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Let G be a graph. A component & is a maximal connected subgraphGn A vertexv is a cut vertex ofS if K(G —

V) > K(G), wherek(G) is the number of components @ Similarly, an edge is a bridge ofG if k(G —e) > k(G).

In this paper, we will propose ne@(n) algorithms for finding cut vertices and bridges of a trapezoid graph, assuming
the trapezoid diagram is given. Our algorithms can be easily parallelized on the EREW PRAM computational model
so that cut vertices and bridges can be foun@(fogn) time by usingp(%) processors.
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1 Introduction

Let G = (V,E) be a graph with vertex s&t and edge seE. A graphH = (V',E’) is asubgraphof G if

V/ CV andE’ CE. If H is a maximal connected subgraph, théis acomponentf G. LetG—v,veV,

be the graph obtained by deletin@nd all edges incident tofrom G. A vertexv is called acut vertexof

Gif K(G—V) > K(G), wherek(G) is the number of components @ Similarly, letG—e, ec E, be the
graph obtained by deletingfrom G, and an edge is abridgeof G if K(G—e) > K(G).

The class of trapezoid graphs is introduced by Dagan etlal. [4] and independently by Corneil et al.
[3]. Itis a superclass of interval graphs and permutation graphs. A trapezoid @reguin be represented
by a trapezoid diagram. In the diagram, a trapezadgldefined by four corner poing, b;, ¢, andd;,
which stand for the upper left, the upper right, the lower left, and the lower right cormgrespectively.
We assume that trapezoids are labeled in increasing order obtheiner points. Each trapezoid in the
diagram corresponds to a distinct vertex&fand(i, j) is an edge o6 if and only if trapezoid intersects
trapezoidj in the diagram. Figurig] 1 shows an example of a trapezoid graph.
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Fig. 1: Atrapezoid graph and the corresponding diagram.

A trapezoid graph can be recognizedd(n?) time by Ma and Spinrad’s algorithrn|[8]. Applying their
algorithm, the corresponding trapezoid diagram can be constructed. It is easy to see that for any three
verticesi, j, andk of a trapezoid graph, where< j <k, if i is adjacent tk, thenj is adjacent to or k.
Generally, the input for a trapezoid graphQgn), according to the number of vertices. The number of
edges could be more, but it is generally not an issue for algorithms in this class of graphs.

The problem of finding cut vertices and bridges on graphs is well-known. It can be solved sequentially
in O(n+ m) time by a depth-first search algorithin [10], wherés the number of vertices and the
number of edges. Parallel algorithms for this problem on general graphs can be foundlin/ [11, 12]. If
we restrict ourselves to special types of graphs, the complexity of finding cut vertices and bridges can
be reduced. For example, inl [9], Sprague et al. presented optimal parallel algorithms for this problem
on interval graphs. The complexity of their algorithmsdfogn) time usingO( processors on the
EREW PRAM computational model if the endpoints of intervals are sorted. %ptlmal parallel algorithms
for finding cut vertices and bridges on permutation graphs were proposed by Arvind_ét al. [1], which also
takeO(logn) time with O(Iogn) processors on the EREW PRAM model.

An O(n) time algorithm for the depth-first search on trapezoid graphs was proposed by Chen et al.
[2], but they did not describe the way to find cut vertices. Recently, Hota et al. have presented optimal
sequential and parallel algorithms to compute all cut vertices on trapezoid graphs [5]. The complexities
of their algorithms ar®(n) time for sequential computation a@{logn) time with O( |0gn) processors
on the EREW PRAM model for parallel computation. However, their algorithms are not simple because
they recognize a cut vertex by many types of connectivity. Moreover, they did not address how to find
bridges by cut vertices. In this paper, we propose a sim(ej algorithm for finding cut vertices and
the firstO(n) algorithm for finding bridges on a trapezoid graph, assuming the trapezoid diagram is given.
Our algorithms can be easily parallelized on the EREW PRAM model so that cut vertices and bridges can
be found inO(logn) time by usmgO(IO =) processors. The algorithms on this paper use the properties of
vertex adjacency instead of the corner points. These properties are new and interesting.

The rest of this paper is organized as follows. In Se¢fjon 2, we introduce an easy way to find a dominat-
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ing path of a trapezoid graph. In Secti¢is 3 hd 4, the algorithms of finding cut vertices and bridges are
presented respectively. The parallelization of our algorithms is shown in Sgttion 5. Finally, in $éction 6,
we give the concluding remarks of this paper.

