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The paper addresses the cheating prevention in secret sharing. We consider secret sharing with binary shares. The
secret also is binary. This model allows us to use results and constructions from the well developed theory of cryp-
tographically strong boolean functions. In particular, we prove that for given secret sharing, the average cheating
probability over all cheating vectors and all original vectors, i%]e-.Z*” Y o1 Yaev, Pea, denoted byp, satisfies

p> 1 and the equality holds if and only ffco satisfiespeq = % for every cheating vecta®; and every original

vectora. In this case the secret sharing is said to be cheating immune. We further establish a relationship be-
tween cheating-immune secret sharing and cryptographic criteria of boolean functions. This enables us to construct
cheating-immune secret sharing.
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1 Introduction

Since its invention in 1978 by Blakley (Blal79) and Shamir (Sha79), secret sharing has evolved dramati-
cally. Initially, it was designed to facilitate a distributed storage for a secret in an unreliable or insecure
environment. Later, however, secret sharing has been incorporated into public key cryptography giving
rise to the well-known concept of group or society oriented cryptographyi(see (Des88)). Now secret shar-
ing is one of the basic cryptographic tools with variety of very interesting schemes based on algebraic or
geometric structures.

Tompa and Woll[(TW8B) observed that Shamir secret sharing can be subject to cheating by dishonest
participants who, at the recovery stage, may submit invalid shares to the combiner. Clearly, the combiner
reconstructs an invalid secret and passes it to currently active participants. The honest participants are left
with the invalid secret while the cheaters are able to recover the valid secret from the invalid one. This
observation is true for all linear secret sharing. The cheating attack can also be extended for geometrical
secret sharing.

Cheating prevention can be considered in the context of conditionally and unconditionally secure secret
sharing. We focus our attention on unconditionally secure secret sharing. In this setting, cheating can be
thwarted by
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e share verification by the combiner — all invalid shares are identified and discarded. The key recovery
goes ahead only if there are enough valid shares to recover the valid secrét (seel(Car95%; CSV93;
RBO89)),

e discouraging cheaters from sending invalid shares to the combiner — this argument works if the
cheater gains no advantage over honest participants. In other words, sending invalid share will
result with recovery of an invalid secret which gives no clues to the cheater as to the value of the
valid secret. This paper investigates this case of cheater prevention.

We intend to consider a class of secret sharing for which, a cheating participant is no better off than a
participant who tries simply to guess a secret. Ideally, the probability of successful cheating should be
equal to the probability of guessing the secret by a participant. To make our considerations explicit, we
assume that secret and shares are binary. For this case we prove that there is a secret sharing, further in the
work calledcheating immunghat gives no advantage to a cheater making it, in a sense, immune against
cheating. The cheating immunity was considered_ in (PZ01) and this paper continues this line of the study
by investigating the connection between secret sharing and cryptographically strong boolean functions.

The work is structured as follows. Sectiph 2 introduces secret sharing in terms of its notions and
notations. Sectidn|3 gives necessary background for boolean functions. In $gction 4, we describe a model
which is further used to characterise cheating in secret sharing. The main results are given irf $ection 5.
Sectior{ § explores the problem of constructing cheating-immune secret sharing. Bection 7 concludes the
work.

2 Background

Secret sharing allows a group of participafits- {P,...,P,} to collectively hold a secré € X, where

X is a set of elements from which the secret is drawn. Secret sharing is created by a trusted algorithm
called adealerwho for a given secret, generates a collection of sharess, whereg is a set of shares.

Note thats is given toR, i = 1,...,n. The collective ownership of the secret is defined by the access
structure of secret sharing. The access strudiusea collection of subgroups @ that are authorised to
recover the secret.

An authorised group of participant® € I is able to reconstruct the secret by invoking a trusted algo-
rithm calledcombiner The combiner always returns the valid secret if the gra@ugubmits their valid
shares. If the group, however, is too small, iZ¢ I', then the algorithm returns a value which is not the
valid secret (with an overwhelming probability).

