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In this paper we study two lattices of significant particular closure systems on a finite set, namely theunion stable
closure systemsand theconvex geometries. Using the notion of (admissible) quasi-closed setand of (deletable) closed
setwe determine the covering relation≺ of these lattices and the changes induced, for instance, on the irreducible
elements when one goes fromC to C ′ whereC andC ′ are two such closure systems satisfyingC ≺ C ′. We also
do a systematic study of these lattices of closure systems, characterizing for instance their join-irreducible and their
meet-irreducible elements.

Keywords: Anti-exchange closure operator, closure system, convex geometry, (locally distributive) lattice, quasi-
closed set.

1 Introduction
The notion ofclosure system(also calledMoore family) or the equivalent notions ofclosure operator
or of complete implicational systemare fundamental since they very often appear in pure and applied
mathematics. For instance, an earlier result in the theory of relational databases has proved the existence
of a one-to-one correspondence between thefull systems of (functional) dependenciesand the closure
systems (Armstrong [3]). Then the study of the set of all full systems of dependencies is equivalent to
the study of the set all closure systems. In particular, the changes in a full system of dependencies can
be studied in terms of changes in a closure system (see for instance [8] and [14]). It has been known for
a long time that the setM of all closure systems defined on a finite setS and ordered by inclusion is a
lattice†. This lattice has been studied by many authors (see, for instance, Caspard and Monjardet [9]).

† In 1943,Öre studied the lattice of closure operators in which/0 is a fixed point, that is a lattice dual of the lattice of closure systems
where/0 is closed.
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In this paper we investigate the properties of sub-semilattices ofM , formed by the sets of all closure
systems satisfying some given significant properties. Namely these sets are theunion stable closure sys-
temsand theconvex geometries. The first one of these sets, ordered by set inclusion, is a lattice, whereas
the second one is a join semilattice that we transform into a lattice by adding a least element. We do a
systematic study of these lattices. We determine theirirreducibleelements, theirarrow relationsand some
dependence relationsbetween these irreducible elements. An essential task consists in characterizing the
covering relation of these lattices; this problem, easy inM , can be difficult in other cases. It is related
— but not equivalent — to the following one: ifL is a class of lattices andL a lattice ofL , what are the
minimal sets of elements ofL which can be deleted fromL (respectively, added toL) in order to obtain a
lattice which still belongs toL ? These questions were investigated in Bordalo and Monjardet [6] in the
particular case where a unique element can be deleted or added. Answers were given for several classes
of lattices, in particular for thelower locally distributivelattices, those ones whose set representations are
theconvex geometries. The same question was considered by Chen, Koh and Tan [10] and by Rival [35]
[36] and others in their study onFrattini sublatticesand on maximal sublattices of distributive lattices,
those ones whose set representation is aT0-topology. On the other hand, Johnson and Dean [23] prove
two theorems on theexpansionand thecontractionof a quotient of a convex geometry. As we will see
their results are contained in our characterizations of the covering relation in the lattice of all convex ge-
ometries.
The characterization of the covering relation of our two lattices allows us to determine the changes occur-
ing in such a system when one goes from this system to one covering it or covered by it. In our conclusion,
we will come back on the interest of considering these changes.

The basic tools used in this paper to get our results are the notions ofquasi-closed setand of C -
admissible quasi-closed set, whereC is a given class of closure systems.

2 Preliminaries
In the whole paper, all objects are assumed to be finite, so ”set” (respectively, ”poset”, ”lattice”, etc.)
meansfinite set(respectively,finite poset, finite lattice, etc.). The set difference between two setsA andB
is denoted byA−B and byA− x (rather thanA−{x}) if B = {x}. Moreover the symbol+ will denote
the disjoint set union. We will as well writeA+x rather thanA+{x}. At last, we writeA||B whenA and
B are not comparable (with respect to set inclusion).

A poset(X,≤) will often be simply denoted byX. The associated covering relation will be denoted
by ≺ (x ≺ y if x ≤ z < y implies x = z). A (closed) interval of X is a set[x,y] = {z∈ X : x ≤ z≤ y}
for somex andy of X satisfyingx ≤ y. An element of a posetX is join-irreducible (respectively,meet-
irreducible) if it is not the join (respectively, the meet) of elements different from itself. Otherwise it
is calledjoin-reducible(respectively,meet-reducible). If the poset is a latticeL, meaning that every pair
{x,y} of elements ofL has ajoin x∨y and ameet x∧y, the set of its join-irreducible elements (respectively,
of its meet-irreducible elements) will be denoted byJL (respectively,ML). In this case and as usualj−

(respectively,m+) will denote the unique element covered by the join-irreduciblej (respectively, the
unique element covering the meet-irreduciblem).

We recall the definition of thearrow relationsof a latticeL defined on (JL×ML) and of thedependence
relationsδ andβ. Let j be a join-irreducible andm a meet-irreducible of a latticeL. We write j ↑ m
(respectively,j ↓ m) if j 6≤ m and j ≤ m+, i.e. if j ∨m= m+ (respectively, if j 6≤ m and j− ≤ m, i.e. if
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j ∧m= j−). We write j l m if j ↑ mand j ↓ mare simultaneously satisfied. Now forj and j ′ ∈ JL, we set
jδ j ′ if there existsm∈ ML such thatj ↑ m and j ′ 6≤ m. Dually for m andm′ ∈ ML we setmβm′ if there
exists j ∈ JL such thatj ↓ m and j 6≤ m′.

Remark: For the basic properties on the arrow relations, see for instance Ganter and Wille [21]. The
dependence relationδ defined onJL has been introduced by Monjardet [30] in order to studyconsensus
problemsin lattices‡ (see [31] for some results on this relation). The relationβ defined onML is a
dependence relation, dual from the relationδ. There is another dependence relation, denoted byδd and
defined onJL by jδd j ′ if there existsm∈ ML such thatj ↑ m and j ′ ↓ m. This relation was introduced by
Day [13] in his study of lower bounded lattices. A latticeL is atomistic if and only ifδ = δd on JL (see
[31]).

A set systemon a setS is a familyC of subsets ofS. A closure systemC on a setS is a set system onS
satisfying the two following properties:

1. S∈ C

2. C1,C2 ∈ C =⇒C1∩C2 ∈ C

Example: For anyA ⊂ S, we writeCA the set systemCA = {A,S} and for allA,B ⊆ S, CA,B is the set
system defined byCA,B = {X ⊆ S : A 6⊆ X or B⊆ X}. ClearlyCA andCA,B are closure systems and we
will use them later in the paper.

The sets of a closure systemC are called theclosed setsof C . A closure systemC is a lattice(C ,⊆,∧,∨)
(often simply denoted byC ) with

C1∧C2 = C1∩C2 C1∨C2 =
\

{C∈ C : C1∪C2 ⊆C}

A closure operatorσ on a setS is a map defined onP(S), which is isotone (X ⊆Y =⇒ σ(X) ⊆ σ(Y)),
extensive (X ⊆ σ(X)) and idempotent (σ2(X) = σ(X)). Equivalentlyσ is a closure operator if we have
(X ⊆ σ(Y) if and only if σ(X) ⊆ σ(Y)), for all X,Y ⊆ S. The fixed points of a closure operatorσ, i.e. the
setsX such thatX = σ(X), are called theclosed setsof σ.

It is well known that closure operators are in a 1-1 correspondence with closure systems by the map
associating to a closure operatorσ the set systemCσ of its closed sets and, conversely, by the inverse map
associating to a closure systemC the operatorσC defined byσC (X) =

T

{C⊆ C : X ⊆C}.

We need to recall several classical notions relative to closure systems or closure operators.

Definition 1 Letσ be a closure operator on S.

1. For A⊆ S, an element x∈ A is anextreme elementof A (w.r.t.σ) if σ(A−x) ⊂ σ(A). We denote by
exσA, or if no ambiguity occurs, by exA the set of all extreme elements of A (w.r.t. toσ).

2. A set A⊆ S isfree if A = exA, i.e. if for every x∈ A, x 6∈ σ(A−x). A set isdependentif it is not free.

‡ The problem of consensus in a latticeL consists in defining consensus functions onL, i.e. functionsF : Ln → L satisfying ”good”
properties, for instanceunanimity(F(x, . . . ,x) = x). The fact that the dependence relationsδ or β are — or are not — strongly
connected plays a significant role in the latticial theory of consensus, see [27] and [33].
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3. Abasis(or minimal generating set) of a closed set C ofσ is a subset B of C such thatσ(B) = C and
satisfyingσ(B−x) ⊂ σ(B) for every x∈ B.

The following lemma recalls some elementary properties concerning these notions.

Lemma 1 Letσ be a closure operator on S. The following holds:

1. For every A⊆ S, /0⊆ exσ(A) ⊆ exA⊆ A⊆ σ(A).

2. An element x of a closed set C is an extreme element of C if and only if C−x is closed.

3. B⊆ S is a basis for a closed set ofσ if and only if B is free.

4. If C is a closed set ofσ then exC=
T

{B : B basis of C}.

The following (and less classical) notion ofquasi-closed setis fundamental in this paper.

