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Recent research on the combinatorics of finite sets has explored the structure of symmetric difference-closed sets, and
recent research in combinatorial group theory has concerned the enumeration of commuting involutions in Sn and
An. In this article, we consider an interesting combination of these two subjects, by introducing classes of symmetric
difference-closed sets of elements which correspond in a natural way to commuting involutions in Sn and An. We
consider the natural combinatorial problem of enumerating symmetric difference-closed sets consisting of subsets of
sets consisting of pairwise disjoint 2-subsets of [n], and the problem of enumerating symmetric difference-closed sets
consisting of elements which correspond to commuting involutions in An. We prove explicit combinatorial formulas
for symmetric difference-closed sets of these forms, and we prove a number of conjectured properties related to such
sets which had previously been discovered experimentally using the On-Line Encyclopedia of Integer Sequences.

Keywords: symmetric difference-closed set, commuting involution, Klein four-group, permutation group, combina-
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1 Introduction
Combinatorial properties concerning symmetric difference-closed (∆-closed) sets were explored recently
in Gamble and Simpson (2015) and Buck and Godbole (2014). In this article, we consider an interesting
class of ∆-closed sets related to commuting involutions in the symmetric group Sn and the alternating
group An.

The study of combinatorial properties associated with pairs of commuting involutions in Sn and An is
an interesting subject in part because this area is related to the classifications of abstract regular polytopes
for fixed automorphism groups, as shown in Kiefer and Leemans (2013). In Kiefer and Leemans (2013)
it is proven that up to conjugacy, there are
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n∑
k=1
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k

2
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)2
⌋
· (n− k + 1)

ordered pairs of commuting involutions in S2n and S2n+1. This formula is used in Kiefer and Leemans
(2013) to prove new formulas for the number of unordered pairs of commuting involutions up to iso-
morphism in a given symmetric or alternating group. These formulas may be used to determine the total
number of Klein four-subgroups for Sn and An.
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In our present article, we consider a natural variation of the problem of counting (C2 ×C2)-subgroups
of a given permutation group. In particular, we consider the problem of enumerating Klein permutation
subgroups which are, in a specific sense, analogous to ∆-closed sets. Inspired in part by Kiefer and
Leemans (2013), Buck and Godbole (2014), and Gamble and Simpson (2015), we introduce new classes
of ∆-closed sets consisting of elements which correspond in a natural way to commuting involutions in
Sn and An, and we prove new combinatorial formulas for these classes of ∆-closed sets.

1.1 An enumerative problem concerning symmetric difference-closed sets

Given two sets S1 and S2, recall that the symmetric difference of S1 and S2 is denoted by S1∆S2, and
may be defined so that S1∆S2 = (S1 \ S2) ∪ (S2 \ S1). An n-subset T consisting of sets is a symmetric
difference-closed set or a ∆-closed n-subset if S1∆S2 ∈ T for all S1, S2 ∈ T . In other words, restricting
the ∆ operation to T × T yields a binary operation on T . Our present article is largely motivated by the
enumerative problem described below, which may be formulated in a natural way in terms of ∆-closed
sets.

Suppose that n people arrive at a meeting, and suppose that these n people arrange themselves into
pairs (except for a loner if n is odd) and that these pairs then form various organizations. What is the total
number, taken over all possible pairings, of possible collections C of three distinct organizations such that
given two organizations in C, a pair P of people belongs to only one of these two organizations iff P is a
member of the remaining (third) organization?

The number of possible collections C as given above is also equal to the number of ∆-closed 4-subsets
S ⊆ 22

[n]

such that there exists a set T consisting of pairwise disjoint 2-subsets of [n] such that S ⊆ 2T .
A set S of this form endowed with the ∆ operation forms a group which is isomorphic to the Klein four-
group C2×C2, and the elements consisting of pairwise disjoint 2-sets in S may be regarded in an obvious
way as commuting involutions in Sn. We thus have that the total number of collections C as given above
is also equal to the number of subgroups G of the symmetric group Sn such that G is isomorphic to the
Klein four-group, and such that there exists a set T ⊆ Sn of pairwise disjoint transpositions such that
each element in G is a product of elements in T . We refer to this latter property as the totally disjoint
transposition (TDT) property. It is clear that it is not the case that all Klein four-subgroups of Sn satisfy
this property. For example, the permutation subgroup