In this work, we describe a secret sharing by a selistfibution rules(Sti95), where a distribution rule
is a functionf : P — § that represents possible distribution of shares to the participants. In other words,
secret sharing is a set

F=U %
Kex
where¥x is a distribution rule corresponding to the seé¢eEquivalently,¥ can be presented in the form
of distribution table7 . The table hagn+ 1) columns — the first one includes secrets and the atloaes
list shares assigned to participafis,...,P,), respectively. Each row of the distribution table specifies
the secret for a collection of shares heldbyNote that7x can be seen as a part of the distribution table
with rows whose first entry iK. This table is denoted byk.
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Most of practical secret sharing schemes are linear and therefore subject to an attack observed by Tompa
and Woll [TW88). The attack permits a dishonest participant who at the pooling stage submits an invalid
share, to recover the valid secret from an invalid one returned by the combiner.

3 Binary Sequences

We consider a mapping from V,, to GF(2) whereV, is the vector space of tuples of elements from
GF(2). f is also called dgunctionon V,,. Thetruth table of a mappingf is a sequence defined by
(f(ag), f(ai),..., f(axn_1)), whereag = (0,...,0,0),01 =(0,...,0,1), ..., 0n_1=(1,...,1,1). Each
a;j is said to be théinary representatiorof integerj, j =0,1,...,2"— 1. A function f is said to be
balancedf its truth table contains an equal number of zeros and ones.

An affinefunction f onV; is a function that takes the form df(x1,...,X,) = ax1 @ B anXn D C,
where@® denotes the addition i6F(2), aj,c € GF(2), j = 1,2,...,n. The functionf is called alinear
function if c= 0. Itis easy to verify that any nonzero affine function is balanced{ latenote the scalar
product of two vectors. There precisely exiStlear functions on/,. We can denote all the"2inear
functions bydo, ¢1,...,¢n_1, whered;(x) = (aj,x).

TheHamming weighof a vectora € V,,, denoted byHW(a), is the number of nonzero coordinates of
o. The Hamming weight of a functiof, denoted byHW(f), is the number of nonzero terms in the truth
table of f.

The nonlinearityof a functionf onV,, denoted byNs, is the minimal Hamming distance betweén
and all affine functions oW, i.e.,

Nt = min HW(f )
i ’2n+1

whereli1, Yy, ..., Pon:1 are all the affine functions ov,. High nonlinearity can be used to resist a linear

attack. We know thaitly < 201 23n-1 (MST78).

Let f be a function onv,,. We say thaff satisfies theoropagation criterion with respect ta if f(x) &
f(x®a) is a balanced function, where= (x1,...,X,) € Vh anda = (ay,...,an) € Vih. Furthermoref is
said to satisfy th@ropagation criterion of degree K it satisfies the propagation criterion with respect
to every nonzero vectar whose Hamming weight is not larger th&n (PLLT91). The propagation
properties were employed in selecting the S-boxes used in the cipher, which contributed to the strength of
the cipher against various attacks including differential (ES91) and lihear (IMat94) attacks. Note that the
strict avalanche criterion (SAQ)NT8E6) is the same as the propagation criterion of degree one.

The concept of correlation immune functions was introduced by Siegenthaler/(Sie84). Xiao and Massey
gave an equivalent definition (CCCS$91; XM88). A functibronV, is called ak-th order correlation
immune functiorif 3,y f(x)(—1)®X =0 for all B € V;, with 1 < HW(B) < k, where f (x) and (B,X)
are regarded as real-valued functions. Correlation immune functions are used in the design of running-
key generators in stream ciphers to resist a correlation attack. A balkihcedder correlation immune
function is also called k-resilient function Due to Lemma 3 0f (ZZ27), we can givkaesilient function
an equivalent definition: a functiohis said to bek-resilient if f satisfies the property: for every subset
{i1,---, ik} of {1,...,n} and every(ay, ..., &) € Wk,

is a balanced function ow,_.
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A special class of functions is called bent. There exist equivalent definitions of bent funCtions (Rot76).
For example, a functio onV,, is said to bébentif and only if f satisfies the propagation criterion with
respect to every nonzero vectonNin The sum of any bent function &f and any affine function o, is
bent. Bent functions are not balanced and bent functiong, exist only whem is even. Furthermore, it

is well known that any bent functiohonV;, achieves the maximum nonlinearity, i.By, = 2"1 — 2501,