Definition 2 Let C be a closure system on S andσC the associated closure operator. Q⊂S is aquasi-
closed set(w.r.t. toC ) if Q 6∈ C and if C +{Q} is a closure system on S. Moreover ifσC (Q) = C, we say
that Q is a C-quasi-closed set.

It will follow from Lemma 4 (given below) that any closure system distinct from 2S admits at least one
quasi-closed set.

Proposition 1 Let C be a closure system on S,σC the associated closure operator, Q a subset of S with
Q⊂ σC (Q) = C. The following properties are equivalent:

1. Q is a C-quasi-closed set (w.r.t.C ),

2. For every closed set G satisfying Q6⊂ G, G∩Q∈ C +{Q},

3. For every closed set G such that G≺C, G∩Q∈ C ,

4. For every closed set G such that G= (C−A) ≺C, (Q−A) ∈ C ,

5. For every X⊂ Q, if σC (X) ⊂C thenσC (X) ⊂ Q.

Proof:

1. =⇒ 2. Immediate from the definition of aC-quasi-closed set.

2. =⇒ 3. σC (Q) = C andG≺C imply Q 6⊂ G and soG∩Q 6= Q. Thus by item 2,G∩Q∈ C .

3. =⇒ 4. Immediate sinceG = C−A andQ⊂C imply G∩Q = Q−A.

4. =⇒ 5. Let X ⊂ Q such thatσC (X) ⊂ C = σC (Q). Then there existsG ∈ C , such thatσC (X) ⊆ G =
C−A≺C. SoX ⊆ Q−A which is a closed set. ThenσC (X) ⊆ Q−A⊂ Q.
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5. =⇒ 1. We prove thatC +{Q} is a closure system by showing that(G∩Q) ∈ C +{Q} for anyG∈ C .
If G andQ are comparable the result holds. Otherwise we haveG∩Q ⊂ Q and soσC (G∩Q) ⊂
σC (Q) = C (indeedσC (G∩Q) = σC (Q) would imply Q⊂ σC (Q) = σC (G∩Q) ⊆ G, a contradic-
tion). Then by item 5,σC (C∩Q)⊂Q. SoσC (C∩Q)⊆C∩Q, which meansC∩Q= σC (C∩Q)∈C .

✷

Remark: In [22] Guigues and Duquenne defined asaturated gapas a setQ satisfying item 5. above.
In [20] Ganter proved the equivalence between items 1. and 5. (see also Wild [39] and Caspard and
Monjardet [9]).

Lemma 2 Let C be a closure system on S,σC the associated closure operator and Q a subset of S.

1. If Q is a C-quasi-closed set, then exC⊆ Q⊂C and, for every x∈ exC,(Q−x) ∈ C .

2. If Q⊂ C = σC (Q) = σC (exC), then [Q is a C-quasi-closed set if and only if for every x∈ exC,
(Q−x) ∈ C ]. (In particular exC is a C-quasi-closed set if and only if for every x∈ exC, ex(C−x) ∈
C ).

Proof:

(1) SinceexCis the intersection of the bases ofC, we haveexC⊆ Q⊂C and, ifx∈ exC, thenC−x∈ C
and so(C−x)∩Q = Q−x∈ C .

(2) By item 1 , we only have to prove the sufficient condition. Assume thatQ⊂C = σC (Q) = σC (exC).
We prove thatQ satisfies Condition 3 of Proposition 1, i.e. that for every closed setG such that
G ≺ C, G∩Q ∈ C . It is sufficient to prove that a closed setG is covered byC (if and) only if
G = (C− x) with x ∈ exC (since thenG∩Q = (C− x)∩Q = Q− x ∈ C ). If G ≺ C = σC (exC),
exC 6⊆ G. Then there existsx∈ exCsuch thatx 6∈ G. SoG⊆ (C−x) ≺C and finallyG = C−x.

✷

Lemma 3 Let C be a closure system on S, C∈ C and x∈ (C−exC).

1. (C−x) is a C-quasi-closed set if and only if [for every G∈ C with G≺C and x∈ G, then x∈ exG].

2. Let C∈ C such that C is a minimal dependent closed set. Then C−x is a C-quasi-closed set.

Proof:

1 By Proposition 1, item 3. and Lemma 1(C−x) is aC-quasi-closed set if and only if for every closed
setG such thatG ≺ C, G∩ (C− x) = (G− x) ∈ C, if and only if for every closed setG such that
G≺C, x∈ exG.

2 If x∈ G with G≺C, thenx∈ exG= G, sinceG is free. Then by item 1,(C−x) is aC-quasi-closed set.

✷

Remark: Since the closed sets of a closure systemC are all free if and only ifC = 2S, item 2. of the
above Lemma proves the previous assertion that any closure system (distinct from 2S) admits quasi-closed
sets.

We now define a converse notion (in some sense) of the notion of quasi-closed set.
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Definition 3 Let C be a closure system on S. C∈ C is a deletable closed set (w.r.t.C ) if (C −C) is a
closure system on S.

The following result is obvious.

Lemma 4 Let C be a closure system on S. C∈ C is a deletable closed set (w.r.t.C ) if and only if C is a
meet-irreducible element of the latticeC .

We denote byM the set of all closure systems defined on a setS. The poset (M ,⊆) is a well studied
lattice (see for instance Caspard and Monjardet [9]) and we recall some of its properties below:

Theorem 1 The latticeM of all closure systems defined on a set S of cardinality n satisfies the following
properties:

1. Its greatest element is the Boolean algebra2S and its least element is the closure system{S}.

2. Its atoms are the(2n−1) closure systemsCA = {A,S}, for A⊂ S.

3. Its meet-irreducible elements are the n(2n−1) closure systemsCA,x = {X ⊆ S : A 6⊆ X or x∈ X},
for A⊆ S−x and x∈ S (with upper coversC +

A,x = CA,x +{A}).

4. For all C ,C ′ ∈ M , C ∧C ′ = C ∩C ′ andC ∨C ′ = {C∩C′,C∈ C ,C′ ∈ C ′}.

5. C ≺ C ′ ⇐⇒ there exists a quasi-closed set Q (w.r.t. C) such that

C ′ = C +{Q}

⇐⇒ there exists a meet-irreducible element Q ofC ′ such that

C = C ′−{Q}

6. (CA ↓ CB,x if and only if B⊆ A⊆ S−x) and (CA ↑ CB,x if and only ifCA l CB,x if and only if B= A⊆
S−x).

7. CAδCB if and only if A⊆ B⊂ S (so the dependence relationδ is isomorphic with the Boolean lattice
2S, without the greatest element).

8. The dependence relationβ is symmetric and strongly connected.

9. The latticeM is atomistic and lower bounded and, consequently, lower locally distributive, meet-
semimodular, ranked and join-pseudo complemented§.

10. The rank of the closure systemC in M is r(C ) = |C |−1 and the length ofM is 2n−1.

Notation: In the following, we omit the bracketings in the set notation. Thus{a} will be denoted bya
and{b,c} by bc.

The setM /0 of all the closure systems containing/0 is a lattice. Indeed, it is clear thatM /0 is the sublattice
[{ /0,S},2S] of (M ,⊆,∩,∨). Then from Theorem 1 we easily obtain the following results onM /0.

Corollary 1 1. The atoms ofM /0 are the2n−2 closure systemsCA, /0 = { /0,A,S}, for /0⊂ A⊂ S.

§ For the definition of these classes of lattices see for instance [9] or [19].
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2. The meet-irreducible elements ofM /0 are the n(2n−1−1) closure systemsCA,x with /0⊂ A⊂ S− x
and x∈ S.

3. C ≺ C ′ ⇐⇒ there exists a quasi-closed set Q for C withC ′ = C +{Q}

⇐⇒ there exists Q∈ MC ′ with C = C ′−{Q}.

4. M /0 is atomistic and lower bounded. It is therefore lower locally distributive, join-semidistributive,
join-pseudo complemented, meet-semimodular and ranked (with r(C ) = |C |−2).

5. The dependence relationδ is isomorphic with the Boolean lattice2S, without the greatest and the
least element.

6. The dependence relationβ is symmetric and strongly connected.

Remark: Everything that has been said in this section can directly be dualized to the union stable set
families which contain/0. Let us call these set familiesdual closure systemsand denote byU the set of
these families.(U,⊆) is obviously a lattice dual to(M ,⊆). Moreover, ifC is a dual closure system, a
dual notion of a quasi-closed set for a closure system would be the notion ofdual quasi-closed setfor C
defined as a setR⊂ SsatisfyingR 6∈ C and such thatC +R is a dual closure system. This notion of dual
quasi-closed set will be more generally applied to all∪-stable systems.

In the following sections we study some particular closure systems, their lattices and their covering
relations. Section 3 deals with∪-closure systemsand Section 4 withconvex geometries.

3 The lattice M ∪ of ∪-closure systems and its covering relation
Definition 4 Let S be a finite set. A∪-closure systemC on S is a closure system on S that is stable under
union: C, C′ ∈ C implies(C∪C′) ∈ C .

These∪-closure systems are exactly the sublattices of the lattice (2S,⊆) of all subsets ofS, which
containS. Since (2S,⊆) is distributive, so are all∪-closure systems. The join- and meet-irreducible
elements of a∪-closure systemC will be respectively called the∪-irreducibles and the∩-irreducibles of
C and we denote byM ∪ the set of all∪-closure systems onS.