2 Preliminaries

Let G be a connected trapezoid graphnofertices which are labeled by2, - -- 'nin increasing order of
their b corner points. A patt of G is adominating pathf every vertexv of G, v ¢ P, is adjacent to at
least one vertex dP. It is obvious that any vertex ¢ P is not a cut vertex since grafgh— v remains
connected. There may be many different dominating pattls and the minimum dominating path can be
found inO(n) time by Kdhler's algorithm[[7]. However, for a trapezoid graph, a path connecting vertices
1 andnis also a dominating path. We call such a pathi,a)-path The following describes an easy way
to find a(1, n)-path.

Letv be a vertex of5. Themaximal neighbo(minimal neighboyrespectively) of, denoted bNmax(V]
(Nmin[V], respectively), is the vertex iN[v] with the maximal label (minimal label, respectively), where
N[v] is the set of vertices adjacenti@ndyv itself. To determindNmax[V], we need to scaa andc corner
points from left to right respectively on the trapezoid diagram. Xy, respectively) be the maximal
label ofa (c, respectively) corner point left to, (dy, respectively), theNmax[V] = max{Xy, yv}. Similarly,
we can determinBlyin[v] by scanning andd corner points from right to left respectively on the trapezoid
diagram then choosing the minimal label among those whased corner points are right ta, or c,.
For example, in Figurg]1, the maximal labela€orner point left tabs is 5, and the maximal label af
corner point left tods is 6. Then,Nmax[5] = max{5,6} = 6. Moreover,Nmin[5] = min{4,1} = 1 since
the minimal label ob corner point right taas is 4 and the minimal label ad corner point right tacs is
1. Trivially, all maximal and minimal neighbors can be determine®{n) time if we record each latest
maximal label and minimal label respectively during our scanning.

For any vertexv of G, the superior pairof v, denoted byA,, is the pair[i,Nmax[i]] such thati =
max{ j|Nmax[j] = Max{Nmax[1], Nmax[2], -, Nmax[V]},1 < j < v}. A (1,n)-path can be constructed by
some or all superior pairs, and a superior pair on(the)-path is called alominating pacé€DP). Let
[li,ri] be a dominating padeR,. The dominating paces @ can be determined by the following manner:

Step 1. LeDP;, = [l]_,l’]_] =Aj;and leti = 1.

Step 2. Whiler; # n, do loop: leti =i+1 andDPR, = [l;,ri] = Ay, _,.
In the example of Figur@] 1, the dominating pacesife= A; = [1,5], DP, = As = [4,8], DPs = Ag =
[8,9], andDP; = Ag = [9,10] as shown in Tablg]|1.
Suppose there ade dominating paces its. With verticesly,rq,l2,r2,--- Ik, rk, we can construct a
(1,n)-path, denoted blj-ri-lo-ro-.. .-lx-rx. Note that ifr; = i1, 1 <i < k-1, we omit one of; andl; 1.
The correctness of our method to findlan)-path can be proved as follows.

Lemmal Let[lj,ri] and[li+1,ri+1], 1 <i<k-—1, be two consecutive dominating paces; K1, then
ri must be adjacent tg.l;.

Proof. Assume to the contrary that £ |;1 andr; is not adjacent td; ;. Sincer; # li11, we obtain
li;1 < ri according to Stejp|2. Moreover, singe; < ri < riy1 andr; is not adjacent th 1, verticesr; and
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Tab. 1: The process of determining the dominating paces.

vertexi 1 2 3 4 5 6 7 8 9 10
Nmax{i] 5| 26| 8]6|6]8[]9] 10| 10
Niminli] 1| 114134 a] 8 9
(i, Nmaxi]] 15/22/36|48|56|66/| 7889|910 10,10
A 15(15|36(48|48|48)| 78|89 910/ 10,10
dominating paces 1,5 4.8 8,91 9,10

ri+1 are adjacent. By the definition of a superior piri+1] is a superior pair and is the next dominating
pace offli,ri]. Itis a contradiction. O
Lemma?2 A (1,n)-path can be constructed by verticesrh,lo,ro, ..., Ik, rk.

Proof. Itis clear that, = 1 andry = n by Step$ [l and]2. By definitions, we hdve: |; 1 andr; < ri;1
andl; is adjacent ta;.

Case 1.ri =ljyqforalli, 1<i<k-—1. Then,li-ri-lo-ro-.. .-lg-rg is the same ak-lo-. . .-lg-ry, which is
trivially a (1, n)-path.