{id, (12)(34), (13)(24), (14)(23)}

forms a Klein four-subgroup of S4, but the 2-sets {3, 4} and {1, 3} are not pairwise disjoint.
The enumerative problem given above may be formulated in a more symmetric way in the following

manner. The total number of possible collections C as described in this problem is also equal to the
number of 3-sets of the form

{A ∪ B,A ∪ C,B ∪ C}

such that A, B, and C are pairwise disjoint sets contained in a set of pairwise disjoint 2-subsets of [n], and
at most one of A, B, and C can be empty.

The sequence labeled A267840 which we contributed to OEIS Foundation Inc. (2011) enumerates
∆-closed sets of the form described above. Accordingly, let A267840n denote the number of Klein four-
subgroups of Sn satisfying the TDT property. In the OEIS entry for A267840, we provided the following
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intriguing, exotic triple sum for A267840n for n ∈ N, letting δ denote the Kronecker delta function:

n!

bn2 c∑
i=1

i∑
j=1

min(j,b 1
4 (2i+2j−1)c)∑

k=max(d i2e,i+j−bn2 c)

2k−i−j

k!(i− k)!(j − k)!(n− 2i− 2j + 2k)!(δi,j + δi,2k + 1)!
. (1)

In our present article, we offer an elegant proof of the formula indicated above, by introducing a new
class of integer partitions which we refer to as “Klein partitions”. After our formula indicated in (1) was
added to OEIS Foundation Inc. (2011), Václav Kotěšovec used this formula together with the plinrec
Mathematica function to determine a conjectural linear recurrence with polynomial coefficients for the
integer sequence (A267840n : n ∈ N) (Kotěšovec (2016)).

Kotěšovec also used the formula given in (1) to construct a conjectured exponential generating func-
tion (EGF) for A267840 using the dsolve Maple function, together with the rectodiffeq Maple
command. Amazingly, the integer sequence (A267840n)n∈N seems to have a surprisingly simple EGF, in
stark contrast to the intricacy of the above triple summation given in (1):

EGF(A267840;x)
?
=
ex

3
− e

x(x+2)
2

2
+
e
x(3x+2)

2

6
.

We refer to this conjecture as Kotěšovec’s conjecture. We present a combinatorial proof of this conjec-
ture in our article, and we use this result to prove a conjectural asymptotic formula for (A267840n : n ∈
N) given by Václav Kotěšovec in OEIS Foundation Inc. (2011).

1.2 A class of symmetric difference-closed sets related to commuting even
involutions

Since the number of pairs of commuting involutions in the alternating group An up to isomorphism is
also considered in Kiefer and Leemans (2013), it is also natural to consider analogues of the results given
above for even products of transpositions.

The sequence labeled A266503 which we contributed to OEIS Foundation Inc. (2011) enumerates
subgroups G of the alternating group An such that G is isomorphic to the Klein four-subgroup C2 ×
C2, and each element in G is the product of the elements in a subset of a fixed set of pairwise disjoint
transpositions in An. It is important to note that this is not equal to the number of Klein four-subgroups
of An. This may be proven by the same counterexample as above in the case of the symmetric group.

Letting A266503n denote the nth entry in the OEIS sequence A266503, A266503n is also equal to
the number of ∆-closed subsets S ⊆ 22

[n]

such that there exists a set T consisting of pairwise disjoint
2-subsets of [n] such that S ⊆ 2T , and each element in S is of even order.

In the OEIS sequence labeled A266503, we provided the following beautiful expression for A266503n
for n ∈ N:

n!

bn4 c∑
i=1

i∑
j=1

min(2j,b 1
4 (4i+4j−1)c)∑

k=max(i,2i+2j−bn2 c)

2k−2i−2j

k!(2i− k)!(2j − k)!(n− 4i− 4j + 2k)!(δi,j + δi,k + 1)!
.
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Václav Kotěšovec used the above formula to conjecture that the EGF for (A266503n)n∈N is equal to
the following expression OEIS Foundation Inc. (2011).

ex

3
− e

−x(x−2)
2

8
− e

x(x+2)
2

4
+
e
x(3x+2)

2

24
.