Example:

1. Recall thatCA,B = {X ⊆ S: A 6⊆ X or B⊆ X}. It is easy to check that

CA,B ∈ M ∪ ⇐⇒ [|A| = 1 or (A = /0 and |B| = 1)]

2. A ∪-closure system containing/0 is called atopology.

3. The∪-closure systemsC (A) = C ∨CA (for any∪-closure systemC and anyA ⊂ S) will play an
important role in this section.
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Lemma 5 Let C∈ C ∈ M ∪ and denote by C1 = C−A1, . . . ,Ck = C−Ak the k lower covers of C inC .
B ⊆ S is a basis of C if and only if B is asystem of distinct representatives(SDR) of{A1, . . . ,Ak}, i.e.
B = {a1, . . . ,ak} with ai ∈ Ai , for every i= 1, . . . ,k.

Proof: First observe thatAi ∩A j = /0 for all i 6= j. Indeed if there existsi 6= j such thatAi ∩A j = X ⊃ /0
then, sinceC is ∪-stable,Ci ⊂Ci ∪Cj = C−X ⊂C, which is a contradiction.

=⇒: Let B be a basis ofC. So for everyi = 1, . . . ,k, B∩Ai 6= /0 (if not B⊂Ci , which impliesσ(B)⊆Ci , a
contradiction). Assume thatB∩Ai ⊇ {x,y} for somei ≤ k (i.e. |B∩Ai | > 1). Then, sincey∈ B−x
andy 6∈Ci , σ(B−x) 6⊆Ci . And σ(B−x) 6⊆Cj for every j 6= i, since there existsa j ∈ (B−x)∩A j

with a j 6∈Cj . Soσ(B−x) = C, a contradiction with the fact thatB is a basis. Finally|B∩Ai | = 1
for everyi = 1, . . . ,k.

⇐=: Take anySDR B= {a1 . . .ak} of {A1, . . . ,Ak}. We haveσ(B) ⊆ C. Assume thatσ(B) ⊂ C. Then
there existsCi ≺C such thatσ(B) ⊆Ci . But ai ∈ B−Ci , a contradiction. Soσ(B) = C. Let us now
considerB−ai for somei ≤ k. ThenB−ai ⊆Ci and soσ(B−ai) ⊆Ci ⊂C.

✷

Lemma 6 Let Q be a C-quasi-closed set forC ∈ M ∪. Then for all lower covers Ci ,Cj of C inC , Ci ∩Q=
Cj ∩Q.

Proof: Assume that there exists two lower coversCi andCj of C satisfyingCi ∩Q 6= Cj ∩Q. Since
Q is quasi-closed,Ci ∩Q andCj ∩Q belong toC which is∪-stable, so(Ci ∩Q)∪ (Cj ∩Q) ∈ C . But
(Ci ∩Q)∪ (Cj ∩Q) = (Ci ∪Cj)∩Q = C∩Q = Q 6∈ C , a contradiction. ✷

Proposition 2 Let C be a∪-closure system and Q⊆ S such thatσ(Q) = C 6= /0. The following are
equivalent:

1. Q is a C-quasi-closed set ofC ,

2. C∈ JC and C−∩Q∈ C .

Proof:

1. =⇒ 2. Sinceσ(Q) =C, Q contains a basis ofC. LetC1 =C−A1,. . . ,Ck =C−Ak be thek lower covers
of C in C and assumek≥ 2. By Lemma 5, there exists aSDR B= {a1, . . . ,ak} of {A1, . . . ,Ak} such
thatB⊆ Q. For all i 6= j, a j ∈Ci ∩Q anda j 6∈Cj ∩Q. ThenCi ∩Q 6= Cj ∩Q, a contradiction with
Lemma 6. SoC∈ JC and, by Lemma 2, item 3,C−∩Q∈ C .

2. =⇒ 1. Immediate from Lemma 2, item 3.

✷

The setM ∪ is obviously stable under intersection but it is not stable under the join operation ofM
(for instance, inM , Ca = {a,S} andCb = {b,S} (with a 6= b) are∪-closure systems but their join inM ,
Ca∨Cb = { /0,a,b,S} is not∪-stable). SoM ∪ is an∩-subsemilattice ofM . Since it contains 2S, it is a
lattice and if we denote byC∪ the∪-closure of a closure systemC , i.e. C∪ = {

S

G : G ⊆ C} then the join
operation inM ∪, denoted by∨M ∪ , is given below:
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Lemma 7 LetC andC
′
be two∪-closure systems.C ∨M ∪ C

′
= (C ∨C

′
)∪ = ({C∩C′, C∈ C ,C′ ∈ C

′
})∪.

Notation: Throughout this section, the join operation inM ∪ will simply be denoted by∨. We write
J∪ andM∪ respectively the setsJM ∪ andMM ∪ . In order to give the characterizations of the order and
covering relations onM ∪, we define, forC ∈ M ∪, IC = {[X,Y] ⊂ C : X ∈ JC ∪{minC}, Y ∈ MC and
X ⊆Y}.

Proposition 3 Let C ′ be a∪-closure system.

(C ⊆ C ′ andC ∈ M ∪) ⇐⇒ ∃I ⊆ IC ′ such thatC = C ′−
[

[Xi ,Yi ]C ′∈I

[Xi ,Yi ]C ′ .

Moreover if Xi = X for any i such that[Xi ,Yi ]C ′ ∈ I then X is a quasi-closed set forC .

Proof:

=⇒: We must prove that for anyC ∈ C ′−C , there exists[X,Y]C ′ ∈ IC ′ such thatC ∈ [X,Y]C ′ ⊆ C ′−C .
Suppose that this does not hold for someC0 ∈ C ′−C . We setJ0 = {T ∈ JC ′ : T ⊆C0}∪{minC ′}
andM0 = {U ∈ MC ′ : C0 ⊆ U}. Clearly, these two sets are non-empty and we have

S

J0 = C0 =
T

M0. Consequently, for allT ∈ J0 andU ∈ M0, there existsZT,U ∈ C ∩ [T,U ]C ′ (if not, C0 ∈
[T,U ]C ′ ⊆C ′−C , a contradiction). We have

S

T∈J0

T

U∈M0
ZT,U ∈C . On the other hand,C0 =

S

J0⊆
S

T∈J0

T

U∈M0
ZT,U ⊆

T

M0
= C0 , that is

S

T∈J0

T

U∈M0
ZT,U = C0 ∈ C , which is a contradiction.

⇐=: C ⊆ C ′ is obvious. Now suppose thatC is not ∪-stable, i.e. there existsX1 and X2 ∈ C with
X1∪X2 ∈ C ′−C and soX1∪X2 6= minC ′. This implies that there existsX ∈ JC ′ andY ∈ MC ′ with
X ⊆ Y andX1 ∪X2 ∈ [X,Y]C ′ . SinceC ′ is a distributive lattice,X ⊆ X1 ∪X2 implies X ⊆ X1 or
X ⊆ X2 and soX1 6⊆Y or X2 6⊆Y (otherwiseX1 or X2 6∈ C ) and finallyX1∪X2 6⊆Y, a contradiction.
By duality, we would similarly prove thatC is∩-stable. SinceC clearly containsS, C is a∪-closure
system contained inC ′.
At last if all Xi are equal toX thenC′∩X ⊆ X for anyC′ ∈ (C +{X}) and, sinceC′∩X ∈ C , X is a
quasi-closed set forC .

✷

Remark:

1. In this proposition, ifYi = Y for anyi such that[Xi ,Yi ]C ′ ∈ I , thenY is a dual quasi-closed set forC .

2. In [36] Rival characterizes the sublattices of a distributive lattice. In terms of closure systems this
amounts to characterize allT0-topologies (see Definition 7, Section 4) contained in aT0-topology.
Then Proposition 3 is a generalization of Rival’s result to arbitrary∪-closure systems.

We define an order relation on the setIC by [X,Y]C ≤ [X′,Y′]C if X′ ⊆ X andY ⊆ Y′. Recall that
CQ = {Q,S} for anyQ⊂ Sand that forC ∈ M ∪, C (Q) is the∪-closure systemC (Q) = C ∨CQ.

In Theorem 2 we will characterize the covering relation in the latticeM ∪ in terms of quasi-closed sets.
We begin with a lemma.



172 Nathalie Caspard and Bernard Monjardet

Lemma 8 Let C be a∪-closure system and Q a quasi-closed set forC . Then the following holds:

C (Q) = C +
[

i=1...k

[Q,Ti ]C (Q)

with:

a) Ti ∈ MC (Q) f or any i≤ k

b) Ti ||Tj f or i 6= j

c) (C (Q)−C )∩JC (Q) = Q

Proof: C (Q) = C ∨{Q,S} = C + {Q}+ {C∪Q: C ∈ C andC∪Q 6∈ C + {Q}}. Let C1, . . . ,Ck be the
maximal elements ofC such that(Ci ∪Q) = Ti 6∈ C +{Q}}. Let [Q,Ti ]C (Q) = Q∪{R : Q⊆ R⊆ Ti , R=
C∪Q with C ⊆ Ci} ⊂ (C (Q)− C ) (indeed if R = Ci ∪Q ∈ C then R∪Ci = Q∪Ci = Ti ∈ C ). Thus
C (Q) = C +

S

i=1...k[Q,Ti ]C (Q)−C .