Case 2.rj #li;1 for somei, 1 <i <k—1. By Lemma 1r; is adjacent tdi 1. Sincel; < li;1 andrj <ri,1,
there is no cycle ithy-ri-lo-ro-.. .-l-r, and it is a(1, n)-path.

d

The(1,n)-path in our example is 1-5-4-8-9-10. It is easy to see thatth®-path can be found i®(n)
time. We will use the dominating paces to find cut vertices and bridges in the following sections. For the
sake of computational boundary, we add two dummy dominating [2®es [0, 1] andDP, 1 = [n,n+1].

3 Finding cut vertices

Cut vertices of a trapezoid graph are in the vertices of(fha)-path. However, not all vertices of the
(1,n)-path are cut vertices. We need to examine each vertex d¢fithg-path.

Let arrayS= (s1,%,-,S) be theprefix maximaof all maximal neighbors; i.es = max{Nmax{1],
Nmax[2], -, Nmaxi]} for i =1,2,--- n. Similarly, let arrayT = (t1,t,---,t,) be thesuffix minimaof all
minimal neighbors; i.etj = Min{Nmin[i],Nmin[i +1],---,Nmin[n]} for i = 1,2,---,n. From Table[]L, we
obtain arraysS= (5,5,6,8,8,8,8,9,10,10) andT = (1,1,1,1,1,3,4,4,8,9).

Observation 3 A trapezoid graph is connected if and only if
(i) s;>iforalli,i =1,2,---,n—1, and

(i) ti<iforalli,i =2,3,---,n.

Observation 4 A trapezoid graph is disconnected if and only if

(i) si=iforsomeil<i<n-—1,and
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(i) ti=iforsomei2<i<n.

Assume trapezoid graghis connected. Le§, = (S,,S,, -, S,) be the prefix maxima of aly,qi], i =
1,2,---,n, whereN,,,[i] = i if i = vandNy,,]i] = Nmax{i] otherwise. Obviously, i, s = foralli < v
ands, =s, ; =S, 1. For exampleS, = (5,5,6,6,6,6,8,9,10,10) sinceN,,,/4] = 4. We will useS, to
determine ifvis a cut vertex.

Lemma5 Let]l;,ri], 2 <i <k, be a dominating pace of G. Then, verteisla cut vertex if and only if
there exists some \,£ v<lj;1 —1, such thaté: vin§,.

Proof. SinceNyJli] =i in S;. vertexl; is assumed to be adjacent to vertices whose labels are not greater
thanl;. We denote the new graph b‘;? By ObservatiorE]& we knowf, >vin §; forallv, 1<v<Ii—1.
Moreover, | 1-ri11-lii2-Ti12-. . .-lk-n is a path connecting verticdés 1 andn. Vertices fromlj 1 to n are
connected, ane{, >vin §; forall v, liz1 <v<n-—1. Thus, if there exists someg |; <v <lj11—1,

such thas, = vin S, thenG ' is disconnected. It means that the removal of edtes), I; < x, makesG
disconnected, anklis certainly a cut vertex.

For the other part of the proof, sintés a cut vertex —I; is disconnected. Sinde< ri_; and 1¥1-l»-
ro-...-li_1-ri_1 is a path, vertices from 1 tG_; are connected, and the removal of any efig), x < |;,
still remains these vertices connected. Thus, we only consider the removal oflegpé; < x, and we
setN,/nax[Ii] = lj. Sincelj;1-riy1-lip2-rizo----lx-n is a path connecting vertices frolm 1 to n, we have
s(, >vin §, forallv, lis; <v<n-—1. Thus, ifl; is a cut vertex, then there exists somg <v <li;1 -1,
such thas, =vin S,. O

!

Similarly, we can lef, = (t;,t,, - - -, t,) be the suffix minima of alN,.. [i],i = 1,2,---,n, whereN.. [i] =
iifi=v andN,'nin[i] = Nmin[i] otherwise; then determinefis a cut vertex byl

Lemma®6 Let|lj,ri], 1 <i <k-—1, be adominating pace of G. Then, vertgisra cut vertex if and only
if there exists some v,.; +1 < v <rj, such that\'; =vinTy.

Corollary 7 Vertexl is a cut vertex if and only if there exists som&w v < I, — 1, such that $: vin
S1. Moreover, vertex n is a cut vertex if and only if there exists somg vy 41 <v < n-— 1, such that
t\', =vinT.

