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A digraph is traceable if it has a path that visits every vertex. A digraph D is hypotraceable if D is not traceable but
D − v is traceable for every vertex v ∈ V (D). It is known that there exists a planar hypotraceable digraph of order
n for every n ≥ 7, but no examples of planar hypotraceable oriented graphs (digraphs without 2-cycles) have yet
appeared in the literature. We show that there exists a planar hypotraceable oriented graph of order n for every even
n ≥ 10, with the possible exception of n = 14.
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1 Introduction and background
We denote the vertex set, the arc set and the order of a digraph D by V (D), A(D) and n(D), respectively.
Any (undirected) graph may be viewed as a symmetric digraph (by regarding an edge as being equivalent
to two oppositely directed arcs). A vertex v of a digraph is called a sink (source) if it does not have out-
neighbours (in-neighbours). A digraph that does not contain any pair of oppositely directed arcs is called
an oriented graph.

A digraph is hamiltonian if it has a Hamilton cycle, i.e., a cycle that visits every vertex. A digraph D is
hypohamiltonian if D is nonhamiltonian and D − v is hamiltonian for every v ∈ V (D).

A digraph is traceable if it has a Hamilton path, i.e., a path that visits every vertex. A digraph D is
hypotraceable if D is nontraceable but D − v is traceable for every v ∈ V (D). For undefined concepts
we refer the reader to Bang-Jensen and Gutin (2009).

Hypotraceability in graph theory has an intriguing history. Gallai (1968) asked whether all longest
paths in a graph share a common vertex. That was before hypotraceable graphs were discovered. (In
a hypotraceable graph of order n the longest paths have n − 1 vertices each and they have an empty
intersection.) Kapoor et al. (1968) asked whether hypotraceable graphs exist. Also, Kronk (1969) posed
a problem in the American Mathematical Monthly entitled “Does there exist a hypotraceable graph?”
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In the discussion of the problem, Kronk states that he ”feels strongly” that hypotraceable graphs do not
exist. Four years later, Horton (1973) constructed a hypotraceable graph on 40 vertices. Thomassen
(1974) presented a procedure by which any four hypohamiltonian graphs with minimum degree 3 may be
combined to produce a hypotraceable graph. This resulted in the construction of a hypotraceable graph
of order n for every n ∈ {34, 37, 39, 40} and for all n ≥ 42. A few years later, Thomassen (1976) also
provided a hypotraceable graph of order 41.

Chvátal (1973) raised the problem of the existence of planar hypohamiltonian graphs and Grünbaum
(1974) conjectured that such graphs do not exist. However, Thomassen (1974) constructed a planar hy-
pohamiltonian graph of order 105 and presented a recursive procedure for constructing infinitely many
planar hypohamiltonian graphs. Later, planar hypohamiltonian graphs of smaller order were found by
Hatzel (1979) (order 57), Zamfirescu and Zamfirescu (2007) (order 48), Araya and Wiener (2011) (order
42), and Jooyandeh et al. (2016) (order 40). It was also shown in the last mentioned paper that the con-
struction procedures of Thomassen (1976) yield planar hypohamiltonian graphs of all orders greater than
42, and planar hypotraceable graphs of order 154 and all orders greater than or equal to 156.

The importance of hypotraceable graphs was recognised when Grötschel (1980) showed that certain
classes of hypotraceable graphs induce facets of the monotone symmetric travelling salesman polytope.
Since no good (or even nearly good) characterisation of hypotraceable graphs has yet been found, it is
unlikely that an explicit characterisation of these polytopes can ever be given. Grötschel and Wakabayashi
(1981) also showed that hypotraceable digraphs contribute considerably to the difficulty of the asymmetric
traveling salesman problem.

Thomassen (1978) showed that there exists a planar hypohamiltonian digraph of order n if and only
if n ≥ 6. Hypotraceable digraphs are easily obtained from hypohamiltonian digraphs by the following
construction of Grötschel et al. (1980).