(b) If there existsi 6= j such that, for example,Ti = Ci ∪Q⊂ Cj ∪Q = Tj thenCi ∪Cj ∪Q = Tj , which
implies thatCi andCj were not maximal.

(a) If there existsi such thatTi is the intersection of some elements ofC (Q) then these elements are not
in any interval[Q,Tj ]C (Q) (since theTi ’s are not comparable). So these elements belong toC and so
doesTi , a contradiction.

(c) Q∈ JC (Q) since ifQ is obtained as the union of at least two elements ofC (Q) (different fromQ) then
these elements belong toC and so doesQ, a contradiction. At last ifR∈]Q,Ti ]C (Q), R=Ci ∪Q with
Ci ,Q∈ C (Q) and soR 6∈ JC (Q).

✷

Definition 5 Q⊂ S is acover admissible quasi-closed set fora∪-closure systemC if Q is a quasi-closed
set forC satisfyingC ≺ C (Q).

Theorem 2 Let C andC ′ be two∪-closure systems. The following assertions are equivalent.

1. C ≺ C ′.

2. C = C ′− [Q,T]C ′ with Q a cover admissible quasi-closed set forC and[Q,T] is ≤-minimal inIC ′ .

Proof:

1. =⇒ 2. C ≺ C ′ implies C ⊆ C ′ and so, by Proposition 3,C = C ′ −
S

i=1...k[Xi ,Yi ]C ′ . If k > 1 then
C ′′ = C ′− [X1,Y1]C ′ is a∪-closure system which satisfiesC ⊂ C ′′ ⊂ C ′, a contradiction withC ≺
C ′. Now supposek = 1 andC = C ′ − [X,Y]C ′ with [X,Y]C ′ non ≤-minimal in IC ′ . Consider
[X′,Y′]C ′ ∈ minIC ′ with [X′,Y′]C ′ ≤ [X,Y]C ′ then C ′′′ = C ′ − [X′,Y′]C ′ satisfiesC ⊂ C ′′′ ⊂ C ′, a
contradiction. FinallyC ≺ C ′ impliesC = C ′− [X,Y]C ′ with [X,Y]C ′ ∈minIC ′ and, by Proposition 3
and Definition 5,X is a cover admissible quasi-closed set forC .
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2. =⇒ 1. Immediate from Proposition 3.

✷

Remark:

1. Note that the interval[minC ′,T] is ≤-minimal in IC ′ if and only if minC ′ = T ∈ MC ′ . This is the
only case whereC ′−minC ′ remains∪-stable.

2. In [10] (see also [36]) the authors characterize the maximal sublatticesL′ of a distributive latticeL:
L−L′ is either an interval[ j,m] with j ∈ JL andm∈ ML with no element ofJL∪ML in ] j,m[, or is a
unique element which is either doubly irreducible or the least or the greatest element ofL. In terms
of closure systems, this amounts to characterize maximalT0-topologies contained in aT0-topology.
Then Theorem 2 is a generalization of these results to arbitrary∪-closure systems.

We give the corollary below as a direct consequence of Theorem 2:

Corollary 2 Let C be a∪-closure system and Q⊆ S. Then Q is a cover admissible quasi-closed set
for C (i.e. C ≺ C ′ = C (Q)) if and only if C (Q) = C + [Q,T]C ′ with Q quasi-closed set forC such that
R∈ [Q,T]C ′ ∩MC ′ implies R= T.

Recall thatT is said to be adual quasi-closed set forC ∈ M ∪ if C∪T ∈ C for everyC∈ C .

Corollary 3 Let C be a∪-closure system and Q a quasi-closed set forC . If Q is either a maximal
quasi-closed set or a dual quasi-closed set forC , then it is cover admissible.

Proof: Let Q be a maximal quasi-closed set forC . So there existsC ′ ∈ M ∪ such thatC ≺ C ′ ⊆ C (Q) =
C +

S

i=1...k[Q,Ti ]C (Q) (by Lemma 8). By Theorem 2,C ≺ C ′ implies thatC ′ = C +[Q′,T] = C (Q′) with
Q′ quasi-closed set forC . So there exists an interval[Q,Ti ] in C (Q) which containsQ′. But sinceQ is a
maximal quasi-closed set forC , Q = Q′ and soC ≺ C ′ = C (Q′) = C (Q).
In the case whereQ is simultaneously a quasi-closed and a dual quasi-closed set forC , it is clear that
C (Q) = C +{Q}. ✷

Remark:

1. It should be possible to define a notion of acover admissible dual quasi-closed setand then to get
the dual result of Corollary 3 (a minimal dual quasi-closed set is cover admissible).

2. LetC ∈ M ∪. The set of all cover admissible quasi-closed setsQ for C can vary from the whole set
QC of all quasi-closed setsQ for C to the setmaxQC of the maximal quasi-closed sets forC , as it is
shown in the examples below.

Example:

1. For anyCA = {A,S}, the set of all the quasi-closed sets forCA is equal to{B⊂ S: B⊃ A or B⊂ A}.
SoCA ≺ CA(B) = CA +{B}, for any quasi-closed setB for CA. In other words, every quasi-closed
set forCA is cover admissible.
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2. For anyCx,B, Cx,B = [ /0,S− x]∪ [B+ x,S] so thatC c
x,B =

S

y∈B[x,S− y]. Then it is easy to check
that the set of all quasi-closed sets forCx,B is equal to

S

y∈B[x,B− y+ x]. So the set of maximal
quasi-closed sets forCx,B is {B−y+x, y∈ B}. It is easy to check that these maximal quasi-closed
sets are the only cover admissible quasi-closed sets forCx,B.

In the following we consider two∪-closure systemsC and C ′, and we denote byσ (respectively,
σ′) their associated closure operators and byex (respectively,ex′) the set of extreme elements w.r.t.σ
(respectively,σ′). As well we set upJC = J,MC = M andJC ′ = J′,MC ′ = M′.

Corollary 4 LetC be a∪-closure system, Q a cover admissible C-quasi-closed set forC and letC ′ denote
the∪-closure systemC ′ = C (Q) = C +[Q,T]C ′ . Then:

J′ =











J+{minC} if σ(Q) = minC

J+{Q}−{C} if C−∪Q = C

J+{Q} otherwise.

(1)

M′ = M +{T}−{H ∈ M | H ∪Q∈ [Q,T]C ′ and H+ ∩ (H ∪Q) = H}. (2)

Proof:

(1) First, according to Theorem 2,Q is always a join-irreducible element ofC ′, except in the case where
σ(Q) = minC . In this case,Q is the least element ofC ′ andminC becomes a join-irreducible element
of C ′. SoJ′ = J+{minC}. Take nowH ∈ J and assume thatH 6∈ J′. Then there existsG∈ C such
thatG∪Q∈ [Q,T]C ′ andH = (G∪Q)∪H−. SoG is distinct fromH (otherwiseG∪Q = H). So
Q ⊂ H, which impliesQ ⊂ σ(Q) = C ⊆ H. Recall that, by Proposition 2,C ∈ J. First assume
C ⊂ H. ThenQ⊂C ⊆ H− andH = G∪Q∪H− = G∪H−, a contradiction withH ∈ J. Assume
now thatC = H and soC = G∪Q∪C−. SoC− ⊆G∪C− ⊂C impliesC− = G∪C−, henceG⊆C−,
i.e. C = Q∪C−, andJ′ = J+ {Q}−{C}. In the other cases, anyH ∈ J remains an element ofJ′

and soJ′ = J+{Q}.

(2) By Theorem 2,T is the unique meet-irreducible element ofC ′−C . Take nowH ∈ M and assume
that H 6∈ M′. Then there existsG ∈ C such thatG∪Q ∈ [Q,T]C ′ and H+ ∩ (G∪Q) = H. So
H ⊂ G∪Q andH ⊆ H∪Q⊆ G∪Q. ThenH+∩(H∪Q) = H andH∪Q∈ C ′−C = [Q,T]C ′ . Note,
in particular, that ifminC ∈ M then (minC ∈ M′ if and only if minC ⊂ Q).

✷

We now aim to characterize the irreducible elements of the latticeM ∪. The case of the join-irreducible
elements is obvious and is given without proof in the proposition below.

Proposition 4 J∪ = {CA : A⊂ S} = JM and the latticeM ∪ is atomistic.

The following lemma presents without proof some results that will lead to some∩-representations for
a∪-closure system and to a characterization of the∩-irreducibles ofM ∪. We recall that for allx∈ Sand
B⊆ S−x, we haveCx,B = {X ⊆ S: x 6∈ X or B⊆ X} andC /0,x = {X ⊆ S: x∈ X}. We denote byGM ∪ the
set{Cx,B : x∈ S, B⊆ S−x}∪{C /0,x : x∈ S}.

Lemma 9 1. Cx,B andC /0,x are∪-closure systems.
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2. a. C c
x,B =

S

b∈B[x,S−y].

b. Cx,B ⊆ Cz,B′ ⇐⇒ (x = z and B
′
⊆ B).

c. Cx,B =
T

y∈B Cx,y.