We also offer a combinatorial proof of this conjectured EGF formula. This EGF formula may be used to
prove other conjectured results concerning A266503, such as an asymptotic formula for A266503.

2 A proof of Kotěšovec’s conjecture
Let A000085n denote the nth entry in the OEIS sequence labeled A000085 for n ∈ N0, so that A000085n
is equal to the number of self-inverse permutations on n and the number of Young tableaux with n cells.
Similarly, let A115327n denote the nth entry in the OEIS sequence labeled A115327, which is defined so
that the EGF of this sequence is e

3
2x

2+x. Since the EGF for the integer sequence (A000085n : n ∈ N0)

is e
x2

2 +x, we find that Kotěšovec’s conjecture concerning the integer sequence (A267840n : n ∈ N) is
equivalent to the following conjecture, as noted by Kotěšovec in OEIS Foundation Inc. (2011).

Conjecture 2.1. (Kotěšovec, 2016) The nth entry in A267840 is equal to 1
3 −

A000085n
2 + A115327n

6 .

As indicated in OEIS Foundation Inc. (2011), based on results introduced in Leaños et al. (2012), we
have that A115327n is equal to the number of square roots of an arbitrary element σ ∈ S3n such that
the disjoint cycle decomposition of σ consists of n ∈ N0 three-cycles. We thus find that Kotěšovec’s
conjecture relates ∆-closed sets as given by A267840 to combinatorial objects such as Young tableaux
and permutation roots, in an unexpected and yet simple manner.

To prove Kotěšovec’s conjecture, our strategy is to make use of known summation formulas for the
OEIS sequences labeled A000085 and A115327. The known formula

A000085n =

bn2 c∑
k=0

n!

(n− 2k)!2kk!

is given in OEIS Foundation Inc. (2011). The new summation formula

A115327n = n!

bn2 c∑
k=0

3k

2kk!(n− 2k)!

is also given in OEIS Foundation Inc. (2011), based on a result proven in Leaños et al. (2012) concern-
ing mth roots of permutations. So, we find that Kotěšovec’s conjecture is equivalent to the following
conjectural formula:

A267840n
?
=

bn2 c∑
k=2

(
3k−1 − 1

2

)
· n!

2k(n− 2k)!k!
.

We are thus lead to consider the number triangle given by expressions of the form n!
2k(n−2k)!k! , for k ∈ N0

such that k ≤ bn2 c. From OEIS Foundation Inc. (2011), we find that this number triangle is precisely
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the triangle of Bessel numbers T (n, k), whereby T (n, k) is the number of k-matchings of the complete
graph Kn, with T (n, k) = n!

k!(n−2k)!2k . So, we find that Kotěšovec’s conjecture may be formulated in the
following equivalent manner.

Theorem 2.1. For n ∈ N such that n ≥ 4, we have that A267840n =
∑bn2 c
k=2

(
3k−1−1

2

)
· T (n, k).

Proof: Recall that T (n, k) is the number of k-matchings of the complete graph Kn. We claim that

A267840n =

bn2 c∑
k=2

cn,k · T (n, k),

where cn,k is the number of Klein four-subgroups of Sn satisfying the TDT property consisting precisely
of the following transpositions: (1, 2), (3, 4), . . . , (2k − 1, 2k). This is easily proven bijectively, in the
following way.

