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For graph classe®,..., %, Generalized Graph Coloring is the problem of deciding whether the vertex set of a
given graphG can be partitioned into subsats, ..., Vi so thatv;j induces a graph in the clagy (j =1,2,...,k). If

P =--- = B is the class of edgeless graphs, then this problem coincides with the standardky@oiegRABILITY,

which is known to be NP-complete for aky> 3. Recently, this result has been generalized by showing that#f'sll

are additive hereditary, then the generalized graph coloring is NP-hard, with the only exception of bipartite graphs.
Clearly, a similar result follows when all thg’s are co-additive.

In this paper, we study the problem where we have a mixture of additive and co-additive classes, presenting several
new results dealing both with NP-hard and polynomial-time solvable instances of the problem.
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1 Introduction

All graphs in this paper are finite, without loops and multiple edges. For a @apidenote by (G) and
E(G) the vertex set and the edge seGfrespectively. ByN(v) we denote the neighborhood of a vertex
veV(G), i.e. the subset of vertices & adjacent tos. The subgraph o6 induced by a sét) C V(G)
will be denotedG[U]. We say that a grap® is H-free if G does not contaill as an induced subgraph.
As usual K, andPR, stand for the complete graph and chordless path wertices, respectively, and the
complement of a grap@ is denoteds.

An isomorphism-closed class of graphs, or synonymously graph progedgaid to behereditary [2]
if Ge P impliesG—v e P for any vertexv € V(G). We call’? monotone if G € ? impliesG—ve P
for any vertexv € V(G) andG — e € P for any edgee € E(G). This terminology has been used by
other authors too, but it is not standard; in particular, some papers use "hereditary” for the properties that
we call "monotone”. Clearly every monotone property is hereditary, but the converse statement is not
true in general. A propertg is additive if G € P andG; € P with V(G1) NV (G,) = 0 implies G =
(V(G1) UV (Gyp),E(G1) UE(Gp)) € P. The class of graphs containing no induced subgraphs isomorphic

1365-805QC) 2004 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France


http://dmtcs.loria.fr/
http://dmtcs.loria.fr/volumes/

216 Vladimir E. Alekseev and Alastair Farrugia and Vadim V. Lozin

to graphs in a set will be denotedrree(Y). Itis well known that a class of graplsis hereditary if and
only if 7 = Free(Y) for some se.

A property is said to be non-trivial if it contains at least one, but not all graphs.caimplementary
property of P is P := {G| G € P}. Note that? is hereditary if and only i? is. So aco-additive hereditary
property, i.e. the complement of an additive hereditary property, is itself hereditary.

LetP,..., B be graph properties with> 1. A graphG = (V,E) is (P4, ..., %)-colorableif there is a
partition Vs, ..., Vk) of V(G) such thatG|V;] € ¢ for eachj = 1,... k. The problem of recognizingPy,

..., B)-colorable graphs is usually referred to as Generalized Graph Colofing [8]. When-- = B

is the class0 of edgeless graphs, this problem coincides with the standa@LORABILITY, which is
known to be NP-complete fde> 3. Generalized Graph Coloring remains difficult for many other cases.
For example, Cai and Corneil [10] showed thBtde(Kn),Free(Km))-coloring is NP-complete for any
integersm,n > 2, with the exceptioom=n = 2. Important NP-completeness results were obtained by
Brown [8] and Achlioptasl[il] (when th&’s are identical), and Kratocfivand Schiermeyel [18] (when

the B’s may be different) (see [2] for more results on this topic). These lead to the following recent
generalization [11]:

Theorem 1 If Py,..., % (k> 1) are additive hereditary properties of graphs, then the problem of rec-
ognizing (P, ..., %)-colorable graphs is NP-hard, unless k = 2 and P, = P, is the class of edgeless

graphs.

Clearly, a similar result follows for co-additive properties. In the present paper we focus on the case
where we have a mixture of additive and co-additive properties.

