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We study numerically a non-linear integral equation that arises in the study of binary search trees. If the tree is
constructed frorm elements, this integral equation describes the asymptotin {as») distribution of the height

of the tree. The height is defined as the longest path in the tree. Our analysis supplements some asymptotic results
we recently obtained (cf. Knessl and Szpankowski (2002)) for the tails of the distribution. The asymptotic height
distribution is shown to be unimodal with highly asymmetric tails.
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1 Introduction

A binary search treeis a fundamental data structure used in searching and sorting. It is defined as follows.
There aren elements to be stored in the tree. A root node is created for the first element. Subsequent
elements are directed to the left or right subtree according to whether they are less than or greater than the
element in the root node. By this construction, the left and right subtrees are also binary search trees by
themselves. Many classic sorting algorithms (such as QUICKSORT) can be conveniently represented by
binary search trees (BST).

It is well known that the worst search time for this modeOi&), but the average search time is only
O(logn). We consider the average case performance and introduce the following probabilistic model.
We take alln! permutations of tha elements to be equally likely and analyze the heigftof a BST
constructed fronm elements. The height is the longest path in the randomly built tree. Clagrdannot
exceech and must exceed lgg. In view of the probabilistic assumptioH, is a random variable and we
setLk = Prob{ #, < k}. The support lies in the range< n < 2%,

There has been a lot of previous work on computing various aspects of this probability distribution,
in the limit n — . |Pitte| (1984) showed that (almost surel} / logn — Ag asn — o, with Ag < A=
4.31107... . |Devroye |(1986) established th&af#,] ~ Alogn asn — «. This was refined t&[H,] =
Alogn+ O(loglogn) by|Devroye and Reed (1995).
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In the past it had been conjectured tB&##;,] — Alogn ~ —6% loglogn with 6 = % but recent results
of Reed|(2000) (see also Knessl and Szpankowski (2002)) show that the correct Mué.ié’ here has
also been some work on estimating the variavarg#,]. Experimental studies of Robsagn (1979) show
thatE| %, — E[%]] is bounded, suggesting thar [#,] = O(1). This has been established rigorously by
Drmota (1999, 2002) and by Reed (2000).

Very little seems to be known about the full distributibf. In [Knessl and Szpankowski (2002) we
used singular perturbation methods to analyze a recurrence relation satisfied by the distribution. Under
some assumptions about the forms of various asymptotic expansions, we obtained expreskfoasdor
1— LK for n— o0 and various ranges &f In the range where most of the probability mass accumulates, we
showed that X can be approximated by the solution of a non-linear integral equation. This was related to a
functional equation studied by Drmoia (1999). We established some asymptotic properties of the solution
to this integral equation, but could not solve it exactly. Recently, Drnjota (2003) established rigorously
that the height distribution function satisfies this integral equation, in the fimiteo. It was also shown
that the equation has a unique solution that satisfies a certain auxiliary conditign (cf. () and (7)).

In this note we supplement the results of Knessl and Szpankowski|(2002) by numerically analyzing the
integral equation. We thus obtain the shape of the asymptotic height distribution numerically. We state
the problem more precisely in section 2, and the numerical results are discussed in section 3 and in the
Figures and Tables therein.

2 Problem Statement
Let us denote byH, the height of a binary search tree that staretements. Its probability distribution

L = Prob{ 7 < k} @

satisfies the non-linear recurrence N

1
k ki k
Lyl = PV [;Lzl-nfz 2
subject to the initial conditiohd = &(n, 0).
Setting
z=k—Alo n+§ilo logn+c 3)
= [¢] SA_1 glog

and assuming thatX ~ f(z) we derived in Knessl and Szpankowski (2002) the following non-linear
integral equation foff (2):

f(z+1) = /01f(z—AIogx)f(z—AIog(l—X))dx, —0<Z<® (4)
f(—w) = 0, f(eo)=1

In @) A= 4.31107... is the unique solution téx/2)* = &1 in the rangex > 1. We observe that ify(2)

is a solution to[(4) then any translation (i.€s(z+ C)) is also a solution. Thus by retaining in the right
side of [3) the arbitrary constantwe can choose a convenient way to normalize the solutidr to (4) so as
to make it unique. Recently, Drmofa (2003) established rigorously[that (4) has a unique solution, modulo
the translation.
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We let f(z) = 1— g(2) where clearlyg(z) will be small forz— . Then we can approximate, far
large,g(z) ~ g.(z) whereg, satisfies the linearized equation