4 Model of Cheating

Given (n,n) threshold secret sharing defined by its distribution tableWe define a functiorf : Vj; —
{0,1} and fix an integec; 1 < ¢ < n, which points to the position (column) of the ched®in 7. The
vectord; = (0,...,0,1,0,...,0) € V,, represents the cheating vector introduced by the cheater. Note that
the cheateP. can only change his share on ttih position (other positions are not changed assuming
that other participants are honest). Ipg be the probability of successful cheating By wherea is a
row of 7 indicating the secret and shares currently in use. A precise expresgigR ofill be given in
next two paragraphs. In the work (PZ01), it was shown that for an arbitratlyere is a vectoo’ € V,
such that eithepc g +pc v = 1 0rpcq = 1. This implies that the maximum cheating probability is always
larger than or equal té. Naturally one would expect that (a) M@t q|0 € Vn, 1 < c < n}is as small as
possible, and () = % -27"Y 1 Yaev, Pea is as small as possible (ideally, the both probabilities are equal
to %). In this paper we identify conditions for which (a) and (b) hold and as the result we introduce the
concept ottheating-immunseecret sharing. Furthermore we characterise cheating-immune secret sharing
using cryptographic properties of boolean functions. Thus we are able to construct cheating-immune
secret sharing that gives no advantage to a cheater over honest participants.

We introduce the following notations:

e 0 =(sy,...,5) is the sequence of shares held®ynd the secré = f(a),

e 0 =(s1,...,5%-1,19%,%+1,- - -,5) iS the sequence of shares submitted to the combiner vilaere
modified her share. The sequence
o= (0,...,0,1,0,...,0) contains all zero except theth position and represents modification done
by the cheatelK* = f(a*) is the invalid secret returned by combiner,

o QF ={(Xt,-- -, Xe—1,Sc, Xet 15 - -, Xn) | F (X2, -y X1, LD Se, Xt 1, - - -, Xn) = K*} is the set of all shares
taken from rows ofI” containinga andK which are consistent with the invalid secret returned by
the combiner. The set determines the view of the cheater after gettindbdokm the combiner,

o Qq = {(X1,...,Xc—1,S, Xe+15- - s Xn) | F (X1, - -+, %=1, Sc, Xe 41, - - -, Xn) = K} is the set of rows which
contain the current share Bf and the valid secref.

The functionf is calleddefining function To prevent cheaters from finding the correct secret (and
effectively discourage them from cheating), one would wish to ob@jjras big as possible for ary,
while Qi N Qq as small as possible. The nonzero vedor (0,...,0,1,0,...,0), where only thec-th
coordinate is nonzero, is called tbheating vectar a = (sy,...,S) is called theoriginal vector The
value ofpcq = #(Q4 N Qq)/#QY, where K denotes the the number of elements in theXsetxpresses
the probability of cheater success with respeai te (si,...,S). As the original vectoo = (sp,...,%)
is always inQ§ N Qq, the probability of successful cheating is always nonzem-@gr> 0.

The following result can be found ih (PZ01):



On Cheating Immune Secret Sharing 257

Theorem 1 Given secret sharing with its distribution tabie and the defining function f on,VLet ¢ be
any integer withl < c < n anda = (sy,...,S) be any vector in Y. Then there exists a vectar € V,
such thatpe o + pc o’ = 1 otherwisepe g = 1.

Theorenj 1L implies that the maximum probability of successful cheating is always higher than or equal
to 3.
Given secret sharing with its distribution talléand the defining functioti onV,,. The value of
pc=2" Pca

AEVR

is the average cheating probability over all original vectoigiifor a fixed cheating vector. The value of

2" Z Pc,a

c=10€Vp

is the average cheating probability over all cheating vectors (with Hamming weight one) and all original
vectors inVy.
It should be noticed that the definition pfdepends on a particular defining functién

Theorem 2 Given secret sharing with its distribution tab#eand the defining function f or},VThen for
each fixed integer c with < ¢ < n, we havep. > % where the equality holds if and onlyptq = 5 L for
eacha € V,.

Proof 1 Write y= (Xq,...,X%-1) and z= (Xc41,--.,%n). Set

Ri={(.2[f(v,1L,2 =1, f(y.0,2=1}
Re={(y.2[f(v,1,2 =1, f(y,0,2 =0}
Rs={(y,2|f(y,1,2 =0, f(y,0,2 =1}
Re={(y.2)[f(v.1,2 =0, f(y.0,2)=0} 1)

and#R =rj,i=1,2,3,4. Obviously §+ry+rz+rg=2""1.
LetB1 € Ve—1, B2 € Vh—c anda = (P1,0,B2) or a = (B1,1,B2). Due to the definition of¢q, it is easy
to verify that

