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For graph classesP1, . . . ,Pk, Generalized Graph Coloring is the problem of deciding whether the vertex set of a
given graphG can be partitioned into subsetsV1, . . . ,Vk so thatV j induces a graph in the classP j ( j = 1,2, . . . ,k). If
P1 = · · ·= Pk is the class of edgeless graphs, then this problem coincides with the standard vertexk-COLORABILITY ,
which is known to be NP-complete for anyk ≥ 3. Recently, this result has been generalized by showing that if allPi’s
are additive hereditary, then the generalized graph coloring is NP-hard, with the only exception of bipartite graphs.
Clearly, a similar result follows when all thePi’s are co-additive.

In this paper, we study the problem where we have a mixture of additive and co-additive classes, presenting several
new results dealing both with NP-hard and polynomial-time solvable instances of the problem.
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1 Introduction
All graphs in this paper are finite, without loops and multiple edges. For a graphG we denote byV (G) and
E(G) the vertex set and the edge set ofG, respectively. ByN(v) we denote the neighborhood of a vertex
v ∈ V (G), i.e. the subset of vertices ofG adjacent tov. The subgraph ofG induced by a setU ⊆ V (G)
will be denotedG[U ]. We say that a graphG is H-free if G does not containH as an induced subgraph.
As usual,Kn andPn stand for the complete graph and chordless path onn vertices, respectively, and the
complement of a graphG is denotedG.

An isomorphism-closed class of graphs, or synonymously graph property,P is said to behereditary [2]
if G ∈ P implies G− v ∈ P for any vertexv ∈ V (G). We callP monotone if G ∈ P implies G− v ∈ P

for any vertexv ∈ V (G) and G− e ∈ P for any edgee ∈ E(G). This terminology has been used by
other authors too, but it is not standard; in particular, some papers use ”hereditary” for the properties that
we call ”monotone”. Clearly every monotone property is hereditary, but the converse statement is not
true in general. A propertyP is additive if G1 ∈ P andG2 ∈ P with V (G1)∩V (G2) = /0 implies G =
(V (G1)∪V (G2),E(G1)∪E(G2)) ∈ P . The class of graphs containing no induced subgraphs isomorphic
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to graphs in a setY will be denotedFree(Y ). It is well known that a class of graphsP is hereditary if and
only if P = Free(Y ) for some setY .

A property is said to be non-trivial if it contains at least one, but not all graphs. Thecomplementary
property of P is P := {G |G∈P}. Note thatP is hereditary if and only ifP is. So aco-additive hereditary
property, i.e. the complement of an additive hereditary property, is itself hereditary.

Let P1, . . . ,Pk be graph properties withk > 1. A graphG = (V,E) is (P1, . . . , Pk)-colorable if there is a
partition(V1, . . . ,Vk) of V (G) such thatG[Vj] ∈ P j for eachj = 1, . . . ,k. The problem of recognizing(P1,

. . . , Pk)-colorable graphs is usually referred to as Generalized Graph Coloring [8]. WhenP1 = · · · = Pk

is the classO of edgeless graphs, this problem coincides with the standardk-COLORABILITY , which is
known to be NP-complete fork ≥ 3. Generalized Graph Coloring remains difficult for many other cases.
For example, Cai and Corneil [10] showed that (Free(Kn),Free(Km))-coloring is NP-complete for any
integersm,n ≥ 2, with the exceptionm = n = 2. Important NP-completeness results were obtained by
Brown [8] and Achlioptas [1] (when thePi’s are identical), and Kratochvı́l and Schiermeyer [18] (when
the Pi’s may be different) (see [2] for more results on this topic). These lead to the following recent
generalization [11]:

Theorem 1 If P1, . . . ,Pk (k > 1) are additive hereditary properties of graphs, then the problem of rec-
ognizing (P1, . . . , Pk)-colorable graphs is NP-hard, unless k = 2 and P1 = P2 is the class of edgeless
graphs.

Clearly, a similar result follows for co-additive properties. In the present paper we focus on the case
where we have a mixture of additive and co-additive properties.

The product of graph propertiesP1, . . . ,Pk is P1 ◦ · · · ◦ Pk := {G | G is (P1, . . . ,Pk)-colorable}. A
property isreducible if it is the product of two other properties, otherwise it isirreducible [3]. It can be
easily checked that the product of additive hereditary (or monotone) properties is again additive hereditary
(respectively, monotone); and thatP1◦ · · · ◦Pk = P1 ◦ · · · ◦Pk. So, without loss of generality we shall
restrict our study to the casek = 2 and shall denote throughout the paper an additive property byP

and co-additive byQ . We will refer to the problem of recognizing(P ,Q )-colorable graphs as(P ◦Q )-
RECOGNITION.