1 o0
oL(z+1) = 2/ gL(z— Alogx)dx = 2/ oL(z+At)edt. (5)
0 0
Now @) admits exponential solutions of the foem'? provided thaw satisfies the characteristic equation
2
v
COL4VA ©)

We can easily show that=1— 1/Ais a double root of[]G) and that this is the only real solution for

v > 0. There exist infinitely many complex solutions [i¢ (6) and these can be used to construct solutions
to (4), e.g., by the method of successive iterations. However, the numerical and analytic sfudies in Knessl
and Szpankowski (2002) show that these lead to solutions that are inappropriate (they typically oscillate
and/or become negative). This again follows more rigorously from the work of Drinota| (2003). Thus we
write the general “acceptable” solution g (5) as

(2 = exp[— (1— i) z} (az+B). (7)

Knessl and Szpankowski (2002) also showed that=f 0 then the solution to the non-linear problgm (4)
becomes negative forz sufficiently large. Thus we hawe > 0 and in view of [(8) normalize our solution
by settinga = 1.

Now we use][([7) to construct a solution to the non-linear problem, ffith= 1— g(z), in the form

92 = (z+Be ™+ H e ™Pn(2)
m=2
(8)
= e ™Py(2), a=1-—,
A A
wherePy(2) is a polynomial of degrem; we write
m .
Pn(z) = ) F(m,j)Z. 9)
"0
Using [8) in [4) leads to
1
e ™Pn(z+1) — 2/ X™AP(z— Alogx)dx (10)
0

_ r:zl/olxéaA(lx)(m—f)aAPz(zAlogX)me(ZAlog(l X))
/=1

form> 2. Then by usin(ﬂg) and comparing coefficients'dfwe are led to

DA = e a
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m-1 ¢ m—/ { m—¢ i

3555 ()

xD(,m—£i—ky, j—ka)F(£,i))F(m—{¢,j).

Here[2"] denotes the coefficient @' (we may replacéz™|2a**2 by §(k; + ko, M)) and
1
D(a,B,y,d) = AV / XA A=D1 — x)BA-D (_logx)¥[—log(1 — x)]%dx. (12)
0

The above can be expressed in terms of derivatives of the Beta function. We also nétéltiat= 1
andF(1,0) = .

Approximations tag(z), and henced (z), may be obtained simply by truncating the sunﬁh (8) at some
large valuem = N. However, this leads to problems fonegative and-z sufficiently large, as discussed
in section 3. We also note that givéq(z) = z+ B, eachF (m, j) is a polynomial inB in view of (11).

Finally we represent(z) in the contour integral form

(0= o [ exp(De ™) Fman, 3)

which says that, after an appropriate variable chafig®,) is the (two-sided) Laplace transform 6fz).
Then from [(4) it follows that

—F'(n)=e ZAF (e VA2 (14)

This is a functional-differential equation studied [by Drmota (1999, 2002), who used the normalization
condition 7 (0) = 1, with which [14) has a unique analytic solution abqut 0, that is in fact an entire
function (this is rigorously shown in Drmata (1999, 2002)). We note that our normalization (which took
a = 1in (7)) is different from Drmota’s; unfortunately it seems that neither can be used to infer the true
value ofcin (3). An important difference is that whilg ([L4) has a unique solution, our problem still has
a one-parameter infinity of solutions, wifhindexing the family. However we show numerically that
only one value of leads to a solution that can satisfy the conditfdr-c) = 0 (g(—) = 1). The other
solutions grow very rapidly as— —co and apparently do not have Laplace transforms. Hence they are
excluded from[(T4) by the forn (13).

In|Knessl and Szpankowski (2002) we also established thatas-« f(z) satisfies

2k /Alog2 _ .
f(z) 2y ]2 VY fwz/2 _ ez 1
(2) T Alog2_ 1€ exp(—ke %) (15)
where
log2
w= Alog2—1 .3486294060. .

andk is a constant, which is made unique by choosing- 1. Our derivation of[(I5) made certain
assumptions about the asymptotic form; the numerical studies here provide more justification for this and
also estimate the constamnt
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B zeros offg zeros off}
-5 —6.259 —5.004, —2.797 —5.975 —4.577,—2.060,6.258
-2 —7.664,—-6.697,—4.607 —7.466,—6.362 —4.021,2.758
15 —7.776,—7.548 —5.406 —7.689,—7.189 —4.888 1.859
-14 —-5.681 —7.656,—7.463 —5.218 1.629
-13 —5.995 —5.6151.366
-1 —6.713 —6.410,.02408
—-.97 —6.765 —6.464 —.2771
-.95 —6.798 —6.499 —.5591
—.92 —6.847 —6.549 —1.440
-.9112 —6.861 —6.563 —2.637
—-.9111 —6.861,—2.808 —2.468 —6.563 —2.657
—o1 —6.863 —3.194 —2.072 —6.565,—2.846
-9 —6.879,—-3.898 —1.311 —6.581 —3.491
-8 —7.027,—4.887,—.1593 —6.733 —4.475
-7 —7.163 -5.231,.2318 —6.872 —4.823
-5 —7.413-5.673 .6764 —7.128 -5.276