For any two dominating pacel, ri| and[l;,r;], the examination off andl; uses mutually independent
vertex sets, and so does the examination; @ndr;. It is reasonable to design a linear time algorithm
for finding all cut vertices. Givels= (s1,%,--,S), T = (t1,t2,---,tn), and all dominating pacds, ri],
1<i <Kk, definepy andqy, v=1,2,---,n, as follows:

1 if v=1;
p={ S_1 if ve {lpls,---,Ik}; (1)
Nmax(V] otherwise;
and
n if v=n;
Qv = tvra if ve {rl,r2,~~~,rk71}; 2

Nmin[V] otherwise
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LetS = (s],s5,---,S;) be the prefix maxima of alh, andT* = (t],t5,---,t;;) be the suffix minima of
allgyforv=1,2,--- n. In our exampleS* = (1,2,6,6,6,6,8,8,9,10) andT* = (1,1,1,3,3,3,4,8,9,10).
For any dominating paci, ri] with S, = (s,,S,,---,s,) andT;, = (t},t,---,t,), we can find thas, = s,
i <v<lii1—1, andt\’, =ty ri_1+1<v<r;. Thus, all cut vertices can be found directly fré&hand
T*. The following is our algorithm to find cut vertices.

Algorithm A (Finding cut vertices of atrapezoid graph)

Input: The dominating paces of a trapezoid graph G
Output: All cut vertices of G

Step 1. Compute S (s1,S,--+,S) and T = (t1,t,---,tn).

Step 2. Compute’S= (s;,s5,---,S) and T = (t,t7,- -, t}).

Step 3. For each dominating pafleri], 1 <i <k, do case:

Case 1. i= 1. If there exists some 2,< v <|,—1, such that = v, then vertex 1 is a cut vertex.

Case 2.2 <i <k. If there exists some v,£ v <li11 —1, such that $= v, then vertex;lis a cut
vertex.

Step 4. For each dominating pafleri], 1 <i <k, do case:

Case 1.1 <i <k—1. If there exists some v, n +1 < v <rj, such that} = v, then vertex;ris a
cut vertex.

Case 2. i=k. If there exists some 4.1 +1 <v<n-—1, such that§ = v, then vertex n is a cut
vertex.

We use dominating padé, 5] of our example to explain Steps 3 grjd 4. Vertex 1 is a cut vertex since
s, = 2; however, vertex 5 is not a cut vertex since there exists no vergx v <5, such that; =v. The
cut vertices in our example are vertices 1, 4, 8, and 9.

Theorem 8 AIgorithm[E finds all cut vertices of a trapezoid graph igrptime.

Proof. Since cut vertices are ifly,r1,l2,r2,- -+, Ik, rg} and AIgorithm[E examine$ andr; for each
dominating pacél,ri], 1 <i <k, all cut vertices can be found by Algoritin] A. By the computation of
prefix maxima and suffix minima, Stejps 1 and 2 can be do@im time. Step§ |3 ar{d 4 can also be done
in O(n) time totally. The complexity of Algorithrp A is therefor@(n). O

4 Finding bridges

An edgeeis a bridge ofG if G— eis disconnected. A bridge must be incident to one or two cut vertices.
However, we cannot conclude that an edge incident to any cut vertices is a bridge. In this section, we will
find bridges by cut vertices. We use the same notation as in the previous section.

A vertex isisolatedif it is not adjacent to any other vertices in the graph. From Obsenvation 4, we can
make the following observation.
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Observation 9 Leti be a vertex of a disconnected trapezoid graph. Then,

(i) vertexi,2<i<n-—1,isisolatedifandonlyifisi=i—l1ands =i (oriftj=iandt,; =i+1);
(ii) vertexlisisolated if and only if s=1 (or tp = 2);
(i) vertex n is isolated if and only if.s1 = n—1 (or t, = n).

An edge is gpendant edgéf its removal makes one vertex isolated. A pendant edge is certainly a
bridge, which is incident to one cut vertex. Lemrias 10[arjd 11 will show how to use dominating paces,
S*, andT* to determine pendant edges. Their correctness is directly from the above observation.

Lemma 10 Suppose]1<i <k, isacutvertex of G. Then, edgeVv), li <v <lit1, is a pendant edge if
andonly if§_, =v—1and g =v. Moreover, edgély,n) is a pendant edge if and only if s, = n— 1.

Lemma 11 Supposejr 1 <i <Kk, is a cut vertex of G. Then, edf,v), ri_1 < Vv < r;, is a pendant edge
if and only if f =v and {, ; = v+ 1. Moreover, edg¢l,ry) is a pendant edge if and only if &= 2.

A pendant edge is a bridge; however, not all bridges are pendant edges. A bridge, not a pendant edge,
must be incident to two cut vertices. L@&t, be a cycle oinvertices without any chord. By the definition
of trapezoid graphs [4], a trapezoid grapmay contain onlyCs or C4, and we have the following lemma.