Given a k-matching of the complete graph Kn, letting this matching be denoted with the k pairwise
disjoint transpositions

(x1 < x2) <` (x3 < x4) <` . . . <` (x2k−1 < x2k),

which we order lexicographically, and given a Klein-subgroup of Sn satisfying the TDT property consist-
ing of the transpositions (1, 2), (3, 4), . . . , (2k−1, 2k), we obtain another Klein-subgroup of Sn satisfying
the TDT property consisting of the transpositions

(x1, x2) <` (x3, x4) <` . . . <` (x2k−1, x2k)

by replacing each occurrence of (i, i+1) with (xi, xi+1) for i = 1, 3, . . . , 2k−1. This defines a bijection

φ : Cn,k × Tn,k → An,k,

where Cn,k is the set of TDT Klein four-subgroups of Sn as given by the coefficient cn,k, Tn,k is the set
of all k-matchings of Kn, andAn,k is the set of all TDT Klein-four subgroups of the symmetric group Sn
consisting of exactly k transpositions in total.

We claim that
cn,k = 1 + 3 + · · ·+ 3k−2

for all n ≥ 4 and k ∈ N≥2 whereby k ≤
⌊
n
2

⌋
. We proceed by induction on k. In the case whereby k = 2,

we have that cn,k is the number of Klein-subgroups of Sn satisfying the TDT property consisting of the
transpositions (1, 2) ∈ Sn and (3, 4) ∈ Sn. But it is clear that there is only one such group, namely:

{(12)(34), (12), (34), id} ∼= C2 × C2.

So, we find that cn,2 = 1, as desired. We may inductively assume that

cn,k = 1 + 3 + · · ·+ 3k−2

for some n ≥ 4 and k ∈ N≥2 whereby k <
⌊
n
2

⌋
. For each Klein-subgroup K ≤ Sn satisfying the TDT

property consisting of the transpositions (1, 2), (3, 4), . . . , (2k−1, 2k) ∈ Sn, we may create three distinct
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Klein-subgroups of Sn satisfying the TDT property, by adjoining the transposition (2k + 1, 2k + 2) to
two nonempty products of transpositions in K ≤ Sn in three different ways to produce three TDT Klein
four-subgroups. For example, we may adjoin the permutation (56) to two non-identity elements within
the TDT (C2 × C2)-subgroup

{(12)(34), (12), (34), id}

in three different ways to obtain three additional subgroups which are isomorphic to C2 × C2 and which
satisfy the TDT property:

{(12)(34)(56), (12)(56), (34), id},
{(12)(34)(56), (12), (34)(56), id},
{(12)(34), (12)(56), (34)(56), id}.

So, we may obtain
3 · (1 + 3 + · · ·+ 3k−2) = 3 + 32 + · · ·+ 3k−1

new TDT Klein four-subgroups in this manner. But there is a unique remaining Klein four-subgroup
satisfying the TDT property consisting of the transpositions (1, 2), (3, 4), . . . , (2k−1, 2k), (2k+1, 2k+2)
which cannot be obtained in the preceding manner, namely:

{(2k + 1, 2k + 2), (12)(34) · · · (2k − 1, 2k)(2k + 1, 2k + 2), (12)(34) · · · (2k − 1, 2k), id} .

So, this shows that the total number of Klein four-subgroups satisfying the TDT property consisting of
the transpositions (1, 2), (3, 4), . . . , (2k − 1, 2k), (2k + 1, 2k + 2) is equal to

1 + 3 + 32 + · · ·+ 3k−1,

thus completing our proof by induction. So, since

A267840n =

bn2 c∑
k=2

cn,k · T (n, k),

and

cn,k = 1 + 3 + · · ·+ 3k−2 =
3k−1 − 1

2
,

we thus have that

A267840n =

bn2 c∑
k=2

(
3k−1 − 1

2

)
· T (n, k),

as desired.

Corollary. The EGF for (A267840n)n∈N is ex

3 −
e
x(x+2)

2

2 + e
x(3x+2)

2

6 .
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Proof: This follows immediately from Theorem 2.1, since the equality given in Kotěšovec’s conjecture is
equivalent to the equation given in Theorem 2.1.