The plan of the paper is as follows. In Section 2, we show that(P ◦Q )-RECOGNITIONcannot be simpler
thanP - or Q -RECOGNITION. In particular, we prove that(P ◦Q )-RECOGNITION is NP-hard whenever
P - or Q -RECOGNITION is NP-hard. Then, in Section 3, we study the problem under the assumption
that bothP - andQ -RECOGNITION are polynomial-time solvable and present infinitely many classes of
(P ,Q )-colorable graphs with polynomial recognition time. These two results together give a complete
answer to the question of complexity of(P ◦Q )-RECOGNITION whenP andQ are additive monotone.
WhenP andQ are additive hereditary (but not both monotone), there remains an unexplored gap that we
discuss in the concluding section of the paper.

2 NP-hardness
In this section we prove that ifP -RECOGNITION (or Q -RECOGNITION) is NP-hard, then so is(P ◦Q )-
RECOGNITION. This is a direct consequence of the theorem below. In this theorem we use uniquely
colorable graphs, which are often a crucial tool in proving coloring results.

A graphG is uniquely (P1, . . . ,Pk)-colorable if (V1, . . . ,Vk) is its only(P1, . . . ,Pk)-partition, up to some
permutation of theVi’s. If, say,P1 = P2, then(V2,V1,V3,. . .,Vk) will also be a(P1,P2,P3, . . . ,Pk)-coloring
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of G; such a permutation (ofVi’s that correspond to equal properties) is atrivial interchange. A graph
is strongly uniquely (P1, . . . ,Pk)-colorable if (V1, . . . ,Vk) is the only(P1, . . . ,Pk)-coloring, up to trivial
interchanges.

WhenP1, . . . ,Pk are irreducible hereditary properties, and eachPi is either additive or co-additive, there
is a strongly uniquely(P1, . . . ,Pk)-colorable graph with eachVi non-empty. This important construction,
for additivePi’s, is due to Mih́ok [20], with some embellishments by Broere and Bucko [6]. The proof
that these graphs are actually uniquely colorable follows from [7], [14, Thm. 5.3] or [13]. Obviously,
similar results apply to co-additive properties. The generalization to mixtures of additive and co-additive
properties can be found in [12, Cor. 4.3.6, Thm. 5.3.2]. For irreducible additive monotone properties,
there is a much simpler proof of the existence of uniquely colorable graphs [21].

Theorem 2 Let P and Q be additive hereditary properties. Then there is a polynomial-time reduction
from P -RECOGNITION to (P ◦Q )-RECOGNITION.

Proof. Let P = P1 ◦ · · · ◦ Pn and Q = Q1 ◦ · · · ◦ Qr, where thePi’s and Q j ’s are the irreducible ad-
ditive hereditary factors whose existence is guaranteed by the unique factorization theorem [20, 13].
As noted above, there is a strongly uniquely(P1, . . . ,Pn,Q1, . . . ,Qr)-colorable graphH with partition
(U1, . . . ,Un,W1, . . . , Wr), where eachUi andWj is non-empty. DefineU := U1 ∪ ·· · ∪Un andW :=
W1∪ ·· · ∪Wr. Arbitrarily fix a vertexu ∈ U1, and defineNW (u) := N(u)∩W . For any graphG, let the
graphGH consist of disjoint copies ofG andH, together with edges{vw | v ∈ V (G),w ∈ NW (u)}. We
claim thatGH ∈ P ◦Q if and only if G ∈ P .

G

u

H[W ]H[U ]

Fig. 1: UsingH to constructGH .

If G ∈ P , then, by additivity,G ∪ H[U ] is in P , and thusGH is in P ◦ Q . Conversely, suppose
GH ∈ P ◦Q , i.e. it has a(P1, . . . ,Pn,Q1, . . . ,Qr)-partition, say(X1, . . . ,Xn,Y1, . . . ,Yr). SinceH is strongly
uniquely partitionable, we can assume that, for 1≤ i ≤ r, Yi ∩V (H) = Wi. Now, suppose for contradic-
tion that, for somek, there is a vertexv ∈ V (G) such thatv ∈ Yk; without loss of generality, letk = r.
Then GH [Wr ∪ {v}] ∼= H[Wr ∪ {u}] is in Qr, so (U1 \ {u},U2, . . . ,Un,W1, . . . ,Wr−1,Wr ∪ {u}) is a new
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(P1, . . . ,Pn,Q1, . . . ,Qr)-partition ofH, which is impossible. Thus,V (G)⊆ X1∪·· ·∪Xn, and henceG ∈ P ,
as claimed.