Construction 1 (Grötschel et al. (1980)) Let D be a hypohamiltonian digraph of order n and let y ∈
V (D). Now split y into two vertices x and z such that all the out-neighbours of y become out-neighbours
of x and all the in-neighbours of y become in-neighbours of z. The result is a hypotraceable digraph of
order n+ 1. We say that it is obtained from D by splitting the vertex y into a source and a sink.
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Fig. 1: The smallest planar hypo-
hamiltonian digraph
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Fig. 2: The smallest planar hypo-
traceable digraph

The vertex splitting procedure, applied to the planar hypohamiltonian graphs constructed by Thomassen
(1978), yields planar hypotraceable oriented graphs of every order from 7 upwards. Figures 1 and 2 depict
the smallest planar hypohamiltonian digraph (see Thomassen (1978)) and the smallest planar hypotrace-
able digraph (see Grötschel et al. (1980)), respectively.
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The existence of hypohamiltonian oriented graphs was established by Thomassen (1978). He showed
that the Cartesian product −→C k ×

−→
Cmk−1 of two directed cycles is a hypohamiltonian oriented graph if

k ≥ 3 and m ≥ 1, and also that −→C 3 ×
−→
C 6k+4 is hypohamiltonian for each k ≥ 0. Penn and Witte (1983)

proved that the Cartesian product −→C a ×
−→
C b is hypohamiltonian if and only if there is a pair of relatively

prime positive integers m and n such that ma+ nb = ab− 1. Recently, van Aardt et al. (2015) showed,
by means of various other constructions, that there exists a hypohamiltonian oriented graph of order n for
every n ≥ 9. They also showed with an exhaustive computer search that there are no hypohamiltonian
oriented graphs of order less than 9.

The vertex splitting procedure applied to hypohamiltonian oriented graphs yields hypotraceable ori-
ented graphs of every order greater than 9. van Aardt et al. (2011) also found a hypotraceable oriented
graph of order 8. It is obtained from a hypohamiltonian digraph that is not an oriented graph but has
a vertex incident with all its 2-cycles, so splitting that vertex into a source and a sink destroys all the
2-cycles. Frick and Katrenič (2008) proved that there are no hypotraceable oriented graphs of order less
than 8, and Burger (2013) showed by means of an exhaustive computer search that there does not exist a
hypotraceable oriented graph of order 9. Thus there exists a hypotraceable oriented graph of order n if
and only if n = 8 or n ≥ 10.

Thomassen (1978) asked whether there exist planar hypohamiltonian oriented graphs. Recently, van
Aardt et al. (2013) answered this question in the affirmative by constructing a planar hypohamiltonian
oriented graph of order 9 + 12k for every k ≥ 0. By adapting this construction, van Aardt et al. (2015)
showed that, in fact, there exists a planar hypohamiltonian oriented graph of order 9+6k for every k ≥ 0.
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Fig. 3: A planar hypohamiltonian
oriented graph of order 9
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Fig. 4: A planar hypotraceable ori-
ented graph of order 10

The next question to ask is whether there exist planar hypotraceable oriented graphs. Note that if any
vertex of the hypohamiltonian oriented graph depicted in Figure 3 is split into a source and a sink, the
result is nonplanar. In fact, no planar hypotraceable oriented graph is obtained by applying the vertex
splitting procedure to any of the known planar hypohamiltonian oriented graphs. However, in the next
section we construct, for each k ≥ 1, a planar hypotraceable oriented graph of order 6k+4 having a source
and a sink. The smallest one (of order 10) is depicted in Figure 4. We also present a planar hypotraceable
oriented graph of order 12 that has a source and a sink. Then, using a method devised by Grötschel
et al. (1980), we combine pairs of the constructed planar hypotraceable oriented graphs to produce strong
(strongly connected) planar hypotraceable oriented graphs of order 6k and 6k + 2 for every k ≥ 3. We
conclude that there exists a planar hypotraceable oriented graph of order n for every even n ≥ 10, with
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the possible exception of n = 14.

2 Constructions of planar hypotraceable oriented graphs
As in the case of planar hypohamiltonian oriented graphs (see van Aardt et al. (2013)), the circulant
digraphs with jump set {1,−2} form the basis of our constructions. In general, for an integer n ≥ 3 and
a jump set S of nonzero integers, the circulant digraph −→C n(S) is defined as follows:

V (
−→
C n(S)) = {v0, v1, . . . , vn−1},

A(
−→
C n(S)) = {(vi, vi+j) : 0 ≤ i ≤ n− 1 and j ∈ S}, where indices are taken modulo n.