i, i a=(PB1,0,B2), where(B1,B2) € Ry
rlrfrz if o = (B1,0,Bz), where(B1,B2) € R
r3r+3r4 if o = (B1,0,B2), where(B1,B2) € R3
. r3rfr‘r4 if a = ([31,0 [32) Where(Bl,Bz) 2
Pea = r1r+lr3 if o = (B1,1,Bz), where(B1,B2) € Rl @
rlrfrg ifa= ([31, 1 [32) Where([317[32)
rzrjm if o = (B1,1,Bz), where(B1,B2) € Rz
4 if a = (B1,1,B2), where(By,B2) €

ro+ryg
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There exist two cases to be considereqURR # 0, where0 denotes the empty set, for eadhi) €
{(1,2),(3,4),(1,3),(2,4)}, and R, UR,, = 0 for some( jo,i0) € {(1,2),(3,4),(1,3),(2,4)}.

Case 1: RUR # 0 for each(j,i) € {(1,2),(3,4),(1,3),(2,4)}. In this case [+r; # O for each
(i,1) € {(1,2),(3,4),(1,3),(2,4)}. Therefore we can compupg:

pC — 2—n pC(X — 2—[’]( r% r% r%
o ri+rz ri+rz rs+ry
2 2 2 2 2
ry re rs rs ry ) 3)

3+rg Tr1+r3 ri+r3 ro+rag ra+ra

It is easy to see thata—b)2 > 0 or equivalentlyf";ig2 > Z(a+b) for any two real numbers with
a,b> 0and a+b > 0 where the equality holds if and only if-ab. Using the same arguments ¢ (3), we

conclude that

Pe > 27(5(r+12)+5(ra+ra)+ 5(r+ra) + 5(r2+1a))

1
= 27"(ri+ra+r34ra) = 5 4)

where the equality holds if and only if & ro = r3 =r4. From @), n=ry=rz=rgifandonlyifpcq = %
for eacha € V,. Therefore, in Case pc > % where the equality holds if and onlygf ¢ = % for each
a € Vh.

Case 2: R,UR, = 0 for some(jo,io) € {(1,2),(3,4), (1,3), (2,4)}. Without loss of generality we
assume that RUR, = 0. In this case { = rp = 0 and thus g+r4 = 2" 1.

There exist two cases to be considereqUR; # 0 for each(j,i) € {(3,4), (1,3), (2,4)}, and R, U
R, = 0for some(j1,i1) € {(3,4), (1,3), (2,4)}.

Case 2.1: RUR # 0 for each(j,i) € {(3,4),(1,3),(2,4)}. In this case y+r; # 0 for each(j,i) €
{(3,4).(1,3).(2,4)}.

We can computpc:

2 2 2 2
__»o—n __o—n r3 Iz 3 M3
Pc=2 Pea=2"(
o rs+rqg rz3+rqg ri+rs ra+rg

e o T G 1
Since i =r2 =0, we havepc = 27" 5 4y, Pea = 2 (ﬁ +r3+r4). Note thatr3+r4 > 5(r3+ra)
and r;+r4 = 2"1. Thus we conclude that > 2~"(3(ra+r4) +r3+14) = 3.
Case 2.2: R UR;, = 0 for some(j,i1) € {(3,4),(1,3),(2,4)}. Recall that g+rs = 2"1. Thus
(j1,11) # (3,4). Without loss generality we assume tligt,i1) = (1,3). In other words, RUR; = 0.
Thus g = 0. Since f = r, = r3 = 0, we know thats = 2"~1. We comput@,:

pC — 2—n pC(X — 2—n( rlzl rlzl
a5, ’ r3+rg ro+ry

Since p=r3=0, we havepc =2 "(rg+r4) = 1.
Summarising Cases 1 and 2, we have provedghat % where the equality holds if and onlyg§ o

_1
=2
for eacha € V. O
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Theorem 3 Given secret sharing with its distribution tabfe and the defining function f on,V Then
p> % where the equality holds if and onlyg o = % for each integer c with < ¢ < n and eactu € V.

