsatisfyingR ¢ ¢ and such that” + Ris a dual closure system. This notion of dual
quasi-closed set will be more generally applied to_afitable systems.

In the following sections we study some particular closure systems, their lattices and their covering
relations. Sectiofn|3 deals with-closure systemand Sectiof |4 witttonvex geometries

3 The lattice M" of U-closure systems and its covering relation

Definition 4 Let S be a finite set. A-closure systent” on S is a closure system on S that is stable under
union: C, C' € C implies(CuC’) € C.

TheseU-closure systems are exactly the sublattices of the lattieeg_(2of all subsets of5, which
containS. Since (2,C) is distributive, so are alU-closure systems. The join- and meet-irreducible
elements of aJ-closure systeng” will be respectively called the-irreducibles and the-irreducibles of
C and we denote by the set of all-closure systems o8

Example:

1. Recallthatag = {X CS: AZ X or BC X}. Itis easy to check that

Cap € MY < [[Al=1lor (A=0and|B| = 1)
2. A U-closure system containir@jis called atopology

3. TheU-closure systemg(A) = CV Ca (for any U-closure systent” and anyA C S) will play an
important role in this section.
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Lemma5 Let Ce C € M"Y and denote by C=C — Aq,...,Cx = C — A the k lower covers of C iif.
B C S is a basis of C if and only if B is system of distinct representative€SDR) of{A4,..., A}, i.e.
B={ay,...,a} witha € A;, foreveryi=1,... k.

Proof: First observe thaéy NA; =0 for all i # j. Indeed if there exists# j such thathi NAj =X D 0
then, sinceC is U-stableCi C C;UCj = C— X C C, which is a contradiction.

= LetBbe abasis of. Soforeveryi=1,... ,k BNA # 0 (if not B C G, which implieso(B) CC;, a
contradiction). Assume th&N A D {x,y} for somei <k (i.e. [BNA;| > 1). Then, sincg € B—x
andy ¢ G, o(B—x) Z Ci. Anda(B—x)  C;j for every| # i, since there existg; € (B —x) NA;
with a; ¢ Cj. Soo(B —x) = C, a contradiction with the fact th& is a basis. FinallyBNAj| =1
foreveryi=1,... k.

<= Take anySDR B= {a;...&} of {A4,...,Ac}. We haveo(B) C C. Assume that(B) C C. Then
there exist€; < C such thato(B) C Ci. Buta € B—C;, a contradiction. Sa(B) =C. Let us now
consideiB — & for somei <k. ThenB—g C C; and soo(B—a) CC; C C.

d

Lemma 6 Let Q be a C-quasi-closed set fore M“. Then for all lower coversQCj of CinC,GNQ =
CinQ.

Proof: Assume that there exists two lower cov&sandC; of C satisfyingCinQ # C; N Q. Since
Q is quasi-closedCi N Q andC; N Q belong toC which is U-stable, soCiNQ)U (CjNQ) € C. But
(GNQU(CjNQ) = (GUC))NQ=CNQ=Q¢ C, acontradiction. O

Proposition 2 Let C be aU-closure system and @ S such thaio(Q) = C # 0. The following are
equivalent:

1. Qis aC-quasi-closed set ¢f

2. CeJcandC NQeC.

Proof:

M. =@ Sinceo(Q) =C, Qcontains a basis @&. LetC; =C—Ay,... Cx=C— A be thek lower covers
of Cin C and assumk > 2. By Lemmd b, there exists$DR B= {ay,...,ac} of {Aq,..., A} such
thatB C Q. For alli # j, aj € GNQ anda; ¢ C;NQ. ThenCi N Q # C;NQ, a contradiction with
Lemmg §. S& € J- and, by Lemmé]2, item & NQe€ C.

2. =-[. Immediate from Lemmfg]2, item 3.

a

The setM" is obviously stable under intersection but it is not stable under the join operatigfi of
(for instance, itM, C; = {a,S} and(, = {b, S} (with a # b) areU-closure systems but their join i,
GV G = {0,a,b, S} is notU-stable). SaM" is ann-subsemilattice of¥. Since it contains 2 it is a
lattice and if we denote bg" theU-closure of a closure systedyi.e. CY = {JG: G C C} then the join
operation inM", denoted by 4,u, is given below:
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Lemma 7 LetC andC’ be twoU-closure systems. V4,0 C = (CVC)Y =({CNC, Ce C,C e C ).

Notation: Throughout this section, the join operation " will simply be denoted by/. We write
JY andMV respectively the setd;,u andM,. In order to give the characterizations of the order and

covering relations o/, we define, forc € M, 1 = {[X,Y] Cc C: X € JcU{minC}, Y € M and
X C Y}

Proposition 3 Let ¢’ be au-closure system.

(ccCandceMY) <« 3JICIpsuchthac=C'- |J X.Yle.
XYl oel

Moreover if X = X for any i such thafX, Yi]~ € I then X is a quasi-closed set for
Proof:

=! We must prove that for an® € ¢’ — C, there exist$X,Y]~ € I~ such thaC € [X,Y]~ C C' - C.
Suppose that this does not hold for so@ec ¢’ — C. We setly ={T € J: T C Co} U{minC’}
andMp = {U € M : Cy CU}. Clearly, these two sets are non-empty and we havg= Cp =
NMg. Consequently, for all € Jy andU € Mg, there existZry € CN[T,U] (if not, Cy €
[T,U] € '~ C, acontradiction). We havgrcy, Nuem, ZTu € C. Onthe other han@o =JJo €
Utes,Nuemy ZTu € Ny = Co » that isUr ey, Nuem, ZTu = Co € C, which is a contradiction.