For example, the circulant digraph −→C 14(1,−2) is depicted in Figure 5. We note that −→C n(1,−2) is
planar if and only if n = 3 or n is even.

v1

v11

v0

v13

v2
v3

v5

v7

v12

v9

v8 v6

v10 v4

Fig. 5: The circulant digraph −→C 14(1,−2)

Construction 2 For each integer k ≥ 1, let H6k+4 be the oriented graph obtained from the circulant
digraph −→C 6k+2(1,−2) by deleting the arc v1v6k+1 and adding the arc v6kv2, and then adding two new
vertices x and z together with the arcs xv1, xv6k+1, v1z, v3z, v6k−1z.

The oriented graphs H10 and H16 are depicted in Figure 4 and Figure 6, respectively. We shall show
that H6k+4 is a planar hypotraceable oriented graph for every k ≥ 1. First, we present some notation and
general observations concerning paths in −→C n(1,−2).

Consider any pair of distinct vertices vi, vj in −→C n(1,−2). We denote the vi − vj path vivi+1 . . . vj
by vi

−→
Cvj . We note that v3v1v2v0 is a v3 − v0 path of length three that use jumps −2, 1,−2 with the

consecutive vertex set {v0, v1, v2, v3}. We can create a longer path with a consecutive vertex set by
repeating this jumping pattern. In general, for any positive integer t < n/3, there is a vi+3t − vi path in
−→
C n(1,−2) with vertex set {vi, vi+1, . . . vi+3t}, namely the path

vi+3tvi+3t−2vi+3t−1vi+3(t−1) . . . vi+3vi+1vi+2vi.

We denote this path by vi+3t
←−
Cvi.
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Observation 1 Let vi, vj be two distinct vertices in −→C n(1,−2). Then the following hold.

(a) vi
−→
Cvj is the only vi − vj path in −→C n(1,−2) with vertex set {vi, vi+1, . . . , vj}.

(b) If j − i (modulo n) is a multiple of 3, then vj
←−
Cvi is the only vj − vi path in −→C n(1,−2) with vertex

set {vi, vi+1, . . . , vj}.

(c) If j − i (modulo n) is not a multiple of 3, then there is no vj − vi path in −→C n(1,−2) with vertex set
{vi, vi+1, . . . , vj}.

We define the parity of a vertex in −→C n(1,−2) as the parity of its index. We shall use the following
result concerning Hamilton paths in −→C n(1,−2).

Lemma 1 Suppose n is even and let P be a Hamilton path in−→C n(1,−2) such that its initial and terminal
vertex have the same parity. Then any subpath of P containing only vertices of the same parity has length
at most two.

Proof: Let Q be a longest subpath of P that contains only vertices of the same parity. Then Q has less than
n/2 vertices. Suppose Q is the path vivi−2 . . . vi−2j , with j ≥ 3. Then vivi+1, vi−2j−1vi−2j /∈ A(P )
and vi−rvi−r+1 /∈ A(P ), for r = 2, 3, . . . , 2j − 1. Moreover, by the maximality of Q, vi−2jvi−2(j+1),
vi+2vi /∈ A(P ).

Suppose vi is the initial vertex of P . Then vi−1vi /∈ A(P ) and vi−2j is not the terminal vertex of P ,
since Q is not P . Hence vi−2jvi−2j+1 ∈ A(P ), so vi−2j+3vi−2j+1 /∈ A(P ) and therefore vi−2j+3 is
the terminal vertex of P , contradicting our assumption that the initial and terminal vertices of P have the
same parity.

Hence vi is not the initial vertex of P and similarly we can show that vi−2j is not the terminal vertex of
P . Hence vi−1vi, vi−2jvi−2j+1 ∈ A(P ) and therefore vi−1vi−3, vi−2j+3vi−2j+1 /∈ A(P ). Then vi−3 is
the initial vertex of P and vi−2j+3 is the terminal vertex of P . Thus P is the path vi−3vi−5 . . . vi−2j+3,
contradicting our assumption that P is a Hamilton path of −→C n(1,−2). 2

For the particular case n = 6k + 2 we have the following useful result.