SinceH is a fixed graph,GH can be constructed in time linear in|V (G)|, so the theorem is proved.✷

3 Polynomial time results
Lemma 1 For any P ⊆ Free(Kn) and Q ⊆ Free(Km), there exists a constant τ = τ(P ,Q ) such that for
every graph G = (V,E) ∈ P ◦Q and every subset B ⊆ V with G[B] ∈ P , at least one of the following
statements holds:

(a) there is a subset A ⊆V such that G[A] ∈ P , G[V −A] ∈ Q , and |A−B| ≤ τ,

(b) there is a subset C ⊆V such that G[C] ∈ P , |C| = |B|+1, and |B−C| ≤ τ.

Proof. By the Ramsey Theorem [17], for each positive integersm andn, there is a constantR(m,n) such
that every graph with more thanR(m,n) vertices contains either aKm or aKn as an induced subgraph. For
two classesP ⊆ Free(Kn) andQ ⊆ Free(Km), we defineτ = τ(P ,Q ) to be equalR(m,n). Let us show
that with this definition the proposition follows.

Let G = (V,E) be a graph inP ◦Q , andB a subset ofV such thatG[B] ∈ P . Consider an arbitrary
subsetA ⊆V such thatG[A] ∈ P andG[V −A] ∈ Q . If (a) does not hold, then|A−B| > τ. Furthermore,
G[B−A]∈ P ∩Q ⊆ Free(Kn,Km), and hence|B−A| ≤ τ. Therefore,|A|> |B|. But then any subsetC ⊆ A
such thatA∩B ⊆C and|C| = |B|+1 satisfies (b). ✷

Lemma 1 suggests the following recognition algorithm for graphs in the classP ◦Q .

Algorithm A

Input: A graphG = (V,E).
Output: YES if G ∈ P ◦Q , or NO otherwise.

(1) Find inG any inclusion-wise maximal subsetB ⊆V inducing aKn-free graph.

(2) If there is a subsetC ⊆V satisfying condition (b) of Lemma 1,
then setB := C and repeat Step (2).

(3) If G contains a subsetA ⊆V such that

|B−A| ≤ τ,

|A−B| ≤ τ,

G[A] ∈ P ,

G[V −A] ∈ Q ,

outputYES, otherwise outputNO.

Theorem 3 If graphs on p vertices in a class P ⊆ Free(Kn) can be recognized in time O(pk) and graphs
in a class Q ⊆ Free(Km) can be recognized in time O(pl), then Algorithm A recognizes graphs on p
vertices in the class P ◦Q in time O(p2τ+max{(k+2),max{k,l}}), where τ = τ(P ,Q ).
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Proof. Correctness of the algorithm follows from Lemma 1. Now let us estimate its time complexity.
In Step (2), the algorithm examines at most

(p
τ
)( p

τ+1

)

subsetsC and for each of them verifies whether
G[C] ∈ P in time O(pk). Since Step (2) loops at mostp times, its time complexity isO(p2τ+k+2). In Step
(3), the algorithm examines at most

(p
τ
)

2 subsetsA, and for eachA, it verifies whetherG[A] ∈ P in time
O(pk) and whetherG[V −A]∈Q in timeO(pl). Summarizing, we conclude that the total time complexity
of the algorithm isO(p2τ+max{(k+2),max{k,l}}). ✷

Notice that Theorem 3 generalizes several positive results on the topic under consideration. For in-
stance, the split graphs [16], which are (Free(K2),Free(K2))-colorable by definition, can be recognized in
polynomial time. More general classes have been studied under the name of polar graphs in [9, 19, 22].
By definition, a graph is(m− 1,n− 1) polar if it is (P ,Q )-colorable withP = Free(Kn,P3) andQ =
Free(Km,P3). It is shown in [19] that for any particular values ofm ≥ 2 andn ≥ 2, (m−1,n−1) polar
graphs onp vertices can be recognized in timeO(p2m+2n+3).