Lemma 12 An edge e incident to two cut vertices of G is a bridge if and only if it is an edge of the
(1,n)-path and not contained in any®©r Cs.

Proof. It is trivial that a bridge cannot be contained in a cycle. &et (u,v). Sinceu andv are cut
vertices, they are vertices of tiig n)-path. Assume to the contrary theits not an edge of thél, n)-path,
then the path connectingandv forms a cycle with edgéu, v). It contradicts thaeis a bridge. |

To determine if an edge of th@, n)-path is contained in a cycle, we need to know what vertices edge
(li,r;) and(ri,li+1) may be incident to, respectively.

Lemma 13 Supposejland r, 1 <i <k, are two cut vertices of G, and let v be a vertex other than |
and .

(i) Ifvis adjacenttor, thenv>r;_1when|#ri_jorv>Ili_1when|=rj_q;
(ii) If vis adjacentto|, then v< lj;1 no matterr #li 1 orry =lj;1.
Proof. Consider the following two cases for condition i:

Case 1.lj # ri_y. If v<ri_y, thenv must be adjacent to somgorrj, 1 < j <i—1. Without loss
of generality, assume is adjacent taj. Then,li-ro-lp-ro-.. ~lj=rj-v-ri-lip1-riz1-.. -lg-rg is a
(1,n)-path, and it contradicts thtis a cut vertex.

Case 2.l; =rj_1. If v<lj_1, thenv must be adjacent tlh_; sincev < lj_;1 < rj_1 < rj andv is adjacent
tor; andlj_1 is not adjacent to;. We can find that;-rq-lo-ro-.. .-li_1-v-ri-li 1 1-rjs1-.. -lg-rg is a
(1,n)-path, and; cannot be a cut vertex.

For conditior{ ij, we need to consider the following two cases:
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(@ (b)

Fig. 2: The illustration of Lemmp5. (a) conditifh i. (b) conditioh ii.

Case 1.rj # li11. If v>li11, thenv must be adjacent to sorhgorrj, i +1 < j <k, and it will contradict
thatr; is a cut vertex.
Case 2.ri =lj;1. Sincev is adjacent td;, we havev < Npay(li] =ri = li41.

d

Lemma 14 Supposejrand k,1, 1 <i < k-1, are two distinct cut vertices of G, and let v be a vertex
other thanrand k3.

(i) Ifvis adjacenttoil, 1, thenv>rj_1;

(i) If vis adjacentto 1, then v<lj;2.
Proof. For condition [ﬂi), ifv < ri_1, thenv must be adjacent to songorrj, 1 < j <i—1, and it will

contradict that; is a cut vertex. For conditioﬂii), i > li;», thenv must be adjacent to sonhgor rj,
i +2 < j <k andlj,1 cannot be a cut vertex. O

The following lemmas show the ways to determine whether an edge incident to both cut vertices is
contained in a cycle.

Lemma 15 Supposejland 1, 1 <i <k, are two cut vertices of G. If eddé,r;) is contained in a @,
then one of the following conditions holds:

(i) When | #r;_1, there exists some vertex \,1 < v < li11, such that v is adjacent to &nd r;

(i) When | =r;_3, there exists some vertex y,11 < v < li;1, such that v is adjacent tp &nd r,.

Proof. The correctness is from Lemrpa13. (See Figure 2.) O
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max

u N__ [u] l[.+1

Fig. 3: The illustration of Lemmf 6. (a) conditifh i. (b) conditjoh ii. (c) conditioh iii.

Lemma 16 Supposejland r, 1 <i <k, are two cut vertices of G. If eddd,r;) is contained in a G,
then one of the following conditions holds:

(i) No matter| #r;_1 or l; = rj_1, there exist two consecutive vertices vanrdM r_1 <v <ljy1—1,
such that v+ 1, respectivelyis adjacent to i (I;, respectivelybut not adjacent to;I(r;, respec-
tively);

(i) When| #ri_1, there exist two vertices v and[V], ri—1 < V< Nmax[V] < li11, such that \Nmax[V],
respectivelyis adjacent tojl (rj, respectivelybut not adjacent tojr(l;, respectively,

(iii) Whenk =rj_1, there exist two vertices v andnbk(V], li—1 < V< Nmax[V] < li+1, such that (Nmax|V],
respectivelyis adjacent tojl (rj, respectivelybut not adjacent tojr(l;, respectively.