3. a. C c
/0,x = [ /0,S−x].

b. C /0,x ⊆ C /0,z ⇐⇒ x = z.

c. C /0,x ⊆ Cz,t ⇐⇒ x = t.

d. Cz,t 6⊆ C /0,x.

4. LetC be an element ofGM ∪ andC
′
a∪-closure system. Then:

C
′
⊆ C ⇐⇒

{

B⊆ (φC
′ (x)−x) if C = Cx,B

x∈ φC
′ ( /0) if C = C /0,x

According to this lemma, we can define some∩-representations of a∪-closure system by means of the
elements ofGM ∪ .

Proposition 5 Let C be a∪-closure system andσ = σC the associated closure operator.

C =
\

({Cx,B ∈ GM ∪ : B⊆ σ(x)−x} ∪ {C /0,y ∈ GM ∪ : y∈ σ( /0)})

=
\

({Cx,B ∈ GM ∪ : B = σ(x)−x} ∪ {C /0,y ∈ GM ∪ : y∈ σ( /0)})

Proof: We write G ′
M ∪ the set{Cx,B ∈ GM ∪ : B ⊆ σ(x)− x} ∪ {C /0,y ∈ GM ∪ : y ∈ φ( /0)}. By the

previous lemma,C ⊆
T

G ′
M ∪ is obvious. Now suppose there existsX in

T

G ′
M ∪ such thatX 6∈ C , i.e.

X ⊂ σ(X) =
S

x∈X σ(x). So there existsz∈ X such that{z} ⊂ σ(z) and σ(z)− z 6⊆ X. By definition
Cz,σ(z)−z ∈ G ′

M ∪ and we haveX 6∈ Cz,σ(z)−z, which is a contradiction.
The second equality is a direct consequence of item 2b in Lemma 9. ✷

These∩-representations of a∪-closure system easily lead to a characterization of the∩-irreducible
elements ofM ∪.

Corollary 5 The set M∪ of the∩-irreducible elements of the latticeM ∪ is characterized as follows:

M∪ = {Cx,y : x,y∈ S and x6= y}∪{C /0,x : x∈ S}

= {coatoms ofM ∪}∪{C /0,x : x∈ S}.

Proof: Let C be a∪-closure system. IfC is an∩-irreducible ofM ∪, then by Proposition 5, there exists
x∈ SandB⊆ S−x, such thatC = Cx,B or C /0,x. SupposeC = Cx,B with |B| > 1. By item 2c in Lemma 9,
C =

T

y∈B Cx,y, a contradiction, and soB is a singleton. Let nowx andzbe two distinct elements ofS. Cx,z

contains all singletons{t}, for t 6= x. Since{x} is quasi-closed forCx,z, it belongs to an upper coverC
′
of

Cx,z. Thus,C
′
contains all singletons{t}, for t ∈ S, which impliesC

′
= 2S, andCx,z is a coatom ofM ∪.

As for C /0,x, it has /0 as unique quasi-closed set, soC /0,x has a unique upper coverC +
/0,x = C /0,x + { /0}, and

C /0,x is ∩-irreducible. It is not a coatom sinceC +
/0,x contains{x} as unique singleton. ✷

In order to describe the dependence relationsδ andβ on the irreducible elements ofM ∪, we first give
the arrow relations on this lattice. The proofs are easy to check and are left to the reader.
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Lemma 10 Let CA be an element of J∪ and CY,y an element of M∪ (i.e. |Y| ≤ 1). Then the following
holds:

CA ⊆ CY,y ⇐⇒ A∈ CY,y

⇐⇒ [y∈ A if Y = /0] and [(y∈ A and x6∈ A) if Y = {x}] (3)

CA ↓ CY,y ⇐⇒ CA 6⊆ CY,y

⇐⇒ [A⊆ S−y if Y = /0] and [(x∈ A and y6∈ A) if Y = {x}] (4)

CA ↑ CY,y ⇐⇒ CA l CY,y

⇐⇒ [A = /0 if and only if Y= /0] and [{x} ⊆ A⊆ S−y if Y = {x}]. (5)

It is now possible to characterize the dependence relationsδ andβ on the irreducible elements ofM ∪.

Proposition 6 Let CA andCB be two elements of J∪.

1. If A,B 6= /0 then:

CAδCB ⇐⇒ ∃x,y∈ Ssuch that{x} ⊆ A∩B⊆ A∪B⊆ S−y

2. For any B⊂ S, we haveC /0δCB.

3. For /0⊂ B⊂ S, we haveCBδcC /0.

The relationδ is not strongly connected.

Proposition 7 Let C /0,x, C /0,y, Cx,y andCz,t be meet-irreducible elements ofM ∪. The following holds:

1. C /0,xβC /0,y, ∀ x,y∈ S.

2. C /0,xβCy,z ⇐⇒ x 6= y.

3. Cx,yβCz,t ⇐⇒ x 6= t and y6= z.

The relationβ is strongly connected.

The theorem below summarizes some known results and adds new ones on the latticeM ∪:

Theorem 3 The lattice(M ∪,⊆) of all ∪-closure systems defined on a set S is a∩-subsemilattice of the
lattice M , which contains2S and which satisfies:

1. The join and meet operations ofM ∪ are:

a. C ∨C
′
= {C∩C′, C∈ C ,C′ ∈ C

′
}∪ =

S

{H ⊆ {C∩C′,C∈ C ,C′ ∈ C ′}}

b. C ∧C
′
= C ∩C

′

2. The join-irreducible and the meet-irreducible elements ofM ∪ are characterized as follows:

a. J∪ = {CA : A⊂ S} = JM (soM ∪ is atomistic)
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b. M∪ = {Cx,y : x,y∈ S and x6= y}∪{C /0,x : x∈ S}

3. C ≺ C ′ if and only if C ′ = C (Q) = C + [Q,T]C ′ with Q quasi-closed set forC such that(R∈
[Q,T]C ′ ∩MC (Q)) implies R= T.

4. For |S| ≥ 3, the latticeM ∪ is neither coatomistic, nor ranked, nor complemented, nor join-pseudo
complemented, nor meet-pseudo complemented.

Proof: The points (1), (2) and (3) have already been proved. For (4), first observe that in the case where
|S| ≤ 2, the latticeM ∪ is Boolean. Now for|S| ≥ 3, M ∪ is neither coatomistic (sinceC /0,x is a meet-
irreducible contained in the coatomCy,x), nor ranked. It is not complemented since, for instance, the
∪-closure system{ /0,S} has no complement inM ∪ (more generally,CA = {A,S} has a complement in
M ∪ if and only if A = S− x for somex ∈ S). M ∪ is not join-pseudo complemented. Indeed a lattice
L is join-pseudo complemented if and only if every coatom ofL has a join-pseudo complement (see
[11]). The coatomC1,2 of M ∪ on S= {1,2,3} has two minimal join-semi complements which areC13

andC1. At last, M ∪ is not meet pseudo-complemented. For instance, consider the∪-closure system
C1 = {1,S} on S= {1,2,3}. C1 has two maximal meet semi-complements,C = { /0,2,3,12,23,S} and
C ′ = { /0,2,3,13,23,S}. ✷

Remark:

1. Obviously the set of closure operators associated with∪-closure systems is a lattice dual ofM ∪.

2. As already said, a∪-closure system is atopologyif it contains /0. The setT of all topologies onS
is the interval[{ /0,S},2S] of the latticeM ∪ and so, it is a sublattice ofM ∪. But since this lattice
or the dual lattice of preorders have already been well studied in the finite (and infinite) case(s), we
send the reader back to the references [2], [4], [18], [26], [28] and [37]. Just note that, unlike the
latticeM ∪, T is a coatomistic and complemented lattice.

4 The lattice G+ of convex geometries and its covering relation
Definition 6 A closure system on S is aconvex geometryif it satisfies the two following properties:

1. The empty set/0 is closed.

2. For every closed set C6= S there exists x6∈C such that C+x is a closed set.

Using easy or well-known results (Edelman [16], Edelman and Jamison [15]) and the characterization
of join-irreducible elements of an arbitrary closure system (re [34]) we can state the following:

Lemma 11 Let C be a convex geometry on S and(C ,⊆) the associated lattice. Then(C ,⊆) is lower
locally distributive and its covering relation is characterized by:

∀C,C′ ∈ C , (C′ ≺C ⇐⇒ ∃x∈ exC, C′ = C−x)

Moreover, ifσC denotes the closure operator associated withC , the setsσC (x), x∈ S are all distinct
and are exactly the join-irreducible elements ofC .
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Fig. 1: The convex geometryC = { /0,1,2,3,12,23,34,123,234,1234}

Example: The closure systemC = { /0,1,2,3,12,23,34,123,234,1234} is a convex geometry (see Fig-
ure 1).

A particular class of convex geometries is the class of allT0-topologies:

Definition 7 A T0-topologyon a set S is a∪-stable convex geometry. Equivalently it is a topology —
that is to say a∪-closure system containing/0 — C such that x6= y impliesσC (x) 6= σC (y). A linear
topology is a T0-topologyC such that there exists a linear order L= x1 > .. . > xi > .. . > xn on S with
C = {{xi ,xi+1 . . . ,xn−1,xn},xi ∈ S}+{ /0}.