«=: (C C (' is obvious. Now suppose that is not U-stable, i.e. there exist&; and X, € C with
X1UXz € ¢’ — C and soX; U Xz # minC’. This implies that there exists € J~ andY € M~ with
X CY andX1UXz € [X,Y]~. Since( is a distributive latticeX C X; U X implies X C X; or
X CXgpandsoX; ZY or Xo Y (otherwiseX; or X; ¢ C) and finallyX; UXe 'Y, a contradiction.
By duality, we would similarly prove thaf is N-stable. Sinc& clearly contains, C is aU-closure
system contained ig”.

At last if all X; are equal tX thenC'NX C X for anyC’ € (C+ {X}) and, sincl€' NX € C,Xisa
quasi-closed set faf.

Remark:

1. In this proposition, i, =Y for anyi such thafX;,Y;] ~ € I, thenY is a dual quasi-closed set for

2. In |36] Rival characterizes the sublattices of a distributive lattice. In terms of closure systems this
amounts to characterize a3-topologies (see Definitidn 7, Sectiph 4) contained ifydopology.
Then Propositiof]3 is a generalization of Rival’s result to arbitrauglosure systems.

We define an order relation on the setby [X,Y]c < [X',Y']¢ if X’ C X andY CY’. Recall that
Co ={Q, S} for anyQ C Sand that forC € M", C(Q) is theU-closure systent(Q) = CV (.

In Theorenj 2 we will characterize the covering relation in the latlifé in terms of quasi-closed sets.
We begin with a lemma.
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Lemma 8 Let C be au-closure system and Q a quasi-closed setdoiThen the following holds:

c@Q=c+ U QTleq

i=1..k
with:
a) Ti € Mg foranyi<k
b) T||T; fori# |
) (C(Q—C)NJpq =Q

Proof: C(Q)=CVv{Q,S} =C+{Q}+{CuQ: Ce CcandCUQ¢¥¢ C+{Q}}. LetCy,...,Ci be the
maximal elements of such that{CGiUQ) =T € C+{Q}}. Let[Q,Ti] o = QU{R:QCRCT, R=
CuQwith CC G} C (€(Q) — C) (indeed ifR=CUQ € C thenRUC; = QUG =T, € (). Thus
C(Q) = C+Ui—1 «Q Tilc@)-c-

(@) If there exists # j such that, for examplé; = C;UQ c C;UQ = T thenC, UC; UQ = Tj, which
implies thatC; andC; were not maximal.

(@) If there existd such thafT; is the intersection of some elements@iQ) then these elements are not
in any intervallQ, Tj] ~(q) (since theT;’s are not comparable). So these elements beloryand so
doesT;, a contradiction.

(@ Qe I since ifQis obtained as the union of at least two elements @) (different fromQ) then
these elements belong tband so doe®), a contradiction. At last iR €]Q, Ti] (q), R=Ci UQ with
C,Q¢e C(Q) and soR ¢ ‘]C(Q)'

d

Definition 5 Q C S is acover admissible quasi-closed set éou-closure systeng if Q is a quasi-closed
set for C satisfyingC < C(Q).

Theorem 2 Let C and ¢’ be twoU-closure systems. The following assertions are equivalent.
1. c=<C.
2. C=C'—[Q,T] with Q a cover admissible quasi-closed setfband[Q, T] is <-minimal in I-.

Proof:

M. =[2. ¢ < ¢ implies ¢ C ¢’ and so, by Proposition| & = ' — Ui—1_x[%,Yi]c. If k> 1 then
C" = C' —[X1,Y1]~ is aU-closure system which satisfiesc ¢’ c (', a contradiction withC <
C’. Now suppos&k =1 andC = ' — [X,Y]~ with [X,Y]~ non <-minimal in I». Consider
X" Y € minl with X', Y']~ < [X,Y]o thenC” = ¢’ — [X',Y']|~ satisfiesC c " c (', a
contradiction. FinallyC < ¢’ impliesC = ' —[X, Y]~ with [X, Y]~ € minI~ and, by Propositioh]|3
and Definitiorf 5 X is a cover admissible quasi-closed setdor
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[2. = [1. Immediate from Propositidn 3.

Remark:

1. Note that the intervdminC’, T] is <-minimal in I~ if and only if minC’ =T € M. This is the
only case wher&’ —minC’ remainsU-stable.

2. In [10] (see alsd [36]) the authors characterize the maximal sublattficés distributive lattice.:
L—L'is either an intervalj, m| with j € J. andm € M with no element off. UM in]j,m[, oris a
unique element which is either doubly irreducible or the least or the greatest elenhemh dérms
of closure systems, this amounts to characterize maxipdpologies contained in &-topology.
Then Theorerfi]2 is a generalization of these results to arbitrafpsure systems.

We give the corollary below as a direct consequence of Thejofem 2:

Corollary 2 Let C be aU-closure system and @ S. Then Q is a cover admissible quasi-closed set
for C (i.e. C < C' = C(Q))if and only if C(Q) = C+[Q, T]~ with Q quasi-closed set faf such that
Re [Q, Tl NMy impliesR=T.

Recall thafT is said to be alual quasi-closed set faf € MV if CUT < C for everyC € C.

Corollary 3 Let C be aU-closure system and Q a quasi-closed setdor If Q is either a maximal
guasi-closed set or a dual quasi-closed setdothen it is cover admissible.

Proof: Let Q be a maximal quasi-closed set f6r So there exists” € M such thatC < ' C C(Q) =

C+Ui—1. «[Q,Ti] (g (by Lemmg 8). By Theorefr| 27 < ¢’ implies thatC’ = € +[Q, T] = C(Q') with

Q quasi-closed set fof. So there exists an interveD, T] in C(Q) which containg). But sinceQ is a
maximal quasi-closed set fgt, Q = Q' and soC < ' = C(Q) = C(Q).

In the case wher@ is simultaneously a quasi-closed and a dual quasi-closed set fibiis clear that

C(Q = C+{Q}. O

Remark:

1. It should be possible to define a notion af@ver admissible dual quasi-closed sed then to get
the dual result of Corollary]3 (a minimal dual quasi-closed set is cover admissible).