Proof. We assume that no one vertex is adjacent to o#tmdr; to form aCs. Let u andv be two
adjacent vertices such thatv, I;, andr; form aCs. Without loss of generality, assunue< v. Consider
the following two cases:

Case 1.uis adjacent ta; andv is adjacent td;. Assumev > u+ 1. If vertexu+ 1 is adjacent tdy, thenu,
u+1,l;, andr; form aCy; otherwisepu+ 1 is adjacent to; and we leu be vertexu+ 1. Similarly,
if vertexv— 1 is adjacent t@;, thenv—1, v, |l;, andr; form aCy; otherwisey — 1 is adjacent to
li and we letv be vertexv— 1. With this argument, we can deduce that verticeg= u-+1, I;,
andr; form aC4. Sinceu is adjacent ta; andv is adjacent td;, we obtainri_; <u<v<li;
if i #ri—g andli_1 <u<v<liy1if i =ri_1 by LemmgIB. However, in the caselpt=r;_1,
if li_1 <u<l;=rj_1, thenu must be adjacent tlh_; sincel;_1 is adjacent ta;_; andu is not

adjacent td; = rj_1. It contradicts that; is a cut vertex sincé -ri-lo-ro-. . .-li_1-U-ri-li;1-ri1-
...-lx-reis a(1,n)-path. Thus, we havg_; < u < v < liy1 no matted; #ri_j orl; =ri_1. (See
Figure[3 (a).)

Case 2.uis adjacent td; andv is adjacent ta;. Sinceu is adjacent tov, we havev < Nmay[u]. If Nmax[U]
is adjacent td;, thenv, Nmax[u], li, andr; form aCy4, which is in CasE]l. Thudmaxu] is adjacent
to ri, and we can lev be Nmaxu]. If Nmax(u] > li;1, thenNmayu] must be adjacent to sonhgor
rj,i+1< j <k Without loss of generality, assunNmaxu] is adjacent td;. Then,l;-r1-l>-r-
- =li=U-Nmax{ul-lj-rj-.. -l-r is a(1,n)-path, and; cannot be a cut vertex. Therefore, we have
NmaxU] < lit+1. Consider the following two subcases:
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Subcase 1l; # ri_1. If u<ri_1, thenu must be adjacent to somgorrj, 1<j<i-1, and
it will contradict thatl; is a cut vertex. We obtain_; < u < Nmaxu] < liy1. (See
Figure[3 (b).)

Subcase 2lj = ri_1. SinceNmau] is adjacent taj, we haveli_1 < Npaxu] by Lemma[ 1B.
Moreover,l;_; cannot be adjacent tdnaxu; otherwise]1-rq-l1o-ro-. . .-li_1-Nmax/u]-
Fi-lit1-rit1-.. .- lx-rg is @ (1,n)-path which contradicts thatis a cut vertex. Ifu <
li_1, thenu must be adjacent tp_1 sinceu < l;_1 < Nmax[u] andli_1 is not adjacent
to Nmax{u]. However, this contradicts thhtis a cut vertex sinch-ri-l1o-ro-. . .-li_1-u-
Nmax{U]-Fi-liz1-fit1-. . .- [k-rkis a(1,n)-path. Thus, we have 1 < U< Nmaxu] < li+1.
(See Figuré3 (c).)

a

Lemma 17 Supposejrand ;1,1 <i < k—1, are two distinct cut vertices of G.

(i) If edge(r;,li+1) is contained in a g, then there exists some vertexj1r< v < li;2, such that v is
adjacenttorand k,1;

(i) Ifedge(ri,li+1) is contained in a @, then there exist two vertices v angi[v], where {_1 <v<lj;1
and , < Nmax[V] < li+2, such that \Nmax[V], respectivelyis adjacent to i (i1, respectively but
not adjacent tojl.; (rj, respectively.

Proof. Conditior(] is directly from Lemmp 14. (See Figlije 4 (a).) In condifipn ii, we assume that no one
vertex is adjacent to both andl; 1 to form aCs. Letu andv be two adjacent vertices such thatv, r;,
andli; 1 form aC4. Without loss of generality, assume< v. Consider the following two cases:

Case 1.uis adjacent ta; andv is adjacent tdj 1. If u <rj_y, thenu must be adjacent to sonhgor rj,
1< j <i—1, anditwill contradict that; is a cut vertex. Note that< l;;» by Lemmd I# and is
not adjacent td 1. If u> l; 1, thenu must be adjacent tg 1 sinceli; < u<ljz2 <rjy1andu
is not adjacent tty, 1. This will contradict that;, 1 is a cut vertex sinch-ry-lo-ro-. . .-li-ri-u-ri1-
...-l-rcis a(1, n)-path. Thereforeri_1 <u< li11. Similarly, we can obtain; < v <l;;. Sinceu
is adjacent tov, v < Nmay[U]. It is easy to see théidmaxu] < li;2; otherwise Nmax(u] is adjacent to
somel; orrj, liz2 < j <k, andli.1 cannot be a cut vertex. Thus, we have v < Nmax[u] < li12.
It means that ifu, v, ri, andliy1 form aCq, thenu, Nmaxu], ri, andli;1 also form aCs. (See

Figure[4 (b).)