Proof 2 By using Theorein] 2, we have

Sl
o]

®)

NI =

Pc >
1

6:

C

Hence we have proved inequality in the theorem.
Assumép = 3. Fromp =} andpc > 3, c=1,...,n, we know thapc = 3, c=1,...,n. By using
Theorenﬂz, we know that 4 = % for each integer ¢ witl < ¢ < n and eaclu € Vj,. We have proved the

necessity. The sufficiency is obvious. Hence we proved the theorem. O

5 Cheating-Immune Secret Sharing Scheme

Secret sharing resists cheating if either ffau |0 € Vi, 1 < c < n} is as small as possible, pris as
small as possible. As mentioned in Secfipn 4, the maximum cheating probability is always larger than or
equal to%. Due to Theorerﬂl, ip = 1 then the maximum cheating probability is equal%toWe now
prove the converse. Assume that the maximum cheating probability is eq%alwb next prove that
Pca = % for each integec with 1 < ¢ < n and eaclu € V,. Assume for contradiction thai o < % for
some integec with 1 < ¢ < n and someax € V,. According to Theorer]1, there exists another vector
a’ €V, such thatpeq + peor = 1 thenpe g > % This contradicts the assumption that the maximum
cheating probability is equal té. The contradiction proveggq = % for each integec with 1 <c<n
and eachu € Vj,. In this case, clearlyp = 3.
Due to Theorems|2 aifd 3, we conclude

Corollary 1 Given secret sharing with its distribution tabié and the defining function f o,V Then
the following statements are equivalent:

() p=3
(i) pc= % for each integer c witdh < c <n,
(i) pca = % for each integer c witd < ¢ < n and eaclu € V.

A secret sharing is said to lsheating immuné it satisfies (i) or (ii) or (iii) of Corollary[].
Cheating immunity of secret sharing can be investigated in the context of well-known characteristics of
the defining functionf such as correlation immunity and SAC.

Theorem 4 Given secret sharing with its distribution tabfeand the defining function f or,VThen the
secret sharing is cheating immune if and only if fligesilient and satisfies the SAC.

Proof 3 We keep using the notations as in the proof of Thedriem 2. Assume that the secret sharing is
cheating immune. Let c be an integer with< ¢ < n. Using CorollaryD.,pc,a = % for eacha € .
Therefore, from the proof of Theoréiin 2, we hayve r> =r3 =r4. Fromry+rs =r3+r4, we conclude that
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f(X1,...,%n)|x=1 is balanced. Similarly from the fact #rz =ro+r4, we conclude that (i, . . ., Xn) |x.=0
is balanced. Since c is arbitrarily ifi1,...,n}, we have proved that f ikresilient.
We now consider (k) & f (x® &) whered. = (0,...,0,1,0,...,0) has been defined in Sectioh 4.
Let x= (Y, X, 2) where ye V._1, z€ V¢ and x € GF(2). ¢From G),

[0 if(y,zeRor(y,2 eRs
f(x)@f(X@6°)_{ 1 if(y@eRior(y,z)e% ©6)

Since f =ry =r3 =r4, from (), itis clear that fx) @ f (x® &) is balanced. Note that c is an arbitrarily
integer withl < ¢ < n. Thus we have proved that f satisfies the SAC.

Conversely assume that f isresilient and satisfies the SAC. Let ¢ be an integer withc < n. Due
to thel-resilience, {Xy,...,Xn)|x.=1 iS balanced and thus Fra = rz+r4. Similarly f(x1,...,%n)|x.=0 IS
balanced and thus;H-rz = +r4.

On the other hand, since f satisfies the SAQ) & f (x® &) is balanced. FronﬂG), we have+rs =
ro+r3. Combing i +r2=r3+rqg,ri+rz3=ra+rgandrn-+rq=rs+rsz, we conclude thatyr=r, =rz =
r4. From the proof of Theore[ﬂ 2, we have proved fat = 1 for eacha € V,. Since c is an arbitrarily
integer withl < ¢ < n, we have proved that the secret sharing is cheating immune. O

Since resilient functions are balanced, the defining function of any cheating immune secret sharing
must be balanced.

6 Construction of Cheating-Immune Secret Sharing Scheme

Based on Theorefr] 4, to construct an cheating-immune secret sharing scheme, we need a 1-resilient func-
tion onV, satisfying the SAC.

The following result can be found from the proof of Theorem 17 of the referénce (SM00), that is an
article on boolean functions with cryptographic properties.