The product of graph propertie®,..., % is Pro---o B :={G |G is (P,...,%)-colorablg. A
property isreducible if it is the product of two other properties, otherwise ifiseducible [3]. It can be
easily checked that the product of additive hereditary (or monotone) properties is again additive hereditary
(respectively, monotone); and th@ o---o P = Pyo---o B. So, without loss of generality we shall
restrict our study to the cade= 2 and shall denote throughout the paper an additive propert by
and co-additive byQ. We will refer to the problem of recognizin@, Q )-colorable graphs agP o Q )-
RECOGNITION

The plan of the paper is as follows. In Sec@n 2, we show(tHatQ )-RECOGNITIONcannot be simpler
than?- or Q-RECOGNITION In particular, we prove that? o Q )-RECOGNITION IS NP-hard whenever
P- or Q-RECOGNITION is NP-hard. Then, in Sectidr 3, we study the problem under the assumption
that both?- and Q-RECOGNITION are polynomial-time solvable and present infinitely many classes of
(, Q)-colorable graphs with polynomial recognition time. These two results together give a complete
answer to the question of complexity @P o Q)-RECOGNITIONwhen? and Q are additive monotone.
When? andQ are additive hereditary (but not both monotone), there remains an unexplored gap that we
discuss in the concluding section of the paper.

2 NP-hardness

In this section we prove that {P-RECOGNITION (or Q-RECOGNITION) is NP-hard, then so i€Po Q)-
RECOGNITION This is a direct consequence of the theorem below. In this theorem we use uniquely
colorable graphs, which are often a crucial tool in proving coloring results.

A graphGis uniquely (P4, ...,H)-colorableif (Vi,...,Vk) isits only (2, ..., B)-partition, up to some
permutation of th&/’s. If, say, Py = P, then(V,,V1,Vs,. .., V) will also be a(P1, P, Ps, . .., B )-coloring
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of G; such a permutation (ofi’s that correspond to equal properties) itri@ial interchange. A graph
is strongly uniquely (?x,...,H)-colorable if (Vi,...,Vk) is the only(s,...,H)-coloring, up to trivial
interchanges.

When?, ..., % are irreducible hereditary properties, and e&cis either additive or co-additive, there
is a strongly uniquely?;, ..., %)-colorable graph with eaclf non-empty. This important construction,
for additive Z’s, is due to Mitok [20], with some embellishments by Broere and Bucko [6]. The proof
that these graphs are actually uniquely colorable follows fidm [7]] [14, Thm. 5.8] or [13]. Obviously,
similar results apply to co-additive properties. The generalization to mixtures of additive and co-additive
properties can be found in [12, Cor. 4.3.6, Thm. 5.3.2]. For irreducible additive monotone properties,
there is a much simpler proof of the existence of uniquely colorable graphs [21].

Theorem 2 Let P and Q be additive hereditary properties. Then there is a polynomial-time reduction
from P-RECOGNITIONtO (P o Q)-RECOGNITION

Proof. Let P =Pio0---0oPy,andQ = Qyo---0 Q;, where the®’s and Qj’s are the irreducible ad-

ditive hereditary factors whose existence is guaranteed by the unique factorization thedrém [20, 13].
As noted above, there is a strongly uniqué,..., %, Q,...,Q)-colorable graptH with partition
(Ug,...,Un, Wi, ..., W), where eaclJ; andW, is non-empty. DefindJ :=U;U---UU, andW :=

Wi U---UW. Arbitrarily fix a vertexu € U, and defineNw (u) := N(u) "W. For any graplG, let the
graphGy consist of disjoint copies & andH, together with edge$vw | v e V(G),w € Nw(u)}. We

claim thatGy € Po Q. ifand only if G € P.

H[U] HW]

Fig. 1: UsingH to construcGy .