Fig. 4: The illustration of Lemmp 7. (a) conditifh i. (b) conditioh ii.
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Case 2.uis adjacent tdj, 1 andv is adjacent ta;. By Lemmg I#ri_1 <uandv < li;2. If ri_1 <u<r;,
thenu must be adjacent tp sincel; < rj_; < u < rj andu is not adjacent to;. We can find that
l1-r1-lo-ro-. . -lj-u-lj11-rip1-. . ~lg-r is a(1, n)-path, and it contradicts thatis a cut vertex. Thus,
ri < u. Similarly, we can obtaiw < l;;1. However, it contradictsl < v sincev < lj11 <rj < u.
Caséd P cannot hold.

Algorithm[B| below describes the steps of finding bridges of a trapezoid graph.
Algorithm B (Finding bridges of a trapezoid graph)
Input: Dominating paces,”$ST*, and cut vertices of G.
Output: All bridges of G.
Step 1. If§ ; =n—1, then(l,n) is a pendant edge. Moreover, §f+ 2, then(1,r1) is a pendant edge.

Step 2. For each dominating pafleri], 1 <i <Kk, if | is a cut vertex, then find pendant edges incident
to li as follows: for each vertex v, K v< li1, ifs;_; =v—1and g = v, then(l;,v) is a bridge.

Step 3. For each dominating pafleri], 1 <i <Kk, if r; is a cut vertex, then find pendant edges incident
to r; as follows: for each vertex vin <v <rj, ifty =vand{ ; =v+1, then(ri,v) is a bridge.

Step 4. Fori=1tok, if bothjland r; are cut vertices, thefl;, r;) is a bridge if none of the conditions in
Lemmas$ 15 and 16 holds.

Step 5. Fori =1 to k-1, if both r; and k1 are cut vertices, thefr;,li;1) is a bridge if none of the
conditions in Lemm@17 holds.

We use our example again to illustrate Algorithin B. The dominating pace$.&e[4,8], [8,9], [9,10],

and vertices 1, 4, 8, 9 are cut vertices. In dominating pacs, sinces; = 1 ands; = 2, edge(1,2) is a
pendant edge. In dominating pai@10], sincesy = 9, edge(9,10) is a pendant edge. In StEp 4,8)
and(8,9) are the edges df;, r;) incident to two cut vertices. Edgé, 8) is not a bridge since vertex 7
is adjacent to vertices 4 and 8, while ed@e9) is a bridge since none of the conditions in Lem@s 15
and 16 holds. In Ste 5, onlp, 4) is the edge ofr;,li+1). Since vertex 5 is not a cut vertefg, 4) is not

a bridge. All bridges in our example af&, 2), (8,9), and(9, 10).

Theorem 18 AIgorithm[B finds all bridges of a trapezoid graph i1 time.

Proof. A bridge is an edge incident to one cut vertex (a pendant edge) or two cut vertices (an edge of the
(1,n)-path). Since cut vertices are iy, r1,l2,r2,---, Ik, rk} and the(1, n)-path is composed df;, r;) and
(ri,li+1), all bridges can be found by AIgonthE B. It is trivial that each step of Algor@m B taikéné

time, thus the complexity of A|gOFIthIE]B i®(n

5 The parallel algorithms

In this section, we will parallelize algorithms A and B so that the problem of finding cut vertices and
bridges of a trapezoid grapgh can be solved ifO(logn) time usingO( processors on the EREW

Iogn)
PRAM model.
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A9 =9, 10]

Ag =[8,9]

N T——

A,=1[4,8] Ag=14,8] Ag=[48] A;=[7.8]

A =11,5] A,=1[1,5] A3=[3,6]

Fig. 5: The rooted tree of superior pairs.

At first, we can use the parallel algorithms of prefix maxima and suffix minifna [6] to find the maximal
and minimal neighbors for each vertex®f These parallel algorithms tak&(logn) time with O(
processors on the EREW PRAM model.