Kotěšovec also provided the following conjectural asymptotic expression for the integer sequence
(A267840n : n ∈ N) in OEIS Foundation Inc. (2011):

A267840n ∼ 2−
3
2 3

n
2−1exp

(√
n

3
− n

2
− 1

12

)
n
n
2 . (2)

The above conjectured asymptotic formula may be proven using the EGF given in Corollary 2. In
particular, the algolib Maple package together with the Maple command equivalent may be used
to derive (2) from Corollary 2 (Kotěšovec (2016)). Kotěšovec discovered the following unexpected re-
currence with polynomial coefficients for the sequence (A267840n)n∈N using the Mathematica function
plinrec (Kotěšovec (2016)):

(n− 4)(n− 2)A267840n = 3(n2 − 5n+ 5)A267840n−1
+ (n− 1)(4n2 − 27n+ 41)A267840n−2
− (n− 2)(n− 1)(8n− 29)A267840n−3
− (n− 3)(n− 2)(n− 1)(3n− 16)A267840n−4
+ 3(n− 4)(n− 3)(n− 2)(n− 1)A267840n−5.

We leave it as an easy computational exercise to verify this recurrence using a computer algebra system
(CAS) together with Corollary 2, by comparing the EGF for the left-hand side of the above equation with
the EGF for the right-hand side of this equality using Corollary 2.

3 Kotěšovec’s conjecture for TDT Klein four-subgroups of alter-
nating groups

Let A000085 and A115327 be as given above. Similarly, for n ∈ N0, let A001464n denote the nth term
given by the sequence labeled A001464 in OEIS Foundation Inc. (2011). This sequence is defined so
that the EGF for this sequence is exp(−x − 1

2x
2). So it is clear that the problem of proving the above

conjectural expression for the EGF of A267840 is equivalent to the problem of proving the following
identity given in OEIS Foundation Inc. (2011).

Conjecture 3.1. (Kotěšovec, 2016) For n ∈ N, A266503n = 1
3 + 1

8 (−1)n+1A001464n − A000085n
4 +

A115327n
24 .

The following formula for A001464 is given by Benoit Cloitre in OEIS Foundation Inc. (2011):

A001464n = (−1)n
bn2 c∑
k=0

(−1)k(2k − 1)!!

(
n

2k

)
.

Also, recall that

A000085n =

bn2 c∑
k=0

n!

(n− 2k)!2kk!
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and

A115327n = n!

bn2 c∑
k=0

3k

2kk!(n− 2k)!
.

So, we have that the problem of proving Conjecture 3.1 is equivalent to the problem of proving the
following identity.

Theorem 3.1. For n ∈ N, A266503n =
∑bn2 c
k=1

1
24

(
−6− 3(−1)k + 3k

)
T (n, k).

Proof: Recall that T (n, k) denotes the number of k-matchings of the complete graph Kn. We claim that

A267840n =

bn2 c∑
k=2

dn,k · T (n, k),

where dn,k is the number of Klein-subgroups of An satisfying the TDT property consisting of the fol-
lowing transpositions: (1, 2), (3, 4), . . . , (2k − 1, 2k). Again, this is easily seen bijectively, just as in the
proof of Theorem 2.1.

Letting n ∈ N be sufficiently large, we proceed to construct an expression for the coefficient dn,k in
terms of dn,k−1 and dn,k−2. For each Klein-subgroup of An satisfying the TDT property consisting of
the transpositions (1, 2), (3, 4), . . . , (2k − 5, 2k − 4), we obtain 3 TDT Klein four-subgroups of An by
adjoining the product (2k − 3, 2k − 2)(2k − 1, 2k) twice in three different ways, in essentially the same
manner as in the proof Theorem 2.1.

Now consider the remaining Klein four-subgroups of An consisting of the transpositions

(1, 2), (3, 4), . . . , (2k − 1, 2k)

which cannot be obtained from the dn,k−2-subgroups in the manner described above. For a subgroup S of
this form, exactly two separate products in S contain (2k− 3, 2k− 2) as a factor, and exactly one product
in S does not contain (2k − 3, 2k − 2) as a factor. The factor (2k − 1, 2k) cannot be in a same product
as (2k − 3, 2k − 2) twice within S, because otherwise S could be obtained from a dn,k−2-subgroup, as
above. But since there is exactly one product in S which does not contain (2k− 3, 2k− 2) as a factor, by
the pigeonhole principle, it cannot be the case that that factor (2k − 1, 2k) is never in a same product as
(2k−3, 2k−2) within S. So, we may conclude that (2k−1, 2k) is an a same product as (2k−3, 2k−2)
within S exactly once.