If G e P, then, by additivity, GUHI[U] is in 2, and thusGy is in Po Q. Conversely, suppose
Gy € PoQ,i.e.ithasdP,..., B, Q,...,Q)-partition, say(Xi,...,Xn,Y1,...,Yr). SinceH is strongly
uniquely partitionable, we can assume that, fot L<r, NV (H) =W. Now, suppose for contradic-
tion that, for somek, there is a vertex € V(G) such thatv € Y,; without loss of generality, let =r.
Then Gy W U {v}] 2 HW U {u}] is in @, so (U1 \{u},Us,...,Un,Wi,.... W_1,W U {u}) is a new
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(P,..., P, Q,...,Q)-partition ofH, which is impossible. Thu§/(G) C X U---UX,, and henc& € P,

as claimed.
SinceH is a fixed graphGy can be constructed in time linear|M(G)|, so the theorem is proved D

3 Polynomial time results

Lemmal For any P C Free(Kp) and Q C Free(Kp), there exists a constant T = 1(?, Q) such that for
every graph G = (V,E) € Po Q and every subset B C V with G[B] € 2, at least one of the following
statements holds:

(a) thereisasubset ACV suchthat G[Al € 2, GV —Aj € Q,and |A—B| <T,
(b) thereisasubset C CV suchthat G|C] € 7, |C|=|B|+1,and | B—C| <T.

Proof. By the Ramsey Theorem [117], for each positive integeendn, there is a constaR(m, n) such
that every graph with more thd{(m, n) vertices contains eitheré, or aK, as an induced subgraph. For
two classe® C Free(Kn) andQ C Free(Kn), we definet = 1(2, Q) to be equaR(m,n). Let us show
that with this definition the proposition follows.

Let G = (V,E) be a graph in? o Q, andB a subset oV such thatG[B] € . Consider an arbitrary
subsetA C 'V such thatG[A] € ? andG[V — A] € Q. If (a) does not hold, thefA— B| > 1. Furthermore,
G[B—A] € PN Q C Free(K,,Kn), and hencégB — A| < 1. Therefore|A| > |B|. But then any subs&@ C A
such thatAnB C C and|C| = |B| + 1 satisfies (b). O

Lemmd ] suggests the following recognition algorithm for graphs in the ¢las3.
Algorithm 4

Input: A graphG = (V,E).
Output: YESIif G e Po Q, or NO otherwise.

(1) Find inG any inclusion-wise maximal subsBtC V inducing aK,-free graph.

(2) Ifthere is a subs& C V satisfying condition (b) of Lemn(d 1,
then seB := C and repeat Step (2).

(3) If G contains a subsé&t C V such that
IB—Al <T,
|A—B| <T,
G[A] € 2,
GV-Ae€qQ,
outputYES, otherwise outpuNO.

Theorem 3 If graphson p verticesin a class 2 C Free(Ky) can be recognized in time O(p*) and graphs
in a class Q C Free(Kp) can be recognized in time O(p'), then Algorithm 4 recognizes graphs on p
verticesin the class P o Q in time O(p? +Mad(k+2).maxtki}}) ‘wheret = 1(P, Q).
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Proof. Correctness of the algorithm follows from Lemifria 1. Now let us estimate its time complexity.
In Step (2), the algorithm examines at m¢Sj (,P;) subset<C and for each of them verifies whether
G[C] € ? in time O(p¥). Since Step (2) loops at mogtimes, its time complexity i©(p?t%+2). In Step

(3), the algorithm examines at mag)? subsetsA, and for eacld, it verifies whethelG[A] € 2 in time
O(p¥) and whetheG[V — A] € Q intime O(p'). Summarizing, we conclude that the total time complexity

of the algorithm isO(p?ttmax{(k+2).maxtki}}) o

Notice that Theorerf1|3 generalizes several positive results on the topic under consideration. For in-
stance, the split graphs [16], which aFeée(Ky),Free(K;))-colorable by definition, can be recognized in
polynomial time. More general classes have been studied under the name of polar graphslin |9, 19, 22].
By definition, a graph igm—1,n— 1) polar if it is (?, Q)-colorable with®? = Free(K,,P3) andQ =
Free(Km,P3). It is shown in[19] that for any particular values wf> 2 andn > 2, (m—1,n— 1) polar
graphs orp vertices can be recognized in tirdg p?™2+3),

Further examples generalizing the split graphs were examined in [4] and [15], where the authors showed
that classes of graphs partitionable into at most two independent sets and two cliques can be recognized
in polynomial time. These are special casegBf Q)-RECOGNITION with P C Free(Kz) and Q C
Free(K3s).