There are many ways to define convex geometries and their corresponding closure operators (see for
instance [24], [29] and [32]), that we partially list below:

Lemma 12 Let C be a closure system containing/0 and letσC be the associated closure operator. The
following properties are equivalent:

1. C is a convex geometry,

2. Every closed set ofC is the closure of its extreme elements,

3. Every closed set ofC has a unique basis, which is exC,

4. For every X⊆ S, exX= exσC (X),

5. σC ( /0) = /0 and [x,y 6∈ σC (X), x 6= y and y∈ σC (X +x)] imply x 6∈ σC (X +y).

Thus a convex geometryC induces a partition of 2S into Boolean intervals[exC,C], C ∈ C , such that,
for everyX ∈ [exC,C], exX= exCandσC (X) = C.

The second condition of item 5 is called theantiexchange property. We will say that a closure operator
is anantiexchange closure operatorif it satisfies this condition.
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We denote byG the poset of all convex geometries defined on a setS, partially ordered by set inclusion.
The join in M of two convex geometries is still a convex geometry (which is easy to check), but their
intersection is not necessarily a convex geometry (for example with|S| = 2, { /0,1,12} ∩ { /0,2,12} =
{ /0,12} 6∈ G). G is therefore a join-subsemilattice of the latticeM that was studied in particular by
Edelman and Jamison ([15] 1985). The following theorem gives some properties of this semilattice, but
in order to simplify their statement we shall add a zero element 0G to G in order to obtain a lattice denoted
by G+.

Theorem 4 The latticeG+ of all convex geometries on a set S of cardinality n is a join-subsemilattice of
the latticeM of all the closure systems on S, having the following properties:

1. Its greatest element is the Boolean algebra2S.

2. Its join-irreducible elements are exactly the atoms and are equal to the n! linear topologiesL
defined on S.

3. Its meet-irreducible elements are the n2n−1 closure systemsCA,x, for all A ⊆ S and x6∈ A (with
C +

A,x = CA,x +{A}).

4. For all C ,C ′ ∈ G , C ∨C ′ = {C∩C′,C∈ C ,C′ ∈ C ′}.

5. For all C , C ′ ∈ G ,

C ∧C ′ =

{

0G if C ∩C ′ contains no linear topology

∨{L | L linear topology contained inC ∩C ′} otherwise.

6. G+ is atomistic and ranked.

7. The rank of the convex geometryC is r(C ) = |C | −n (soC ≺ C ′ implies |C ′| = |C |+ 1), and the
minimum cardinality of a set Ł of linear topologies withC =

W

Ł equals the width of the poset MC .

8. The length ofG+ is 2n−n.

9. For n≥ 3, G+ is neither upper nor lower semimodular.

Proof: The proofs of Properties 1, 2, 4, 5, 6, 7 and 8 can be found in Edelman and Jamison ([15] 1985) or
Edelman and Saks ([17] 1988). Just note that our Corollary 7 is the result proved in [15] in order to show
thatG+ is ranked. Property 9 can easily be checked. We finally have to prove the characterization of the
meet-irreducible elements ofG+ given in Property 3. In Theorem 1 it has been recalled that the closure
systemsCA,x = {X ⊆ S: A 6⊆ X or x∈ X}, for A⊆ S−x, are the meet-irreducible elements of the lattice
M of all the closure systems on S. It is therefore sufficient to show that such a closure system is a convex
geometry. Assume that there existsCA,x which is not a convex geometry. Then there existsC∈ CA,x such
that for everyy 6∈C, C+y 6∈ CA,x, i.e. A⊆C+y⊆S−x. SinceC =

T

{C+y,y 6∈C}, we getA⊆C⊆S−x,
a contradiction. ✷

Our aim is to characterize the covering relation≺ in G+. To do so we introduce the notions ofG-
admissible C-quasi-closed setand ofG-deletable closed set.
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2
S

0
G

a,b,c,ab,bc

a,c,ab,ac

a,b,c,ab,ac a,b,c,ac,bc

c,ac a,ac a,ab b,bcb,ab c,bc

a,c,ac
a,ab,ac a,b,ab b,ab,bc b,c,bc c,ac,bc

b,c,ab,bc

a,b,ab,bc
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a,c,ac,bc
b,c,ac,bc

Fig. 2: The latticeG+ of the convex geometries on a setS= {a,b,c} (here a convex geometry is denoted by its
elements different from/0 andS).

Definition 8 Let C be a convex geometry on S. A subset Q of S is aG-admissible quasi-closed set(w.r.t.
C ) if Q 6∈ C and C + {Q} is a convex geometry. IfσC (Q) = C, we shall say that Q is aG-admissible
C-quasi-closed set.

Definition 9 A closed set C of a convex geometryC is aG-deletable closed setof C if C −{C} is a convex
geometry.

We have seen that, inG+, the fact thatC ≺ C ′ implies |C ′| = |C |+ 1 (Theorem 4). This shows that
G-admissible quasi-closed sets always exist. So the following holds:

Fact 1 Let C andC ′ be two convex geometries. The three assertions below are equivalent:

1. C ≺ C ′,

2. There exists aG-admissible quasi-closed set Q (w.r.t.C ) such thatC ′ = C +{Q},

3. There exists aG-deletable closed set Q ofC ′ such thatC = C ′−{Q} .
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Before characterizing theG-admissible quasi-closed sets, we note that an immediate application of
Lemmas 2 and 3 (item 2) allows us to characterize theC-quasi-closed sets of a convex geometryC , i.e.
the setsQ such thatC +{Q} is a closure system withQ⊂ σC (Q) = C:

Lemma 13 Let C be a convex geometry on S and Q⊂ S. The two following properties are equivalent:

1. There exists a closed set C ofC such that Q is a C-quasi-closed set,

2. exC⊆ Q⊂C and for every u∈ exC,(Q−u) ∈ C .

We can now characterize theG-admissible quasi-closed sets of a convex geometry.

Proposition 8 Let C be a convex geometry on S,σ the associated antiexchange closure operator and
Q⊂ S. The following assertions are equivalent:

1. Q is aG-admissible quasi-closed set (i.e.C ≺ C +{Q} ∈ G),

2. There exists a closed set C ofC and u∈C such that Q= C−u is a C-quasi-closed set forC ,

3. There exists a closed set C ofC and u∈C−exC such that exC⊆ Q = C−u and for every t∈ exC,
Q− t ∈ C ,

4. There exists a closed set C ofC and u∈C−exC such that exC⊆ Q = C−u and for every closed
set G ofC such that G≺C, u∈ exG,

5. There exists a closed set C ofC and u∈C−exC such that exC⊆ Q = C−u and for every X such
that u∈ X ⊆ σ(X) ⊂C, then u∈ exX.

Proof:

1. =⇒ 2. By hypothesis,Q 6∈ C andC + {Q} is a convex geometry. Then by Lemma 11 there exists
C ∈ C such thatQ+ u = C. If σ(Q) 6= C thenQ ∈ C which is impossible. Thenσ(Q) = C and
Q = C−u is aC-quasi-closed set.

2. =⇒ 3. By applying Lemma 2, item 1 withQ = C−u we getexC⊆ Q = C−u and for everyt ∈ exC,
(Q− t) ∈ C .

3. =⇒ 4. ForG∈ C , G≺C is satisfied if and only if there existst ∈ exCsuch thatG=C− t (Lemma 11).
Thenu∈ G (sinceu∈C−exC⊆C− t) andG−u = C−{u, t} = Q− t ∈ C , i.e. u∈ exG.

4. =⇒ 5. Let X ⊆ Sbe such thatX ⊆ σ(X) ⊂C, with u∈ X. Then there exists a closed setH such that
σ(X) ⊆ H ≺ C. So X − u ⊂ X ⊆ σ(X) andX − u ⊂ H − u imply X − u ⊆ σ(X)∩ (H − u) and
so X −u ⊆ σ(X −u) ⊆ σ(X)∩ (H −u) = σ(X)−u ⊂ σ(X). This impliesσ(X −u) ⊂ σ(X), i.e.
u∈ exX.
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5. =⇒ 1. We first show thatQ = C−u is aC-quasi-closed set. Firstu∈ (C−exC) impliesσC (Q) = C.
By Lemmas 2 and 3 (item 2) we have to prove that for everyt ∈ exC, (Q− t) = C−{u, t} ∈ C . But
t ∈ exC impliesC− t ∈ C and(C− t) ≺ C. According to the assertion 5,u ∈ ex(C− t) and then
C−{u, t} ∈ C . HenceQ is aC-quasi-closed set (w.r.t.C ) and soC + {Q} is a closure system. It
contains the empty set and since every closed set ofC +{Q} is covered by a closed set containing
one more element (C for Q), C +{Q} is a convex geometry.

✷

In the following, we denote byσ (respectively,σ′) the closure operator associated to the convex geom-
etryC (respectively,C ′) and byex(respectively,ex′) the set of extreme elements w.r.tσ (respectively,σ′).
As well we set upJC = J,MC = M andJC ′ = J′,MC ′ = M′.