Lemma 2 For any integer k ≥ 0 the initial and terminal vertices of any Hamilton path of −→C 6k+2(1,−2)
have different parities.

Proof: Let P be a Hamilton path in −→C 6k+2(1,−2) with initial vertex v1 and terminal vertex v` and
suppose ` is odd.

We now consider the following four cases.

Case 1: P contains the subpath v1v2v3:
Then v3v1 /∈ A(P ) and hence v3v4 ∈ A(P ). An inductive argument then shows that P is the
path v1v2v3v4 . . . v6k+1v0, so in this case ` = 0, contradicting our assumption that ` is odd.

Case 2: P contains the subpath v1v2v0:
Then v0v1, v1v6k+1, v6k+1v0 /∈ A(P ) and so v0v6k, v6kv6k+1 ∈ A(P ). Now v6k−1v6k,
v6kv6k−2 /∈ A(P ). Hence v6k+1v6k−1, v6k−1v6k−3 ∈ A(P ). Repeated application of this argu-
ment together with Observation 1 shows that P is the path v1v2 v0

←−
Cv5v3v4, since 0−5 ≡ 6k−3

mod (6k + 2). This again contradicts our assumption that ` is odd.
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Case 3: P contains the subpath v1v6k+1v0:
A similar argument as above shows that P contains the subpath v1

←−
Cv3. But then v2 6∈ V (P ),

contradicting our assumption that P is a Hamilton path of −→C 6k+2(1,−2).

Case 4: P contains the subpath v1v6k+1v6k−1:
Then by Lemma 1, v6k−1v6k−3 /∈ A(P ). Also v6kv6k+1, v6k+1v6k+2 /∈ A(D). Since P is not
the path v1v6k+1v6k−1 it follows that v6k−1v6k, v6kv6k−2 ∈ A(D). A similar argument as above
shows that P contains the subpath v1v6k+1v6k−1 v6kv6k−2

←−
Cv4v2. Hence P cannot contain both

v3 and v6k+2, contradicting our assumption that P is a Hamilton path in −→C 6k+2(1,−2).

2

v1

v4

v5

v6

v7

v8

v9

v10

v11

v0

x

z

v12 v2
v3

v13

Fig. 6: H16

Theorem 1 H6k+4 is a planar hypotraceable oriented graph of order 6k + 4, for every integer k ≥ 1.

Proof: Let k be any positive integer. Then H6k+4 is obviously a planar oriented graph - see the planar
depiction of H16 in Figure 6. We now prove that it is hypotraceable.

Since all the out-neighbours of x as well as all the in-neighbours of z are vertices with odd index, it
follows from Lemma 2 that H6k+4 − v6kv2 is nontraceable.

Thus, if P is a Hamilton path of H6k+4, then P contains the arc v6kv2. Hence P does not contain the
arcs v1v2, v4v2, v6kv6k−2 and v6kv6k+1. This implies that xv6k+1 and v1z are, respectively, the initial
and terminal arcs of P . Observe that P contains at most one of the arcs v2v0 and v0v6k and at most one
of the arcs v6k+1v0 and v0v1. Hence P contains either the subpath v2v0v1z or the subpath xv6k+1v0v6k.
Suppose the former. Then P does not contain the arcs v6k+1v0 and v0v6k. But then v6k+1v6k−1 and
v6k−1v6k are in P . Then P is the path xv6k+1v6k−1v6kv2v0v1z, contradicting that H6k+4 has at least 10
vertices. By a symmetric argument we obtain a contradiction if xv6k+1v0v6k−2 is a subpath of P . This
proves that H6k+4 is nontraceable.
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Next we show that H6k+4 − v is traceable for any vertex v ∈ H6k+4. Since H6k+4 − {x, z} is hamil-
tonian, H6k+4 − x and H6k+4 − z are both traceable. Using Observation 1 we now present a Hamilton
path of the graph H6k+4 − vj for j = 0, 1, . . . , 6k + 1.