4 Concluding results and open problems

Theorem$ R anfl] 3 together provide complete answer to the question of compleixity Qf)-RECOGNF
TION in case of monotone propertigsand Q. Indeed, if? is an additive monotone non-trivial property,
then P C Free(K,) for a certain value of, since otherwise it includes all graphs. Similarly,df is

additive monotone, the@ C Free(Ky) for somem. Hence, the following theorem holds.

Theorem 4 If P and Q are additive monotone properties, then (2 o Q)-RECOGNITION has polynomial-
time complexity if and only if - and Q-RECOGNITION are both polynomial-time solvable; moreover,
(o Q)-RECOGNITIONIsIn NP if and only if P- and Q-RECOGNITIONare both in NP.

If 7 and Q are general additive hereditary properties (not necessarily monotone), then there is an
unexplored gap containing properti®s Q, where? andQ, can both be recognized in polynomial time,
but X C P or O C Q (whereX := O is the set of cliques). In the rest of this section we show that this
gap contains both NP-hard and polynomial-time solvable instances, and propose several open problems
to study.

For a polynomial time result we refer the reader td [22], where the authors claifftha® )-RECO-
GNITION is polynomial-time solvable i is the class of edgeless graphs ape- Free(P3). Notice that
Free(P3) contains all edgeless graphs and hence The@em 3 does not apply to this case. Interestingly
enough, when we exteri#ito the class of bipartite graphs, we obtain an NP-hard instance of the problem,
as the following theorem shows.

Theorem 5 If P isthe class of bipartite graphs and Q = Free(P3), then (P o Q)-RECOGNITIONis NP-
hard.

Proof. We reduce the standard@3LORABILITY to our problem. Consider an arbitrary graptand let
G’ be the graph obtained frof@ by adding a triangld = (1,2, 3) with no edges betweeB andT. We
claim thatG is 3-colorable if and only i3’ is (7, Q)-colorable.
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First, assume thds is 3-colorable and lety,V,, V3 be a partition o/ (G) into three independent sets.
We definev/ = VjU{j} for j = 1,2,3. ThenG'[V; UV,] is a bipartite graph an@'[V;] € Free(Ps), and
the proposition follows.

Conversely, leU UW be a partition o¥/ (G') with G'[U] being a bipartite graph ar@ |W] € Free(Ps).
Clearly, T Z U. If T —U contains a single vertex, th&{|W — T] is an edgeless graph, since otherwise a
P3 arises. IfT —U contains more than one vertex, théh— T = 0 for the same reason. Clearly, in both
casess is a 3-colorable graph. O

This discussion presents the natural question of exploring the boundary that separates polynomial from
non-polynomial time solvable instances in the above-mentioned gap. As one of the smallest classes in this
gap with unknown recognition time complexity, let us point @t Q )-COLORABLE graphs with? = O
andQ = Free(2Ky,P,), where X is the disjoint union of two copies ¢f,.

Another direction for prospective research deals #hQ )-colorable graphs wher® or Q is neither
additive nor co-additive. This area seems to be almost unexplored and also contains both NP-hard and
polynomial-time solvable problems. To provide some examples) Ibe the class of complete bipartite
graphs, which is obviously neither additive nor co-additive. The class of graphs partitionable into an
independent set and a complete bipartite graph has been studied in [5] under the name of bisplit graphs
and has been shown there to be polynomial-time recognizable. Again, extensiaio die class of all
bipartite graphs transforms the problem into an NP-hard instance.

Theorem 6 If P is the class of bipartite graphs and Q is the class of complete bipartite graphs, then
(o Q)-RECOGNITIONiIS NP-hard.

Proof. The reduction is again from 80LORABILITY. For a graphG, we defineG’ to be the graph
obtained fronG by adding a new vertex adjacent to every verteoft is a trivial exercise to verify that
G is 3-colorable if and only i’ is (P, Q )-COLORABLE. O
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