Lemmal Let h be a bent function on,\> (n is even). Set
(X1, ., Xn—1) = (1&Xn—1)h(X1,...,%—2) BXn-1(lBh(X1 B ay,..., Xn—2B 8n_2))
where HWay, ..., an2) = 3n— 1. Set
f(X1,. %) = (1B Xn)9(Xa, -+, Xn-1) DXd(a B L, ... Xn—1 B 1)
Then
(i) fis l-resilient,
(i) f satisfies the propagation criterion of degrée -1,
(iii) f has a nonlinearity2"~1 — 23",

If we apply the function mentioned in Lemrpi& 1 to Theofgm 4, then we obtain an cheating-immune

secret sharing with defining function whose nonlinearityis'2- 23", Therefore we have the following
conclusion:
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Theorem 5 Let n> 0 be an even integer. Then there exists a secret sharing with its distributionfable
and the defining function f or,\8uch that

(i) this secret sharing is cheating immune,

(ii) the nonlinearity N of f satisfie" 1 — 25N,
For each secret sharing constructedlin (RZ01), there always exists some mtegkisome vector
o € Vy such thape o > % Therefore each secret sharinglin (PZ01) is not cheating immune.

Examplel Letn=41in LemmaD. Seh(x1,%2) = x1X2. Itis easy to see thédtis a bent function oWs.
Choose(ay, a) = (1,0). ThenHW(ay,ap) = 1= 3n—1.
Set
9(x1,%2,%3) = (L x3)(X1,%2) ®X3(L B (1P X1, X2)) = X1 X0 B XoX3 B X3
We further set
f(xe,X2,X3,%) = (1®X4)g(x1, %2, %) BXag(X1 &L, x2 B 1, x3 B 1)
= X1X2 D X1Xq D XoX3 D X3Xq D X3 B X4

Due to Lemmd[Lf is 1-resilient and satisfies the propagation criterion of degree 1 (SAC). Due to
Theoren{ 4, this secret sharing is cheating immune. Let the givinelude four participants and the
defining function

f(X1,%2,X3,Xa) = X1X2 B X1X4 ® X2X3 B XaX4 D X3 D X4
It is easy to find the truth table dfwhich is
0,1,1,1,0,1,0,0,0,0,1,0,1,1,1,0
The secret sharing can be described as the following table:
f S & S S

ORrRPPRPORPROOOORORRRERO
PR RPRPRPPRPRPPRPOO0OOOOOOO
PRPRPPRPOOOORRPRRLRRPLPOOOO
PP OORRPRPROORRPRPROORROO
PORORORORORORORO
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Using Theorerﬂél or by a straightforward verification, we get Myt 4 = 2" — 23" wheren = 4.

Assume that the dealer fixed the shames (1,0,1,0) € V4 and the secre = f(1,0,1,0) = 1. Our
cheater i%;. Thusdz = (0,0,1,0) andc = 3. The combiner obtains the sequenrce= (1,0,0,0) with
the third share changed by the cheater and returns the invalid 8&ctetf (1,0,0,0) = 0. On receiving
K*, the cheater can identify the set

Q5 ={(x1,%,1,%)|f (x1,%,0,%4) = O}
which isQ;; = {(0,0,1,0),(0,1,1,0),(1,0,1,0),(1,0,1,1)}. The set
Qq = {(X1,%2,1,%a)| (X1, %2, 1, X4) = 1}

become®), = {(0,0,1,0),(0,0,1,1),(1,0,1,0),(1,1,1,0)}.
The intersectiof2; NQq = {(0,0,1,0),(1,0,1,0)} and the probability of successful cheatin@ig, =
#(Qy N Qa) /#Q = 3.

7 Conclusions

We have proved an interesting property of secret sharing. For given secret sharing, the average cheating
probability over all cheating vectors and all original vectors, denotegl Isgtisfiep > 1, and the equal-

ity holds if and only if the cheating probabilify. o satisfiespcq = % for every cheating vectad; and

every original vecton. In this case the secret sharing is said to be cheating immune. We have found a
relationship between cheating immune secret sharing and cryptographic criteria of boolean functions, and
then we have successfully constructed cheating immune secret sharing using a highly nonlinear defining
function. For simplicity, in this work we have considered cheating immune secret sharing where there is a
single dishonest participant (or cheater). However this concept can be generalised for the case where there
are many colluding cheaters. Future works include also the design of cheating immune secret sharing for
a given access structure.

Acknowledgements

The work was in part supported by Australian Research Council grant AO0103078 and DP0345366. The
authors thank the anonymous referees for helpful comments.



On Cheating Immune Secret Sharing 263

References

[Bla79] G. R. Blakley. Safeguarding cryptographic keys. Pimceedings of AFIPS 1979 National
Computer Conferen¢@ages 313-317, 1979.