2. LetC € M". The set of all cover admissible quasi-closed §fsr ¢ can vary from the whole set
Q, of all quasi-closed sefd for C to the semaxQ, of the maximal quasi-closed sets fGras it is
shown in the examples below.

Example:

1. For anyCa = {A, S}, the set of all the quasi-closed sets faris equal to{B C S: B> AorB C A}.
S0 Ca < Ca(B) = Ca+ {B}, for any quasi-closed s&for Ca. In other words, every quasi-closed
set forCa is cover admissible.
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2. For anyGye, Geg = [0,S—X U [B+Xx,§ so that(eg = Uyeg[X, S—y]. Then itis easy to check
that the set of all quasi-closed sets Qs is equal tolycg[x,B—y+x]. So the set of maximal
quasi-closed sets fak g is {B—y+X, y € B}. Itis easy to check that these maximal quasi-closed
sets are the only cover admissible quasi-closed setSjar

In the following we consider twaJ-closure systemg and ¢/, and we denote by (respectively,
d’) their associated closure operators anceRyrespectivelyex) the set of extreme elements w.rd.
(respectivelyg’). As well we setuple =J,Ms =M andJ =J M~ =M,

Corollary 4 Let( be aU-closure system, Q a cover admissible C-quasi-closed setémd letC’ denote
theU-closure systerd” = C(Q) = C+[Q,T|. Then:

J+{minC} if 0(Q) = minC

J = J+{Q—-{C} ifcuQ=cC 1)
J+{Q} otherwise.
M = M+{T}—-{HeM|HUQEe[Q,T]~and H N(HUQ) =H]}. )

Proof:

(@ First, according to Theorefn} B is always a join-irreducible element ¢f, except in the case where
0(Q) =minC. In this caseQis the least element @ andminC becomes a join-irreducible element
of C'. SoJ = J+{minC}. Take nowH € J and assume th&t ¢ J'. Then there exist& € C such
thatGuQ € [Q,T]~ andH = (GUQ)UH ™. SoG is distinct fromH (otherwiseGUQ = H). So
Q C H, which impliesQ C a(Q) =C C H. Recall that, by Propositi X € J. First assume
CCcH. ThenQCcCCH™ andH =GUQUH™ =GUH™, a contradiction wittH € J. Assume
now thatC =H and sa&C =GUQUC ™. SoC~ C GUC™ c CimpliesC~ =GUC™, henceGCC™,
i.e. C=QuUC™, andJ =J+{Q} — {C}. In the other cases, aty € J remains an element df
and saJ = J+{Q}.

@ By Theoren{ R,T is the unique meet-irreducible element@f— C. Take nowH € M and assume
thatH ¢ M’. Then there exist& € ¢ such thatGuQ € [Q,T]» andH" N (GUQ) =H. So
HcGuQandH CHUQC GUQ. ThenH N(HUQ)=HandHUQe ' —C=Q,T].. Note,
in particular, that ifminC € M then minC € M’ if and only if minC C Q).

O
We now aim to characterize the irreducible elements of the laftite The case of the join-irreducible
elements is obvious and is given without proof in the proposition below.

Proposition 4 J” = {Ca: A C S} = J4, and the latticeM" is atomistic.

The following lemma presents without proof some results that will lead to somepresentations for
aU-closure system and to a characterization ofrthiereducibles ofa". We recall that for alk € Sand
BC S—x wehaveGg={XCS: x¢XorBC X} and(Gx={X CS: xe X}. We denote byg,,u the
set{Gp: Xx€S BCS—x}U{Gx: X€S}.

Lemma 9 1. G and (Gpx are U-closure systems.
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2. a. Gig =Upea[X. S—Y].
G C Gy < (x=zand BCB).
Cx,B = ﬂyeB Cx,y-
¢ = [0,5-x.
Cox C Cpz <= X=1.
Cox C Gt <= x=t.
d. Gt Z Cox-

o T W

o T

4. LetC be an element of},,u and ¢’ a U-closure system. Then:

BC (¢ (X)—x)if C=Cep
X€ @ (0)if C= Cox

According to this lemma, we can define someepresentations ofa-closure system by means of the
elements ofG 4.

C/CC<:>{

Proposition 5 Let C be au-closure system andl = g the associated closure operator.

C = (UGBE Gaw: BCO(X)—x} U {Coy€ Ga: YEO(D)})
= N{GBE Gaw: B=0(X) =X} U {Coy € Ga 1 YE I(0)})

Proof: We write G, the set{Gxg € Gau : BC 0(X) —x} U {Goy € Gopu: Y € ®0)}. By the

previous lemma(C C N G;V[u is obvious. Now suppose there existsn N ngu such thatX £ C, i.e.

X C 0(X) = Uyex 0(X). So there existz € X such that{z} C o(z) ando(z) —z Z X. By definition

Cro(2)-2 € Goyu @nd we haveX ¢ G, (72, Which is a contradiction.

The second equality is a direct consequence offitem 2b in Lgmma 9. O
Thesen-representations of a-closure system easily lead to a characterization ofrthereducible

elements of\V.

Corollary 5 The set M of then-irreducible elements of the latticgf" is characterized as follows:

MY = {Gy: xyeSandxtytU{Cox: xeS}
= {coatoms of M} U{Cox: X€ S}.

Proof: Let C be au-closure system. If is ann-irreducible of ¢V, then by PropositioE]S, there exists
x € SandB C S—Xx, such thatC = G or Cpx. SUPPOSE” = Gy With |B| > 1. By item[2¢ in Lemmal9,
C = yes Gxy, @ contradiction, and sBis a singleton. Let now andz be two distinct elements & G,
contains all singletonét}, for t # x. Since{x} is quasi-closed fot ,, it belongs to an upper cover of
Cxz- Thus,C’ contains all singletonét}, fort € S, which impliesC’ = 25, and G, is a coatom ofM“.