Corollary 6 LetC be a convex geometry on S, Q= Q−u (withQ= σC (Q)) a G-admissible quasi-closed
set forC , andC ′ = C +{Q} the associated convex geometry coveringC in G+.
For X ⊆ S,

ex′X =

{

exQ+u if exQ+u⊆ X ⊆ Q

exX otherwise.
(6)

In particular, ex′Q = exQ+u and ex′Q = exQ.
For X ⊆ S,

σ′(X) =

{

Q if exQ⊆ X ⊆ Q

σ(X) otherwise.
(7)

In addition

J′ =

{

J−Q+Q if Q∈ J

J otherwise
(8)

and

M′ = M +Q−{C∈ M : C⊂ Q and C+ 6⊂ Q with C maximal for these properties}. (9)

Proof:

(6), first case. By Lemma 12 it suffices to show thatex′Q= exQ+u, i.e. that for everyt ∈ S, Q− t ∈ C ′ if
and only if (t ∈ exQ or t = u). ButQ−t ∈ C ′−{Q}= C is equivalent tot ∈ exQ, andQ−u= Q∈ C ′

impliesu∈ ex′Q.

(6), second case.This is obvious ifX ∈ [exC,C] with C∈ C ′−{Q,Q}. Now considerX ∈ [ex′Q,Q]. We
only have to show thatex′Q = exQ. By Proposition 8, item 3 (withQ = C), t ∈ exQ impliesQ− t ∈
C ⊂ C ′, and soexQ ⊆ ex′Q. Now considerz∈ ex′Q, i.e. Q− z∈ C andQ− z= Q−{u,z} ≺ Q.
In the convex geometryC there existst ∈ exQ such thatQ− z = Q−{u,z} ≺ Q− t ≺ Q. Since
u 6∈ exQ, z= t and soz∈ exQ. Finally exQ = ex′Q.
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(7) Immediate consequence of Lemma 12 and of (6) of this corollary.

(8) Recall that in any convex geometryC onS, |J| = |S|. Assume thatQ∈ J so, inC ′, Q = Q∨Q
−

(with
Q
−

the unique lower cover ofQ). ThenQ 6∈ J′ and, since all other elements ofJ (distinct fromQ)
remain inJ′, thenQ must be inJ′. At last if Q 6∈ J then obviouslyJ = J′.

(9) It is clear thatQ ∈ M′. Now let C ∈ M contained inQ such thatC+ 6⊂ Q and maximal with these
properties. InC ′, C = Q∩C+ and soC 6∈ M′.

✷

Corollary 7 Let C be a convex geometry on S (different from2S). For every C∈ C such that C is a
minimal dependent closed set and every u∈C−exC, C−u is aG-admissible quasi-closed set.

Proof: We show thatC−u satisfies Condition 3 of Proposition 8. By definitionexC⊆ Q = C−u. Let
t ∈ exC. ThenC− t ∈ C and is free. SoQ− t = C−{t,u} ∈ C . ✷

Remark:

1. The implication 5=⇒ 1 of Proposition 8, item 6 of Corollary 6 and Corollary 7 are Theorem 2.2.
and Lemma 2.3. in Johnson and Dean [23].

2. In other terms, the transformation made when we go from the convex geometryC to a convex
geometryC +{Q} coveringC is the following: the Boolean intervalB = [exQ,Q] is partitioned into
the two Boolean intervals[exQ,Q] and[A,Q], whereQ = Q−u is a coatom ofB andA = exQ+u
is the atom complement ofQ in B. Johnson and Dean call this transformationexpansion of a
”quotient” [23]. Note that this transformation is possible if and only if the coatomQ is ”locally
quasi-closed”, in the sense that its intersection with any closed set covered byQ = σ(Q) is in C
(Proposition 8, item 3 or 4).

We now characterize theG-deletable closed sets of a convex geometryC , i.e. the elementsC of C such
thatC −{C} ∈ G . Recall that the lattice associated with a convex geometry is lower locally distributive
and that ifC is a meet-irreducible element of the latticeC thenC+ denotes the unique closed set covering
C in C .

Lemma 14 Let C be a convex geometry on S and C an element ofC :

1. (C∈ MC , t ∈ exC and C− t 6∈ MC ) imply t∈ exC+.

2. C≺C′ = (C+u) ∈ C implies /0⊂ exC′ ⊆ {t ∈ exC: C− t 6∈ MC}+{u} ⊆ exC+u.

3. C∈ MC and C≺C+ = C+u imply exC+ = {t ∈ exC: C− t 6∈ MC}+{u} ⊆ exC+u.

Proof:

1. We use the dual form of a result proved in a Bordalo and Monjardet’s paper ([6], Lemma 8): let
C− t ≺ C andC− t ≺ H be three elements of the lower locally distributive latticeC . Then there
existsL and M ∈ C such thatC− t ≺ L ≺ M andC ≺ M. C ∈ MC implies M = C+ and then
L = C+ − t, i.e. t ∈ exC+.
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2. Let t be inexC′. Eithert = u (sinceu∈ exC′ by definition) ort 6= u. In this caseC∩(C′−t) =C−t ∈ C
and sot ∈ exCand finallyC− t 6∈ MC .

3. Item 1 andu∈ exC+ imply {t ∈ exC: C− t 6∈ MC}+{u} ⊆ exC+. Item 2 gives the converse inclusion.

✷

In the following propositions and corollaries, we consider two convex geometriesC andC ′ on S. We
denote byσ (respectively,σ′) their associated closure operators and byex (respectively,ex′) the set of
extreme elements w.r.tσ (respectively,σ′). As well we set upJC = J,MC = M andJC ′ = J′,MC ′ = M′.

Proposition 9 Let C ′ be a convex geometry on S and C∈ C ′−{ /0}. The first three assertions are equiva-
lent and imply the fourth one:

1. C is aG-deletable closed set, i.e.C = C ′−{C} ∈ G ,

2. C∈ M′ and for every G∈ C ′ with G≺C, G 6∈ M′,

3. C∈ M′ and for C+ = C+u, ex′C+ = ex′C+u.

4. C∈ M′ and C+ 6∈ J′.

Moreover if C∈ J′∩M′, the four assertions are equivalent and, in this case,|ex′C+| = 2.

Proof:

1 =⇒ 2 SinceC ′−{C} is a closure system,C ∈ M′. ConsiderG = C− t ≺C and assume thatG∈ M′.
Then in the convex geometryC ′−{C} there does not existG+x∈ C ′−{C}, a contradiction.

2 =⇒ 3 Let C+ = C+u. By lemma 14,ex′C+ = {t ∈ ex′C : C− t 6∈ M′}+u⊆ ex′C+u. But since, by
hypothesis, for everyt ∈ ex′C, C− t 6∈ M′, we getex′C+ = ex′C+u.

3 =⇒ 1 SinceC ∈ M′, C ′ −{C} is a closure system. To show that it is a convex geometry we show
that for everyG = C− t ∈ C ′, there existsG′ = G+u(6= C) ∈ C ′. t ∈ ex′C impliest ∈ ex′C+, then
C+ − t = (C+u)− t ∈ C ′ andG = C− t ≺ G′ = (C+u)− t = G+u.

3 =⇒ 4 By (3), if t ∈ ex′C, t ∈ ex′C+. SoC+ − t ≺C andC+ = C∨ (C+ − t) 6∈ J′.

At last suppose thatC ∈ J′ ∩M′ and satisfies Property 4 (i.e.C ∈ M′ andC+ 6∈ J′) and show that
Property 3 is satisfied. Considert ∈ ex′C+. SoC+ − t = H ∈ C ′ andH ∩C = C− t = C− ∈ C ′, which
implies t ∈ ex′C. Thereforeex′C+ ⊆ ex′C+u. Now sinceC ∈ J′, ex′C = {t} and soex′C+ = ex′C+u =
{t,u}. ✷
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Corollary 8 Let C ′ be a convex geometry, C∈ M′ a G-deletable closed set ofC ′ with C+ = C+ u and
C = C ′−C≺ C ′.

For X ⊆ S,

exX=

{

ex′C if ex′C+ ⊆ X ⊆C+

ex′X otherwise
(10)

In particular exC+ = exC= ex′C
For X ⊆ S,

σ(X) =

{

C+ if ex′C⊆ X ⊆C

σ′(X) otherwise.
(11)

J = J′ if C 6∈ J′ and J= J′−{C}+{C+} if C ∈ J′∩M′ (12)

M = M′−{C}+{G∈ C ′ : G≺C and G has a unique upper cover C′ distinct from C} (13)

Moreover if G∈ M−M′, then C′ ≺C+.

Proof:

(10) If X 6∈ [ex′C+,C+], exX= exX′ is clear. In order to prove the statement whenX ∈ [ex′C+,C+], it
suffices (by Lemma 12) to show thatexC+ = ex′C (= ex′C+ −u, by Proposition 9, item 3). Lett
be in ex′C. Thent ∈ ex′C+ andt 6= u. SoC+ − t ∈ C = C ′−{C}, andt ∈ exC+. Conversely, if
t ∈ exC+, t 6= u sinceC+ −u = C 6∈ C . C+ − t ∈ C impliesC+ − t ∈ C ′, i.e. t ∈ ex′C+ −u = ex′C.

(11) Immediate from Lemma 12 and (10).