[BS91] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosysteinsrnal of
Cryptology Vol. 4, No. 1:3-72, 1991.

[Car95] M. Carpentieri. A perfect threshold secret sharing scheme to identify chéateigns, Codes
and Cryptography5(3):183—-187, 1995.

[CCCS91] P. Camion, C. Carlet, P. Charpin, and N. Sendrier. On correlation-immune functions. In
Advances in Cryptology - CRYPTO'Qlolume 576 ofLecture Notes in Computer Science
pages 87-100. Springer-Verlag, Berlin, Heidelberg, New York, 1991.

[CSV93] M. Carpentieri, A. De Santis, and U. Vaccaro. Size of shares and probability of cheating in
threshold schemes. lAdvances in Cryptology - EUROCRYPT,9lume 765 oflLecture
Notes in Computer Scienggages 118-125. Springer-Verlag, Berlin, Heidelberg, New York,
1993.

[Des88] Y. Desmedt. Society and group oriented cryptography: A new concepAdvances in
Cryptology - CRYPTO’87volume 293 ofLecture Notes in Computer Sciengages 120-
127. Springer-Verlag, Berlin, Heidelberg, New York, 1988.

[Mat94] M. Matsui. Linear cryptanalysis method for DES cipher. Aldvances in Cryptology - EU-
ROCRYPT'93volume 765 ofecture Notes in Computer Scienpages 386—-397. Springer-
Verlag, Berlin, Heidelberg, New York, 1994,

[MS78] F.J. MacWilliams and N. J. A. SloanEhe Theory of Error-Correcting CodeNorth-Holland,
Amsterdam, New York, Oxford, 1978.

[PLL191] B. Preneel, W. V. Leekwijck, L. V. Linden, R. Govaerts, and J. Vandewalle. Propagation char-
acteristics of boolean functions. Akdvances in Cryptology - EUROCRYPT,9%@lume 437
of Lecture Notes in Computer Sciengages 155-165. Springer-Verlag, Berlin, Heidelberg,
New York, 1991.

[PZ01] J. Pieprzyk and X. M. Zhang. Nonlinear secret sharing immune against cheating. In Knowl-
edge Systems Institute, edité?roceedings of 2001 International Workshop on Cryptology
and Network Security, parallel to The Seventh International Conference on Distributed Mul-
timedia Systempages 154-161. DMS, 2001.

[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest ma-
jority. In Proceedings of 21st ACM Symposium on Theory of Computing, pages 73-85.
Springer-Verlag, Berlin, Heidelberg, New York, 1989.

[Rot76] O. S. Rothaus. On “bent” functiongournal of Combinatorial TheorSer. A, 20:300-305,
1976.

[Sha79] A. Shamir. How to share a secr€ommunications of the ACN2:612—-613, 1979.



264 Josef Pieprzyk and Xian-Mo Zhang

[Sie84] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic
applications.|[EEE Transactions on Information Theoty-30 No. 5:776—779, 1984.

[SMOO0] P. Sarkar and S. Maitra. Highly nonlinear balanced boolean functions with important crypto-
graphic properties. IAdvances in Cryptology - EUROCRYPT2006lume 1807 otecture
Notes in Computer Scienceages 485-506. Springer-Verlag, Berlin, Heidelberg, New York,
2000.

[Sti95] D.R. Stinson. Cryptography: Theory and practice. CRC Press, 1995.

[TwW88] M. Tompa and H. Woll. How to share a secret with cheatéosrnal of Cryptology1(2):133—
138, 1988.

[WT86] A. F. Webster and S. E. Tavares. On the design of S-boxeddiances in Cryptology -
CRYPTO'85 volume 219 ofLecture Notes in Computer Sciengages 523-534. Springer-
Verlag, Berlin, Heidelberg, New York, 1986.

[XM88] G. Z. Xiao and J. L. Massey. A spectral characterization of correlation-immune combining
functions.|EEE Transactions on Information Thei34(3):569-571, 1988.

[2z97] X. M. Zhang and Y. Zheng. Cryptographically resilient function&EE Transactions on
Information Theory43(5):1740-1747, 1997.



	Introduction
	Background
	Binary Sequences
	Model of Cheating
	Cheating-Immune Secret Sharing Scheme
	Construction of Cheating-Immune Secret Sharing Scheme
	Conclusions