Further examples generalizing the split graphs were examined in [4] and [15], where the authors showed
that classes of graphs partitionable into at most two independent sets and two cliques can be recognized
in polynomial time. These are special cases of(P ◦Q )-RECOGNITION with P ⊆ Free(K3) and Q ⊆
Free(K3).

4 Concluding results and open problems
Theorems 2 and 3 together provide complete answer to the question of complexity of(P ◦Q )-RECOGNI-
TION in case of monotone propertiesP andQ . Indeed, ifP is an additive monotone non-trivial property,
then P ⊆ Free(Kn) for a certain value ofn, since otherwise it includes all graphs. Similarly, ifQ is
additive monotone, thenQ ⊆ Free(Km) for somem. Hence, the following theorem holds.

Theorem 4 If P and Q are additive monotone properties, then (P ◦Q )-RECOGNITIONhas polynomial-
time complexity if and only if P - and Q -RECOGNITION are both polynomial-time solvable; moreover,
(P ◦Q )-RECOGNITION is in NP if and only if P - and Q -RECOGNITIONare both in NP.

If P and Q are general additive hereditary properties (not necessarily monotone), then there is an
unexplored gap containing propertiesP ◦Q , whereP andQ can both be recognized in polynomial time,
but K ⊂ P or O ⊂ Q (whereK := O is the set of cliques). In the rest of this section we show that this
gap contains both NP-hard and polynomial-time solvable instances, and propose several open problems
to study.

For a polynomial time result we refer the reader to [22], where the authors claim that(P ◦Q )-RECO-
GNITION is polynomial-time solvable ifP is the class of edgeless graphs andQ = Free(P3). Notice that
Free(P3) contains all edgeless graphs and hence Theorem 3 does not apply to this case. Interestingly
enough, when we extendP to the class of bipartite graphs, we obtain an NP-hard instance of the problem,
as the following theorem shows.

Theorem 5 If P is the class of bipartite graphs and Q = Free(P3), then (P ◦Q )-RECOGNITION is NP-
hard.

Proof. We reduce the standard 3-COLORABILITY to our problem. Consider an arbitrary graphG and let
G′ be the graph obtained fromG by adding a triangleT = (1,2,3) with no edges betweenG andT . We
claim thatG is 3-colorable if and only ifG′ is (P ,Q )-colorable.
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First, assume thatG is 3-colorable and letV1,V2,V3 be a partition ofV (G) into three independent sets.
We defineV ′

j = Vj ∪{ j} for j = 1,2,3. ThenG′[V ′
1∪V ′

2] is a bipartite graph andG′[V ′
3] ∈ Free(P3), and

the proposition follows.
Conversely, letU ∪W be a partition ofV (G′) with G′[U ] being a bipartite graph andG′[W ] ∈ Free(P3).

Clearly,T * U . If T −U contains a single vertex, thenG′[W −T ] is an edgeless graph, since otherwise a
P3 arises. IfT −U contains more than one vertex, thenW −T = /0 for the same reason. Clearly, in both
casesG is a 3-colorable graph. ✷

This discussion presents the natural question of exploring the boundary that separates polynomial from
non-polynomial time solvable instances in the above-mentioned gap. As one of the smallest classes in this
gap with unknown recognition time complexity, let us point out(P ,Q )-COLORABLE graphs withP = O

andQ = Free(2K2,P4), where 2K2 is the disjoint union of two copies ofK2.
Another direction for prospective research deals with(P ,Q )-colorable graphs whereP or Q is neither

additive nor co-additive. This area seems to be almost unexplored and also contains both NP-hard and
polynomial-time solvable problems. To provide some examples, letQ be the class of complete bipartite
graphs, which is obviously neither additive nor co-additive. The class of graphs partitionable into an
independent set and a complete bipartite graph has been studied in [5] under the name of bisplit graphs
and has been shown there to be polynomial-time recognizable. Again, extension ofP to the class of all
bipartite graphs transforms the problem into an NP-hard instance.

Theorem 6 If P is the class of bipartite graphs and Q is the class of complete bipartite graphs, then
(P ◦Q )-RECOGNITION is NP-hard.

Proof. The reduction is again from 3-COLORABILITY . For a graphG, we defineG′ to be the graph
obtained fromG by adding a new vertex adjacent to every vertex ofG. It is a trivial exercise to verify that
G is 3-colorable if and only ifG′ is (P ,Q )-COLORABLE. ✷
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