As for (Cpx, it has® as unique quasi-closed set, &gy has a unique upper coveﬁfx = (px+ {0}, and
Cox is N-irreducible. It is not a coatom sin(zfijX contains{x} as unique singleton.' |

In order to describe the dependence relatidasdp on the irreducible elements 6", we first give
the arrow relations on this lattice. The proofs are easy to check and are left to the reader.
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Lemma 10 Let Ca be an element of-Jand Gy an element of M (i.e. |Y| < 1). Then the following
holds:

CAC Gy <= AcGy

— J[yceAifY=0and[(ye Aand xZ A) if Y = {x}] 3)
CAl Gy <= <Gy

< J[ACS-yifY=0]and[(xeAandygA)if Y = {x}] 4)
Cal Gy = (CalGy

< [A=0ifandonlyif Y=0] and[{x} CACS—yif Y ={x}]. (5)

It is now possible to characterize the dependence relafi@msl(3 on the irreducible elements .
Proposition 6 Let Ca and g be two elements of-J
1. If AB# 0then:
Cad(s < 3Ix,y € Ssuch thafx} CANBC AUBC S—y
2. Forany BC S, we havepd(s.
3. For0 c BC S, we haveyd©(p.

The relationd is not strongly connected.

Proposition 7 Let Cpx, Cpy, Cxy and G be meet-irreducible elements @f". The following holds:
1. GoxBGpy, VX, y€S.
2. QxBGyz <= X#Y.
3. GyBGt <= x#tandy#z.
The relation is strongly connected.

The theorem below summarizes some known results and adds new ones on théfattice

Theorem 3 The lattice(M", C) of all U-closure systems defined on a set S i&subsemilattice of the
lattice M, which contain®S and which satisfies:

1. The join and meet operations ®f" are:
a.cvC ={CnC,Cec,CelV=U{Hc{CnC,CeC,Cecl}}
b. cAC' =cn(

2. The join-irreducible and the meet-irreducible element3©6f are characterized as follows:

a. J={C: ACS}=Jy (soM" is atomistic)
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b. MY ={Gy: x,yeSand xty}U{Cox: x€S}

3. C<C'ifand only if ' = C(Q) = C+ [Q,T]~ with Q quasi-closed set fof such that(R €
[Q, T]er MM (q)) implies R=T.

4. For |9 > 3, the latticeM" is neither coatomistic, nor ranked, nor complemented, nor join-pseudo
complemented, nor meet-pseudo complemented.

Proof: The points[(11),[(R) and [3) have already been proved. [For (4), first observe that in the case where
|§ < 2, the latticeM" is Boolean. Now forlS > 3, M" is neither coatomistic (sincépx is a meet-
irreducible contained in the coatotyy), nor ranked. It is not complemented since, for instance, the
U-closure syster{0, S} has no complement ia/" (more generallyCa = {A, S} has a complement in

MV if and only if A= S—x for somex € §). MV is not join-pseudo complemented. Indeed a lattice

L is join-pseudo complemented if and only if every coatom_dfias a join-pseudo complement (see
[11]). The coatom(y, of M“ on S= {1,2,3} has two minimal join-semi complements which &g

and (1. At last, MV is not meet pseudo-complemented. For instance, consider-thesure system
G1={1,S} onS= {1,2,3}. (4 has two maximal meet semi-complemerds= {0,2,3,12 23, S} and
C'={0,2,3,13 23 S}. O

Remark:

1. Obviously the set of closure operators associated wittosure systems is a lattice dual bf".

2. As already said, a-closure system is #pologyif it contains@. The setT of all topologies ors
is the interval[{0, S}, 29 of the latticeM™ and so, it is a sublattice g#/“. But since this lattice
or the dual lattice of preorders have already been well studied in the finite (and infinite) case(s), we
send the reader back to the referenceés [2], [4], [18], [26], [28] and [37]. Just note that, unlike the
lattice MY, T is a coatomistic and complemented lattice.

4 The lattice G* of convex geometries and its covering relation

Definition 6 A closure system on S iscanvex geometrif it satisfies the two following properties:
1. The empty sdtis closed.
2. For every closed set € S there exists g C such that G+ x is a closed set.

Using easy or well-known results (Edelman][16], Edelman and Jamison [15]) and the characterization
of join-irreducible elements of an arbitrary closure systeml(rée [34]) we can state the following:

Lemma 11 Let C be a convex geometry on S afd, C) the associated lattice. TheiT, C) is lower
locally distributive and its covering relation is characterized by:
VC,C'eC, (C'<C + IxecexC C' =C—x)

Moreover, ifo. denotes the closure operator associated wittthe setss(x), x € S are all distinct
and are exactly the join-irreducible elementsf
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1234

123 234

{

Fig. 1: The convex geometry = {0,1,2,3,12,23,34,123 2341234}

Example: The closure systerd = {0,1,2,3,12, 23 34,123 2341234} is a convex geometry (see Fig-
ure[1).

A particular class of convex geometries is the class ofatbpologies

Definition 7 A To-topologyon a set S is aJ-stable convex geometry. Equivalently it is a topology —
that is to say aJ-closure system containiny— C such that x#£ y impliesoc(X) # oc(y). A linear
topologyis a To-topology C such that there exists a linear order£x; > ... > X > ... > X, on S with

C = {{Xi,xi—‘rl- . 7Xn—1axn}7xi € S} + {0}

There are many ways to define convex geometries and their corresponding closure operators (see for
instancel[24],[[29] and [32]), that we partially list below:

Lemma 12 Let C be a closure system containifgand leto be the associated closure operator. The
following properties are equivalent:

1. Cis aconvex geometry,

2. Every closed set @ is the closure of its extreme elements,

3. Every closed set @f has a unique basis, which is exC,

4. For every XC S, exX=exo(X),

5. 0¢(0) =0and [xy & o-(X), x#£y and ye o(X+X)] imply X o (X +Y).