0 —7.972 —-6.448 1.265 —7.700 —6.073

1 —8.985 —7.658 1.878 —8.730,—7.302

2 —9.963 —8.737,2.255 —9.718 —8.387

5 —1292,-11.80,2.940 —12.69,-11.45

Tab. 1: The Zeros offg and fé for various values op.

3 Numerical Results
We define

fn(z) =1— iem{iF(m,j)zJ}, N>1 1)
m= =

with gn(z) = 1— fn(2). These correspond to approximate solutionﬂo (4). The exact solution must also
satisfy f (—») = 0 andf’(z) > O for all z. Some of the problems arising in the convergencé\df) to
f(z) are illustrated by discussinfy for a particulamN, and we consideX = 6 in detail below.

A plot of fs(z) = fe(z B) for variousp shows that typically bottig and f have zeros and hence lead to
unacceptable approximations to a probability distribution. Our goal is to define a criteria and choose an
optimal value off} that somehow minimizes this “unacceptability”. Then we shall incréaaead obtain
a sequence of optim@lthat converges to the unigifor which we havef (—c) =0 in @).

In Table[jr we give the zeros of botly and fg for various values off. We note that for general
we have, ag — —o, fy(2) ~ —e~N2F(N,N)ZV. We can easily show th&(m,m) > 0 for all m> 1
and thus ag — — fy(z) — 4 (resp. —) for N odd (resp. N even). The data in Tablg 1 show
that fg has exactly three zeros [f € (—co, ') or B € (B«,»), and a single zero iB € (B,B.). Here
B’ € (—-1.5,—1.4) andp. € (—.9112 —.9111). The derivativef; has four zeros i < [3 and two zeros if
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N Bopt Zmin Zimin
6 —.9111950 —2.638 —2.991
7 —.9117765 —3.052 —3.398
8 —.9119242 —3.425 —3.763
9 —.9119624 —3.764 —4.097
10 —.9119724 —4.074 —4.403
11 —.9119750693 —4.360 —4.686
12 —.9119757674 —4.625 —4.950
13 —.9119759527 —4.873 —5.196
14 —.9119760019 —5.105 —5.427
15 —.9119760150 —-5.324 —5.645
Tab. 2: Bopt: Zmin @aNdZnin for N < 15.
N Zmax Nmax = h(zmax) ‘

4 .3092 1741

5 .2922 1743

6 .2918 1743

8 .2918 1743

10 .2918 1743

Tab. 3: Convergence near= znax.

’ fn(2) ‘ z=-1 z=-2 z=-3 z=-4
N=6 .12954 .043850 .086020 4.4439
N=7 .12953 .042793 .014072 .66115
N=8 .12953 .042754 .0086837 .070850
N=9 .12953 .042753 .0083977 .0062665
N =10 .12953 .042753 .0083865 .0011049
N=11 .12953 .042753 .0083862 .00079428
N=12 12953 .042753 .0083862 .00077984
N=13 .12953 .042753 .0083862 .00077931
N=14 12953 .042753 .0083862 .00077929
N=15 .12953 .042753 .0083862 .00077929

Tab. 4: Convergence ofy(2) for (fixed) negative values af
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B> E with E € (—1.4,—1.3). We define an optimd as follows. For a givefd we consider the minimum
value ofz such thatfe(z) and fg(z) are both positive for alz exceeding this value. More precisely we

let sze)(B) = max{z: fg(z) = 0} subject to the constraints th& > 0 andf, > 0 for z > zie)(B). Then

Bopt is defined as the value § that minimizeszie)(B). Note thatz@(B) may or may not exist for a
particularp. WhenN = 6 Table[] shows that it exists for gllexceeding about.9111. We can define

a more generaiiN)(B) by setting it equal to the largest value oivhere fy; vanishes (ifziN)(B) fails to
exist by the previous definition). In either cafgz) can be an acceptable approximation to a probability

distribution only forz > ZSkN)(B).