Subgraph Hamilton path values of i
H6k+4 − v0 xv6k+1

←−
Cv1z

H6k+4 − v1 xv6k+1v0v6kv2
−→
Cv6k−1z

H6k+4 − v6i+1 xv1v2v0
←−
Cv6i+2v6i

←−
Cv3z i = 1, . . . , k

H6k+4 − v6i+2 xv6k+1v0v6k
←−
Cv6i+3v6i+1

←−
Cv1z i = 0, . . . , k

H6k+4 − v6i+3 xv6k+1
←−
Cv6i+4v6i+2

←−
Cv2v0v1z i = 0, . . . , k

H6k+4 − v6i+4 xv1v2v0
←−
Cv6i+5v6i+3

←−
Cv3z i = 0, . . . , k

H6k+4 − v6i+5 xv6k+1v0v6k
←−
Cv6i+6v6i+4

←−
Cv1z i = 0, . . . , k

H6k+4 − v6i xv6k+1
←−
Cv6i+1v6i−1

←−
Cv2v0v1z i = 1, . . . , k

2

A computer search showed that every planar hypotraceable oriented graph of order 10 contains H10 as a
spanning subdigraph. From the characterisation of hypotraceable oriented graphs of order 8 presented by
van Aardt et al. (2011), we note that no hypotraceable oriented graph of order 8 is planar. Burger (2013)
showed by means of an exhaustive computer search that there does not exist a hypotraceable oriented
graph of order 9. Hence H10 is the planar hypotraceable oriented graph of smallest order and size.

For each k ≥ 1, the graph H6k+4 is an arc-minimal hypotraceable oriented graph, i.e., removing
any arc destroys the hypotraceability. This follows from the following observations and the fact that a
hypotraceable oriented graph does not contain a vertex with in- or out-degree 1:

Any Hamilton path in H6k+4 − v1 contains both the arcs v6kv2 and v6k−1z,
Any Hamilton path in H6k+4 − v2 contains the arc v3v1,
Any Hamilton path in H6k+4 − v4 contains the arc v3z.

A computer search (for small k) showed that the digraph obtained from H6k+4 by adding any of the
arcs {v2i+1z : i = 2, . . . , 3k + 1} is also a planar hypotraceable oriented graph. We can prove this
analytically in general, but the proof is tedious and therefore omitted.

Figure 7 depicts an arc-minimal planar hypotraceable oriented graph of order 12, which was found by
computer.

We now use the following construction of Grötschel and Wakabayashi (1984) to construct strong planar
hypotraceable oriented graphs.

Construction 3 (Grötschel and Wakabayashi (1984)) For i = 1, 2 let Ti be a hypotraceable digraph of
order ni, with a source xi and a sink zi. Form the disjoint union of T1 and T2. Then identify x1 and z2
to a single vertex and identify z1 and x2 to a single vertex. The result, which we denote by T1 ∗ T2, is a
strong hypotraceable digraph of order n1 + n2 − 2.

Note that if, in Construction 3, each of T1 and T2 is a planar oriented graph that can be depicted with the
source and sink in the same face, then T1 ∗ T2 is also planar. Thus, if k1 and k2 are any two nonnegative
integers and Ti = H6ki+4 for i = 1, 2, then T1 ∗ T2 is a strong planar hypotraceable oriented graph
of order 6(k1 + k2) + 6. If T1 is the planar hypotraceable graph of order 12 depicted in Figure 7 and
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Fig. 7: A planar hypotraceable oriented graph of order 12
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Fig. 8: A strong planar hypotraceable oriented graph of order 18

T2 = H6k+4, k ≥ 1, then T1 ∗ T2 is a strong planar hypotraceable oriented graph of order 6k + 14. Thus
we have proved the following.

Theorem 2 There exists a strong planar hypotraceable oriented graph of order 6k and of order 6k + 2
for every integer k ≥ 3.

Theorem 3 There exists a planar hypotraceable oriented graph of order n for all even n ≥ 10 with the
possible exception of n = 14.

Figure 8 depicts the strong planar hypotraceable oriented graph of order 18 that is obtained by using
two copies of H10 in Construction 3.

It is still an open question whether there exists a planar hypotraceable oriented graph of order 14 or one
of odd order. We also do not know whether there is a strong planar hypotraceable oriented graph of order
less than 18.
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