Thus a convex geometry induces a partition of 2into Boolean interval$exC,C], C € ¢, such that,
for everyX € [exCC], exX= exCando(X) =C.

The second condition of iteft} 5 is called taetiexchange propertyVe will say that a closure operator
is anantiexchange closure operatirit satisfies this condition.
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We denote byg the poset of all convex geometries defined on &spartially ordered by set inclusion.
The join in M of two convex geometries is still a convex geometry (which is easy to check), but their
intersection is not necessarily a convex geometry (for example |8tk 2, {0,1,12} N {0,2,12} =
{0,12} ¢ G). G is therefore a join-subsemilattice of the lattidé¢ that was studied in particular by
Edelman and Jamisori_([15] 1985). The following theorem gives some properties of this semilattice, but
in order to simplify their statement we shall add a zero elemgrto@; in order to obtain a lattice denoted
by G*.

Theorem 4 The latticeG™ of all convex geometries on a set S of cardinality n is a join-subsemilattice of
the latticeM of all the closure systems on S, having the following properties:

1. Its greatest element is the Boolean algeBta

2. Its join-irreducible elements are exactly the atoms and are equal to 'thieaar topologiesL
defined on S.

3. Its meet-irreducible elements are thenn- 1 closure systemga, for all A C S and x¢ A (with
Cax = Cax+{A}).

4. Forallc,C'e g,cv(C ={CnC,Cec,CeC}.
5 ForallC, C eg,

CAC = Og if CN ' contains no linear topology
B v{L | £ linear topology contained iN '} otherwise.

6. G7 is atomistic and ranked.

7. The rank of the convex geomettyis r(C) = |C|—n (soC < C' implies|C'| = |C| + 1), and the
minimum cardinality of a set £ of linear topologies with= \/ £ equals the width of the posetM

8. The length of5 " is 2" —n.
9. Forn> 3, G" is neither upper nor lower semimodular.

Proof: The proofs of Properti¢s I} [2,[4,[36, 7 and 8 can be found in Edelman and Jamison ([15] 1985) or
Edelman and Saks ([17] 1988). Just note that our Cordllary 7 is the result proved in [15] in order to show
that G+ is ranked. Properl&]g can easily be checked. We finally have to prove the characterization of the
meet-irreducible elements @f* given in Propertﬂ%. In Theoreﬁ] 1 it has been recalled that the closure
systemsCax = {X C S: AZ X orx € X}, for AC S—x, are the meet-irreducible elements of the lattice
M of all the closure systems on S. It is therefore sufficient to show that such a closure system is a convex
geometry. Assume that there exiglsy which is not a convex geometry. Then there ex&ts Cax such
that for everyy ¢ C,C+y ¢ Cax, i.e. ACC+yC S—x. SinceC=({C+y,y¢C}, we getACC C S—x,
a contradiction. O

Our aim is to characterize the covering relatierin G*. To do so we introduce the notions gF
admissible Gguasi-closed seind of G-deletable closed set
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a,b,c,ac,bc
a,b,c,ab,bc

a,c,ac,bc

Fig. 2: The latticeG* of the convex geometries on a st {a,b,c} (here a convex geometry is denoted by its
elements different frord andS).

Definition 8 Let C be a convex geometry on S. A subset Q of Sgsalimissible quasi-closed Sgt.r.t.
C) if Q¢ C and C+{Q} is a convex geometry. &-(Q) = C, we shall say that Q is &-admissible
C-quasi-closed set

Definition 9 A closed set C of a convex geomefYis a G-deletable closed sef C if C—{C} is a convex
geometry.

We have seen that, ig ™, the fact thatC < ' implies |C’| = |C|+ 1 (Theorenj ). This shows that
G-admissible quasi-closed sets always exist. So the following holds:

Fact 1 Let C and (' be two convex geometries. The three assertions below are equivalent:
1. Cc=<C,
2. There exists &-admissible quasi-closed set Q (w.?) such thatC’ = C + {Q},
3. There exists &-deletable closed set Q ¢f such thatC = ' — {Q} .
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Before characterizing thg-admissible quasi-closed sets, we note that an immediate application of
Lemmag 2 anfl]3 (itefn] 2) allows us to characterizeQkguasi-closed sets of a convex geomeftyi.e.
the setQ such thatC + {Q} is a closure system witQ C 0-(Q) =C:

Lemma 13 Let C be a convex geometry on S andX(5. The two following properties are equivalent:
1. There exists a closed set C@ftuch that Q is a C-quasi-closed set,
2. exCC Q C C and for every & exC,(Q—u) € C.
We can now characterize thig-admissible quasi-closed sets of a convex geometry.

Proposition 8 Let C be a convex geometry on 8,the associated antiexchange closure operator and
Q C S. The following assertions are equivalent:

1. Qis ag-admissible quasi-closed set (i€.~< C+{Q} € G),
2. There exists a closed set C@find ue C such that Q= C — u is a C-quasi-closed set fafr,

3. There exists a closed set C@Bnd uc C — exC such that exC Q = C — u and for every & exC,
Q-te,

4. There exists a closed set C@fand ue C — exC such that ex€ Q = C — u and for every closed
set G ofC such that G< C, ue exG,

5. There exists a closed set C@fand uc C — exC such that ex€C Q = C —u and for every X such
that ue X C a(X) C C, then ue exX.

Proof:

[@. = [2. By hypothesisQ ¢ C and C + {Q} is a convex geometry. Then by Leming 11 there exists
C e C such thatQ+u=C. If o(Q) # C thenQ € C which is impossible. Thew(Q) =C and
Q =C-—uis aC-quasi-closed set.

[2. —[3. By applying Lemm&P, iterp|1 witk) = C — u we getexCC Q = C —u and for everyt € exC
(Q-t)e .