Secondly, we need to find the dominating paces of parallel. Using the parallel computation of prefix
maxima on[l;,r;], i =1,2,---,n, we can obtain all superior paifs. For each superior pak = [pi,q],
i=12---,n-1, letAq be the successor (or parent)Afif g # n. It is trivial that these superior pairs
form a rooted tree (or forest) which h&n) nodes andD(n) edges. Thed1,n)-path is identical to the
chain fromA; to its rootAy = [pk, tk], 1 < k< n-—1, wheregx = n. Figurq} shows the rooted tree formed
by the superior pairs in Tabfeé 1. Applying the technique of list ranking [6], all dominating paces can be
determined irD(logn) time with O(;-1-) processors on the EREW PRAM model.

logn
Also by the parallel algorithms of prefix maxima and suffix minima, ari@ys, S, andT* of G can
be obtained. Steps 3 apf 4 of Algoritfirh A find cut vertices by ukiagdr;. It is easy to see that there
is no concurrent memory access in these two steps, and Alghm A can be doflegm) time using
O(%) processors on the EREW PRAM model.

In Algorithm|[B], Ste Il can be done (1) time with O(1) processor. In Stef 2, we can first simulta-
neously examine i§,_; = v— 1 for all verticesv, l; < v < li1, then simultaneously examinesf = v for
the same vertices. Step 3 can use the similar way to examipe-iv andt;, ; = v+ 1 for all verticesv,
ri_1 < Vv<rj. Since there is no concurrent memory access in these three steps, all pendant edges can be
found inO(logn) time with O(%) processors on the EREW PRAM model.

To transform Lemmals 15, 116, ahd] 17 into parallel steps, we need some additional variables to avoid
concurrent memory access. Lemma 15 has two conditions. In condftion (i), we cgrdétandy, =r;
for each vertex, ri_1 < v < lj;1, then examine if/ is adjacent to botl, andyy,. There is ho concurrent
read and write in conditior](i). Conditiofi(ii) can be implemented by two stages for avoiding concurrent
memory access. The first stage uses verticés 1 < v < ri_1, while the second stage uses vertiges
ri_1 <v<lir1. We examine ifv is adjacent to botk, andy, for the first stage then for the second stage,
wherex, = |j andyy = r;. Thus, all dominating paces bf=r;_1 can be done without any concurrent read
and write.

Lemmd 1§ has three conditions. In conditign (i), we camJet |;, y, =i, andz, = v+ 1 for all vertices
v, ri_1 < v <liz1 — 1, then examine ¥ is adjacent tgy, andz, is adjacent ta,. In condition [i]), we can
let x, = li, yv = ri, andz, = Nmax|V] for all verticesy, ri_1 < v < li11, then examine i¥ is adjacent to,

fogr)
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andz, is adjacent tgy. In condition [iif), we need two stages for parallel computation. The first stage
uses vertices, l;_1 < v < rj_1, and the second stage uses vertigas_; < v < li;1. Then, we examine

if vis adjacent tog, andz, is adjacent tgy, for these two stages respectively, whaye-= |;, y, = r;, and

Zy = Nmax(V].

Condition [J) of Lemm4 1J7 also needs two stages: vertices 1 < v < li,1, are for the first stage and
verticesy, li;1 < v < ljy2 are for the second stage. Let=r; andy, = li.1, then we examine i¥ is
adjacent to botlx, andyy, for each stage. In conditioﬁ](ii), we can bet=r;, yy = li+1, andz, = Nmax[V]
for all verticesv, ri_1 < v < lj;1, then examine ifv is adjacent tax, and z, is adjacent toy,, where
ri < NmaxV] < liy2. Therefore, Lemmaﬂ@& a@] 17 can be implemented(ingn) time using

O(%) processors on the EREW PRAM model. We have the following theorem.

Theorem 19 All cut vertices and bridges of a trapezoid graph can be found in parallel(logh) time

with O(555) processors on the EREW PRAM computational model.

6 Concluding remarks

In this paper, we use dominating padkg;] to find cut vertices and bridges. This idea is different from
other proposed algorithms for trapezoid graphs, which almost use the corner points. The propkrties of
andr; are new and interesting.

Using the properties of the dominating paces, we presddtadtime algorithms to find cut vertices
and bridges on trapezoid graphs. Our algorithms can be easily parallelized so that cut vertices and bridges
can be found inO(logn) time usingO(%) processors on the EREW PRAM computational model.
Since the lower bound of complexity for finding cut vertices and bridges on trapezoid grapfrg jsur
algorithms are optimal.
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