Our computational experience has shown gt always corresponds to two roots 6§ coalescing
into a double root (and thus a root ). WhenN = 6, Bopt =~ —.9112 and with this valuds has a
double zero agmin &~ —2.637. Also, if we plotfs(z+ 1) — fs(z), which would be an approximation to
Prob{ H, = k+ 1}, we find that it has a zero @i, =~ —2.9917. Thusfs(z+ 1) — fg(2) is an acceptable
approximation to a probability density (or discrete distribution) onlyzforZyn.

For arbitraryN we again comput@opt, Zmin andZmin. These are summarized in Ta@]e 2 for< 15.

The data suggest thfit,: converges rapidly to the value.9119760.. . The sequencezﬂ\:,)1 andi,m

are converging te-co, but much more slowly, with the “gapé,?,(mf) — zﬁr’]\:m decreasing witiN. The
sequence of functionsy(z) = fn(z+ 1) — fn(2) is converging to some unimodal positive functiofz),

with a maximum value ohnax = .1743..., which is attained at = znax = .2918... . The convergence
nearz = zmay is very rapid, as illustrated in Taq@z 3. Adecomes negative, the convergencefpfz)
becomes much slower & increases. Also, there is a lot of cancelation in the surﬁ]in (INferl4d and

15 we had to increase the precision to 20 digits in order to accurately do the calculation. Ip]Table 4 we
illustrate the convergence df;(z) for (fixed) negative values af The valueN = 15 is not sufficient to

see convergence at —5. The minimum value af that seed15(2) settling to its limit is abouz = —4.3.

We find thatf (—4.1) = .00058157. ., f(—4.2) =.00042828.. and f(—4.3) = .00031059.. . We also

see from Tablg]4 that ondg settles to its limit value, it does so very quickly.

Next we test the asymptotic formu(a {15), which appliesAes —c. The difficulties described above
preclude us from computinfyz) for large negative values. The constarit (15) could not be determined
analytically. We can estimate it simply by numerically computii{go) for a certain negativey (our
results allow onlyzg > —4.3), comparing this to the right side df (15) (with= z), and solving the
resulting transcendental equation far In Table[%$ we estimate using variousz. It would appear that

z ‘ f(2) ‘ K ‘
-1 .12953 2.0495
-2 .042753 2.0898
-3 .0083862 2.1100
-4 .00077929 2.1219
—-4.1 .00058157 2.1236
—4.2 .00042828 2.1257
—4.3 .00031059 2.1287

Tab. 5: Estimatingk using various.
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f(z)
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Fig. 1: The approximation td (z) usingN = 15, forze (—5,8)

K =~ 2.13. It should be noted that the three valuesfer—4 are more sensitive to error. Alsb(z) should
be very small due to the doubly-exponential convergence to zexe-as-«. However, wherz = —4,

—wz ~ 1.4 which is not particularly large. A really accurate calculatiorkdfand verification of[(Ip))
would probably require that we calculat€z) accurately for values much more negative thah3.

In Figure]] we plotf15(2) for z [-5,8] and in Figur¢ P we plofis(z+ 1) — f15(2) for the same range.
These are our final approximations f¢z) and f(z+ 1) — f(z). The second figure clearly illustrates
the shape of the “density”, showing its unimodal structure, the (roughly) exponential right tail and the
very thin (roughly double exponential) left tail. These figures uBed —.9119760150. Note that we
are approximating the discrete distributi([r} (1) @t — LK = Prob{#;, = k+ 1}) by the continuous
function h(z). For a given largen we can choose several valuesioin (3) to makez = “O(1)” and
the corresponding values &f should lie close to the curve in Figure 1, for some appropiatd@he
values ofLk*? — LK should then lie close to the curve in Figure 2 for this value.diVe have no analytic
method for estimating the value of In[Knessl and Szpankowski (2002) it was shown that if we had an
asymptotic approximation tck valid on the scalé&, n — o with k/logn fixed and> A, then we could use
asymptotic matching to infer the value @fHowever, we could not completely analyze this scale, which
we refer to as the “near right tail” of the distribution. There LX is algebraically small im (for a fixed
k/logn € (A, «)).

To summarize, we have presented an efficient numerical method for calculating the asymptotic height
distribution in binary search trees. Our results yield the distribution’s shape, but there is still the arbitrary
translation arising frone in (3). Our results also suggest that the non-linear integral equation has, up to
a translation, a unique solution that can represent a probability distribution. This was recently established
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Fig. 2: The approximation th(z) = f(z+ 1) — f(z) usingN = 15, forze (-5, 8)

rigorously by Drmota[(2003). It = 1 in (7) this solution corresponds fo= —.9119760.. . There are
still many issues regarding the convergence!pfo f(z) that need further work.
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