[B. =M. ForGe C, G <Cis satisfied if and only if there exists exCsuch thaG =C—t (Lemmd 1}).
Thenue G (sinceue C—exCCC—t)andG—u=C—{u,t} =Q—-te (,i.e.ucexG

4. —[B. Let X C Sbe such thaX C o(X) c C, with u € X. Then there exists a closed $¢tsuch that
0(X)CH <C. SoX—ucCcXCo(X)andX—-ucCH—-uimply X—uC o(X)Nn(H—-u) and
soX—uC o(X—u) Co(X)N(H—u)=0(X)—uc o(X). This impliesa(X —u) C o(X), i.e.
ueexx
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B. —[1. We first show thaQ = C —u is aC-quasi-closed set. Firstc (C—exC) implieso-(Q) =C.
By Lemmag P anfl]3 (itefr] 2) we have to prove that for eteryexG (Q—t) =C— {u,t} € C. But
t € exCimpliesC —t € ¢ and(C —t) < C. According to the assertidr] B, exC —t) and then
C—{u,t} € C. HenceQ is aC-quasi-closed set (w.r.tC) and soC + {Q} is a closure system. It
contains the empty set and since every closed sé€tf Q} is covered by a closed set containing
one more elemen®(for Q), C + {Q} is a convex geometry.

a

In the following, we denote by (respectivelyg’) the closure operator associated to the convex geom-
etry C (respectively(’) and byex (respectivelyeX) the set of extreme elements wa.{respectivelyg’).
As well we setupgls =J,Ms =M andJ~ =J M~ =M.

Corollary 6 Let be a convex geometry on S —u (withQ = 0,(Q)) a G-admissible quasi-closed
set forC, and(C’' = C+{Q} the associated convex geometry coverihip G™.

For X CS,
_ ¢ DU X D
XX — exQ+u |fe>Q+.u_X_Q ©)
exX otherwise.
In particular, eXQ = exQ+ u and exQ = exQ.
For X CS,
ifexQC X C
7 (X) = Q if exQ _.X cQ %
o(X) otherwise.
In addition
J,:{J—Q+Q Qe @)
J otherwise
and
M =M+Q-{CeM:CcQandC" ¢ Q with C maximal for these propertiés 9)
Proof:

(@), first case. By Lemmd 12 it suffices to show the¥Q = exQ-+u, i.e. that for every € S Q—t € (' if
andonlyif ¢ cexQort =u). ButQ—t e ¢’ — {Q} = Cis equivalenttd € exQ, andQ—-u=Qe
impliesu € eXQ.

(@), second caseThis is obvious ifX € [exC C] with C € ¢’ — {Q,Q}. Now consideiX € [eXQ,Q]. We
only have to show thaXQ = exQ. By Propositior B, iterh|3 (witl = C), t € exQ impliesQ—t €
C C (', and soexQ C eXQ. Now considerz € eXQ, i.e. Q—ze CandQ—-z=Q - {u,z} < Q.
In the convex geometry there exists € exQ such thatQ —z=Q— {u,z} < Q—t < Q. Since
ugexQ,z=t and soz € exQ. Finally exQ = exXQ.
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(7) Immediate consequence of Lemma 12 and pf (6) of this corollary.

(8) Recall thatin any convex geometgyonS, |J| = |§. Assume thaQ € Jso, inC’,Q=QVvQ (with
Q the unique lower cover dD). ThenQ ¢ J' and, since all other elements dfdistinct fromQ)
remain inJ’, thenQ must be inY’. At last if Q ¢ J then obviouslyd = J'.

@) Itis clear thatQ € M’. Now letC € M contained inQ such thalC* ¢ Q and maximal with these
properties. IC',C=QNC* and sacC g M'.

d

Corollary 7 Let C be a convex geometry on S (different fr@f). For every Ce C such that C is a
minimal dependent closed set and every@— exC, C—u is a G-admissible quasi-closed set.

Proof: We show thaC — u satisfies Conditiof|3 of Propositiff 8. By definitierRCC Q =C —u. Let
teexC ThenC—te Candisfree. S@—-t=C—{t,u} € C. O

Remark:

1. The implicatioy b=={1] of Propositiorj B, iteri]6 of Corollafy] 6 and Corollgry 7 are Theorem 2.2.
and Lemma 2.3. in Johnson and Dean [23].

2. In other terms, the transformation made when we go from the convex geofmétrya convex
geometryC + {Q} covering( is the following: the Boolean interva = [exQ, Q] is partitioned into
the two Boolean interval@xQ, Q] and[A, Q|, whereQ = Q — u is a coatom ofB andA = exQ+u
is the atom complement d in B. Johnson and Dean call this transformatexpansion of a
"quotient” [23]. Note that this transformation is possible if and only if the coa@ns "locally
quasi-closed”, in the sense that its intersection with any closed set cove®@d=hy(Q) is in C

(Propositior] B, iterf1|3 qr]4).

We now characterize thg-deletable closed sets of a convex geometry.e. the elementS of C such
that C — {C} € G. Recall that the lattice associated with a convex geometry is lower locally distributive
and that ifC is a meet-irreducible element of the lattiCe¢henC™* denotes the unique closed set covering
CinC.

Lemma 14 Let C be a convex geometry on S and C an element of
1. (CeM,, teexCand G-t ¢ My) imply t € exCh.
2. C<C = (C+u) e Cimpliessd cexC C {t cexC:C—t & Mc} + {u} C exC+u.
3. CeMcandC<Cr=C+uimplyexC = {tcexC:C—t & M} + {u} C exC+u.
Proof:

[@. We use the dual form of a result proved in a Bordalo and Monjardet's pgger ([6], Lemma 8): let
C—-t <CandC -t < H be three elements of the lower locally distributive latti¢e Then there
existsL andM € C such thatC -t <L <M andC < M. C € M. impliesM = C* and then
L=C" —t,i.e.t € exC'.
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[2. Lett be inexC. Eithert = u (sinceu € exC by definition) ort £ u. In this cas€N(C'—t)=C—-te C
and sa € exCand finallyC —t ¢ M.