(12) It is clear that ifG ∈ J′ (thenG 6= C+ by Proposition 8 item 4) andG 6= C, thenG ∈ J. Since
|J| = |J′| (= |S|, Lemma 12), we get the result forJ.

(13) ⊆: Assume thatG ∈ M −M′. Then there existsG+ such thatG+ is the unique closed set in
C = C ′−{C} with G≺ G+. SinceG 6∈ M′, we have necessarilyG≺C = C+−u in C ′. So in
C ′, G is covered only byG+ andC. Moreover, sinceC∈ M′ andG = C− t 6∈ M′, Lemma 14,
item 1 givesC+− t ∈ C . But sinceG=C+−{t,u} ≺ (C+− t), we haveG+ = (C+− t)≺C+.

⊇: First it is clear that ifG∈ M′ andG 6= C (soG 6≺C by Proposition 9 item 2), thenG∈ M. Now
considerG∈ C such that{H ∈ C : G≺ H} = {C,C′}}. ThenG = C− t and, by Lemma 14,
item 1,C+ − t ∈ C . SinceG = C+ −{t,u} ≺ C+ − t thenC′ = C+ − t. SoC′ is the unique
closed set coveringG in C , i.e. G∈ M.

✷

Remark: The implication 3=⇒ 1 of Proposition 9 and Equation (11) in Corollary 8 are Theorem 2.1. in
[23]. It allows Johnson and Dean to propose an algorithm that constructs all the non-isomorphic convex
geometries on a set with cardinalityn.

Now using Condition 2 of Proposition 9, we get the following result:
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Corollary 9 Every minimal meet-irreducible closed set of a convex geometry isG-deletable.

Remark: As already said, the convex geometries are the set representations of the lower locally distribu-
tive lattices. IfLLD denotes the class of lower locally distributive lattices, an elementx of L ∈ LLD
that can be deleted fromL such thatL− x ∈ LLD has been called aLLD-deletableelement and these
elements have been characterized in [6] as follows:x is LLD if and only if it satisfies (a), (b) or (c) below:

(a) eitherx∈ JL ∩ML,

(b) orx∈ ML −JL and (x+ 6∈ JL andy≺ x imply y 6∈ ML),

(c) orx∈ JL −ML and every element coveringx is join-irreducible.

In a convex geometryC , aG-deletable closed setC is obviouslyLLD-deletable (i.e. the latticeC −{C}
is in LLD). This corresponds to the fact that this closed set satisfies Condition 2 of Proposition 9 and
conditions for beingLLD-deletable (a) or (b). On the contrary, the only case where aLLD-deletable
closed setC of a convex geometryC is G-deletable is the case whereC satisfies Condition (b) above with
C+ 6∈ JC . Indeed in this case it is obvious that it satisfies Condition 2 of Proposition 9. For the other
cases, we can consider the following examples: take on the setS= {1,2,3} the three convex geometries
C = { /0,1,12,123}, C ′ = { /0,1,2,12,123} andC ′′ = { /0,1,12,13,123}, and theLLD-deletable closed set
12 (for C andC ′) and 1 (forC ′′). ThenC − 12, C ′ − 12 andC ′′ − 1 are no longer convex geometries
whereas their associated lattices are still lower locally distributive.

Finally Propositions 8 and 9 above allow us to characterize the covering relation of the latticeG+:

Theorem 5 Let C andC ′ be two convex geometries on S. The following conditions are equivalent:

1. C ≺ C ′,

2. C ′ = C ∪ (C−u) with C∈ C , u∈C−exC and for every t∈ exC, u∈ ex(C− t),

3. C ′ = C ∪ (C−u) with C∈ C , u∈C−exC and for every G≺C, u∈ exG,

4. C = C ′−{C′} with C′ ∈ MC ′ and for every G≺C′, G 6∈ MC ′ .

The following result characterizes the arrow relations onJG+ ×MG+ and the dependence relationδ on
JG+ . We recall that the atoms ofG+ are thenlinear topologies associated with thenlinear orders onSand
we writeCx1...xi ...xn such a linear topology. Then the non empty closed sets ofCx1...xi ...xn are then ideals
{xi . . .xn} of the linear orderx1 > .. . > xi > .. . > xn and we denote by[xi) such an ideal.

Proposition 10 Let Cx1x2...xn be a join-irreducible element andCA,xi (A ⊆ S, xi 6∈ A) a meet-irreducible
element ofG+. The following holds:

1. Cx1x2...xn ↓ CA,xi if and only ifCx1x2...xn 6⊆ CA,xi if and only if A⊆ [xi+1).

2. Cx1x2...xn ↑ CA,xi if and only ifCx1x2...xn l CA,xi if and only if A= [xi+1).

3. ∀Cx1x2...xn,Cy1y2...yn ∈ JG+ , (Cx1x2...xnδCy1y2...yn ⇐⇒ y1 6= xn).
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Proof:

1. The first assertion is true sinceG+ is atomistic and the second one holds since we haveX 6∈ CA,xi if
and only ifX ∈ [A,S−xi ].

2. The fact thatCx1x2...xn ↑ CA,xi is equivalent toCx1x2...xn l CA,xi comes from the fact thatCx1x2...xn

is an atom. SoCx1x2...xn ↑ CA,xi implies Cx1x2...xn ↓ CA,xi and soA ⊆ [xi+1). Recall thatCA,xi is
covered inG+ by C +

A,xi
= CA,xi +{A} (Theorem 4, item 3) and thatCx1x2...xn ↑ CA,xi is equivalent to

Cx1x2...xn ∨CA,xi = C +
A,xi

= CA,xi +{A}. Assume thatA⊂ [xi+1). Sincexi 6∈ [xi+1), [xi+1) 6∈ CA,xi . But
[xi+1) ∈ Cx1x2...xn implies[xi+1) ∈ Cx1x2...xn ∨CA,xi = CA,xi +{A}, a contradiction.

Conversely, ifA = [xi+1), A is the only ideal ofx1 > .. . > xn not contained inCA,xi (sinceY 6∈ CA,xi

means[xi+1)⊆Y ⊆ S−xi). Moreover, for everyX ∈ CA,xi , Z = X∩A⊆ A, soZ∈ CA,xi +{A}. Then
Cx1x2...xn ∨CA,xi = C +

A,xi
, i.e. Cx1x2...xn ↑ CA,xi .

3. =⇒: By definition, Cx1x2...xnδ Cy1y2...yn implies the existence ofCA,xi ∈ MG+ such thatCx1x2...xn ↑
CA,xi and Cy1y2...yn 6⊆ CA,xi i.e. — by items (1) and (2) — that there existsi such thatA =
[xi+1)⊆ [y j+1), with y j = xi . Theny1 6= xn (if not y1 = xn ∈A and, sincey1 > y j+1, A 6⊆ [y j+1)).

⇐=: Assumey1 6= xn and setxi = y1. Then[xi+1)⊆ [y2) and soC[xi+1),xi
satisfiesCx1x2...xn ↑ C[xi+1),xi

andCy1y2...yn 6⊆ C[xi+1),xi
.

✷

Corollary 10 The latticeG+ of all convex geometries on a set S issimple, i.e. it admits only the two
trivial congruences. In particularG+ is not subdirectly decomposable.

Proof: A result by Day [13] shows that the lattice of congruences of a latticeL is isomorphic to the lattice
of the ideals of its dependence relationδd of L (whereI is an ideal ofδd if x∈ I andyδdx imply y∈ I ).
SinceG+ is atomistic,δd = δ. But it immediately results from the above characterization ofδ in G+

thatδ admits hamiltonian cycles (take for instance then linear topologies associated to then linear orders
defined by the circular permutations of the first one). Thenδ has only two trivial ideals. ✷

Remark:

1. It has been shown in [32] that the semilatticeG of all convex geometries is isomorphic to the
semilattice of allpath-independent choice functions. So every result onG can be translated into a
result on this semilattice.

2. The setT +
0 = G ∩ M∪ is the set of allT0-topologieson S. The poset(T +

0 ,⊆) with an added
least elementminT +

0 is a lattice. Using the results of previous sections, it would be easy to derive
properties of this lattice. But since this lattice or the dual lattice of partial orders have already been
well studied, we send the reader back to [4].
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5 Conclusion
Throughout this paper we have studied several lattices of closure systems. In particular we have charac-
terized the covering relation≺ of each one of these lattices. This allows us to determine the changes that
occur in the join-irreducible elements and the meet-irreducible elements of the latticesC andC ′ when
C ≺ C ′ and when we go fromC to C ′ (or from C ′ to C ). These results have interesting consequences.
In [7], the authors have studied the set (in fact, the lattice) of all closure systems having the same poset
of join-irreducible elements (up to isomorphism). For example they have characterized the posetsP for
which the set of all ideals ofP is the only closure system havingP as poset of join-irreducible elements. It
is natural to try to consider this problem for particular closure systems. For instance, what are the posets
P such that the set of all ideals ofP is the only convex geometry havingP as poset of join-irreducible
elements? The results contained in this paper on the covering relation in the lattice of convex geometries
allow us to characterize such posets. More generally, we can provide an algorithm giving all the con-
vex geometries having the same poset of join-irreducible elements. We shall present these results in a
forthcoming paper.
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