[B. Item[] andu € exC" imply {t € exC:C—t & M} + {u} C exC'. Item[2 gives the converse inclusion.

a

In the following propositions and corollaries, we consider two convex geomelraesd ¢’ on S. We
denote byo (respectively,g’) their associated closure operators ancelyrespectivelyex) the set of
extreme elements w.id (respectivelyp’). As well we set uple = J,M¢c =M andJ» =J My =M.

Proposition 9 Let ' be a convex geometry on S and&Q” — {0}. The first three assertions are equiva-
lent and imply the fourth one:

1. Cis aGg-deletable closed set, i.€.= ' — {C} € G,
2. Ce M’ and for every Ge ' with G<C, G¢ M/,

3. Ce M’ and forC" =C+u, eXC*t = exXC+u.

4. CeM andCr¢J.

Moreover if Ce N M’, the four assertions are equivalent and, in this caegC*| = 2.

Proof:

[M— 2 SinceC’ — {C} is a closure systeng; € M’. ConsideiG =C —t < C and assume th&@ € M.
Then in the convex geomety — {C} there does not exi€t + x € ¢’ — {C}, a contradiction.

=3 LetCT =C+u. By lemmg 1}eXC* = {t e eXC:C—t ¢ M’} +u C eXC+u. But since, by
hypothesis, for everyyc eXC,C—t ¢ M’, we geteXC™ = eXC +u.

B=1[ SinceC € M’, ¢’ — {C} is a closure system. To show that it is a convex geometry we show
that for everyG=C —t € (, there exist&& = G+ u(#C) € C'. t € eXC impliest € eXC™, then
Ct—t=(C+u)—-te ' andG=C-t<G =(C+u)—-t=G+u.

B=M By (3. ift ceXC,t cexC*. SoC" —t <CandC* =Cv (C" —t) ¢ J.

At last suppose tha€ € J' N M’ and satisfies Properfy 4 (i.€C € M’ andC* ¢ J') and show that
Property B is satisfied. Considee eXC*. SoC* —t=H € ¢’ andHNC=C—t=C" € (’, which
impliest € eXC. ThereforeeXC* C eXC+u. Now sinceC € J/, eXC = {t} and soeXC" = eXC+u =
{t,u}. O
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Corollary 8 Let ¢’ be a convex geometry, EM’ a G-deletable closed set @ with C" =C+u and
c=C-C<C(.

ForX CS,
i +C CcCt
exX— eXC if eXC_ CXCC (10)
exXX otherwise
In particular exC" = exC= exXC
ForXCS,
+ i CXC
o(X) = C |fe>(C._X_C (11)
d’'(X) otherwise.
J=JifC¢gJlandl=J —{C}+{C'}ifCednM (12)

M=M"—-{C}+{Ge ¢’ :G=<C and G has a unique upper covef distinct from G (13)

Moreover if Ge M —M’, then C < C+.
Proof:

(I0) If X ¢ [eXC*,C"], exX=exX is clear. In order to prove the statement wher [eXC*,C"], it
suffices (by Lemmf 12) to show thexC" = eXC (= eXC* —u, by Proposition B, itern|3). Let
be ineXC. Thent € eXC* andt #u. SoC" —t € C = (' —{C}, andt € exC'. Conversely, if
teexC,t£usinceCt —u=C¢ C.C" —t e CimpliesCt —t € (’,i.e.t eeXCT —u=exC.

(I1) Immediate from Lemmpa 12 and (10).

(I2) Itis clear that ifG € J' (thenG # C* by Propositior] B itenj]4) an@ # C, thenG € J. Since
9] =1J| (=9, Lemmd 1B), we get the result far

(I3) <: Assume thalG € M — M’. Then there exist&™ such thatG" is the unique closed set in
C = C'—{C} with G < G™. SinceG ¢ M’, we have necessarig <C=C* —uin ’. Soin
C', Gis covered only byG* andC. Moreover, sinc€ € M’ andG =C—t ¢ M’, Lemmd 14,
item[] giveC" —t € C. But sinceG=C" —{t,u} < (C" —t), we haveG" = (C* —t) <C".

D: Firstitis clear that iflG € M’ andG # C (soG # C by Propositiof P iterh]2), the@ € M. Now

considerG € C such thafH € C: G < H} = {C,C'}}. ThenG =C—t and, by Lemma 14,
item[1,CT —t € C. SinceG=C" —{t,u} <C" —t thenC' =C* —t. SoC' is the unique
closed set coverinG in C, i.e.G € M.

d

Remark: The implicatiorf 3—-[1] of Propositiofi P and Equation (11) in Coroll@fy 8 are Theorem 2.1. in
[23]. It allows Johnson and Dean to propose an algorithm that constructs all the non-isomorphic convex
geometries on a set with cardinality

Now using Conditiof 2 of Propositigr} 9, we get the following result:
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Corollary 9 Every minimal meet-irreducible closed set of a convex geometjydsletable.

Remark: As already said, the convex geometries are the set representations of the lower locally distribu-
tive lattices. If LL9D denotes the class of lower locally distributive lattices, an elemeftL € LLD

that can be deleted from such thal. —x € £LL£9D has been called & LD-deletableelement and these
elements have been characterizedn [6] as follows.L LD if and only if it satisfies[(g)[ (b) of [c) below:

(a) eithexe J.NML,
(b) orxe M. —J_ and k" ¢ J_ andy < ximply y & M,),

(c) orxe J. — M. and every element coverings join-irreducible.

In a convex geometry’, a G-deletable closed s€tis obviouslyL £LD-deletable (i.e. the lattic€ — {C}
is in LLD). This corresponds to the fact that this closed set satisfies Confdjtion 2 of Proppkition 9 and
conditions for beingL LD-deletable[(a) orf {b). On the contrary, the only case whefera-deletable
closed se€ of a convex geometry is G-deletable is the case wheBesatisfies Conditiorj {b) above with
C* ¢ Jc. Indeed in this case it is obvious that it satisfies Conditipn 2 of Proposition 9. For the other
cases, we can consider the following examples: take on tifg=s€tl, 2, 3} the three convex geometries
C=1{0,1,12/123}, ¢' ={0,1,2,12,123} andC" = {0,1,12,13,123}, and theL L D-deletable closed set
12 (for ¢ and ') and 1 (forC”). ThenC —12, ¢’ — 12 andC” — 1 are no longer convex geometries
whereas their associated lattices are still lower locally distributive.

Finally PropositionE]S ar@ 9 above allow us to characterize the covering relation of the dattice
Theorem 5 Let C and ¢’ be two convex geometries on S. The following conditions are equivalent:

1.Cc=<C,

2. ('=CU(C—u)withCe C,ue C—exC and for every € exC, uc exC—t),

3. C'=CU(C—u)withCe C,ucC—exC and for every & C, uc exG,

4. C=(C'—{C'} withC € M and for every G C', G ¢ M.

The following result characterizes the arrow relationslgn x M+ and the dependence relatidon
Jg+. We recall that the atoms @f " are thenlinear topologies associated with thénear orders orsand
we write Gy,..x..x, Such a linear topology. Then the non empty closed set$,0f.. x, are then ideals
{X...Xn} of the linear order; > ... > X > ... > X, and we denote bfx;) such an ideal.

Proposition 10 Let Gyx,..x, be a join-irreducible element anday, (A C S, % ¢ A) a meet-irreducible
element ofg*. The following holds:

1. CXlXZ,..Xn l, CA,Xi |f and Only IfCXlXZXn Z CA,Xi |f and Only |f Ag [X|+]_).
2. Gyxo..xa T Cax ifand only if Gyx,. x, | Cax if and only if A= [xi;1).

3. VCxp.. % Gyrya..yn € Jgﬂ (Cx1x2...xn56y1y2...yn = Y1 # Xn).
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Proof:

1. The first assertion is true singg" is atomistic and the second one holds since we XageCh x if
and only ifX € [A,S—X].

2. The fact thatGyyx,. x, 1 Cax iS equivalent toGyx,.x, | Cax comes from the fact thaty,x,. x,
is an atom. Sgx,.x, T Cax IMplies Gyx,..x, | Cax and soA C [xi11). Recall thatCay, is
covered inG™* by C;, 5 = Cax +{A} (Theorenﬂll, item[3) and thak,x, . x, T Cax IS equivalent to
Caxooxn V Cax = C,;fxi = Cax +{A}. Assume thal C [xi+1). SinceX; & [Xit1), [Xi+1) € Cax - But
[Xi+1) € Gyxo..x IMPlies[Xit1) € Gyxo..x V Cax, = Cax + {A}, a contradiction.

Conversely, ifA = [xi+1), Ais the only ideal ofk; > ... > X, not contained irCax, (SiNceY & Cax;
meangx+1) CY C S—x;). Moreover, for everX € Cax, Z=XNACA, soZ € Cax +{A}. Then
Cxooxn ¥V Caxp = CKX“ i.e. Gyxo..xn T CAx;-

3. = By definition, Gyx,..x,0 Gpy,..y, implies the existence afax € Mg+ such thatGx,. .x, T
Cax and Gy, .yn € Cax i-e. — by items (1) and (2) — that there existsuch thatA =
[Xi+1) € [Yj+1), Withy; = x. Thenys # X, (if noty; = x, € Aand, since > yj 11, AZ [Yj+1))-

<= Assumey; # X, and sek; = y1. Then[xi1) C [y2) and soCly,, ;) x SatisfiesCax,..x, T O, 1)
and CY1YZ<~yn Z C‘[Xi+1)7xi .

a

Corollary 10 The latticeG™ of all convex geometries on a set Ssimple i.e. it admits only the two
trivial congruences. In particulag ™ is not subdirectly decomposable.

Proof: A result by Day[[13] shows that the lattice of congruences of a lattisdsomorphic to the lattice
of the ideals of its dependence relatidnof L (wherel is an ideal ofdy if x € | andydgx imply y € 1).
Since G is atomistic,d4 = d. But it immediately results from the above characterizatio® of G
thatd admits hamiltonian cycles (take for instance thaear topologies associated to thénear orders
defined by the circular permutations of the first one). Thdas only two trivial ideals. |

Remark:

1. It has been shown in_[32] that the semilattiGeof all convex geometries is isomorphic to the
semilattice of allpath-independent choice functiorfSo every result oy can be translated into a
result on this semilattice.

2. The seth(;r = GN M, is the set of allTo-topologieson S. The poset(‘Z;",C) with an added
least elementinZ;" is a lattice. Using the results of previous sections, it would be easy to derive
properties of this lattice. But since this lattice or the dual lattice of partial orders have already been
well studied, we send the reader back(to [4].
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5 Conclusion

Throughout this paper we have studied several lattices of closure systems. In particular we have charac-
terized the covering relatior of each one of these lattices. This allows us to determine the changes that
occur in the join-irreducible elements and the meet-irreducible elements of the lattiwed ¢’ when

C < C' and when we go front to ¢’ (or from ¢’ to C). These results have interesting consequences.

In [Z], the authors have studied the set (in fact, the lattice) of all closure systems having the same poset
of join-irreducible elements (up to isomorphism). For example they have characterized thePpfusets
which the set of all ideals d? is the only closure system havifas poset of join-irreducible elements. It

is natural to try to consider this problem for particular closure systems. For instance, what are the posets
P such that the set of all ideals &fis the only convex geometry havirigas poset of join-irreducible
elements? The results contained in this paper on the covering relation in the lattice of convex geometries
allow us to characterize such posets. More generally, we can provide an algorithm giving all the con-
vex geometries having the same poset of join-irreducible elements. We shall present these results in a
forthcoming paper.
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