So, by deleting the unique product of the form (2k − 3, 2k − 2)(2k − 1, 2k) in each such remaining
subgroup, and then replacing the unique remaining transposition of the form (2k − 1, 2k) with (2k −
3, 2k − 2), we obtain:

(i) Exactly one multiset consisting of an additional “empty product”, which corresponds to the unique
subgroup

{id, (2k − 1, 2k), (12)(34) · · · (2k), (12)(34) · · · (2k − 3, 2k − 2)} ∼= C2 × C2

which cannot be obtained from the dn,k−2-subgroups and which contains an element of the form
(2k − 1, 2k); and
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(ii) Exactly two copies of each dn,k−1-subgroup, given by two “interchangeable” positions for

2k 7→ 2k − 1

and 2k − 1.

The process outlined above is illustrated in Example 3.1.
So, we have that dn,k = 2dn,k−1 + 3dn,k−2 + 1. The integer sequence given by coefficients of the

form 1
24

(
−6− 3(−1)k + 3k

)
satisfies the recurrence whereby a(n) = 2a(n − 1) + 3a(n − 2) + 1. By

considering the base cases, we have that dn,k = 1
24

(
−6− 3(−1)k + 3k

)
, as desired.

Example 3.1. The subgroups corresponding to dn,5 = 10 are:

{(12)(34)(56)(78), (12)(34)(56)(9, 10), (78)(9, 10), id},
{(12)(34)(56)(78), (12)(34)(78)(9, 10), (56)(9, 10), id},
{(12)(34)(56)(78), (12)(56)(78)(9, 10), (34)(9, 10), id},
{(12)(34)(56)(78), (34)(56)(78)(9, 10), (12)(9, 10), id},
{(12)(34)(56)(9, 10), (12)(34)(78)(9, 10), (56)(78), id},
{(12)(34)(56)(9, 10), (34)(56)(78)(9, 10), (12)(78), id},
{(12)(34)(78)(9, 10), (34)(56)(78)(9, 10), (12)(56), id},
{(12)(56)(78)(9, 10), (34)(56)(78)(9, 10), (12)(34), id},
{(12)(34)(78)(9, 10), (12)(56)(78)(9, 10), (34)(56), id},
{(12)(34)(56)(9, 10), (12)(56)(78)(9, 10), (34)(78), id}.

Exactly three of these subgroups may be obtained from dn,3 in the manner suggested above, by adjoining
the product (78)(9, 10) twice in three different ways, leaving us with the following seven subgroups:

{(12)(34)(56)(78), (12)(34)(56)(9, 10), (78)(9, 10), id},
{(12)(34)(56)(78), (12)(34)(78)(9, 10), (56)(9, 10), id},
{(12)(34)(56)(78), (12)(56)(78)(9, 10), (34)(9, 10), id},
{(12)(34)(56)(78), (34)(56)(78)(9, 10), (12)(9, 10), id},
{(12)(34)(56)(9, 10), (12)(34)(78)(9, 10), (56)(78), id},
{(12)(34)(56)(9, 10), (34)(56)(78)(9, 10), (12)(78), id},
{(12)(34)(56)(9, 10), (12)(56)(78)(9, 10), (34)(78), id}.

Removing products of the form (78)(9, 10) from the above permutations yields one multiset with an
additional empty product. The remaining sets are given below:

{(12)(34)(56)(78), (12)(34), (56)(9, 10), id},
{(12)(34)(56)(78), (12)(56), (34)(9, 10), id},
{(12)(34)(56)(78), (34)(56), (12)(9, 10), id},
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{(12)(34)(56)(9, 10), (12)(34), (56)(78), id},
{(12)(34)(56)(9, 10), (34)(56), (12)(78), id},
{(12)(34)(56)(9, 10), (12)(56), (34)(78), id}.

By comparing the positions of (78) and (9, 10), we find that reducing each expression of the form (9, 10)
to (78) yields two copies of each subgroup in dn,k−1. This shows that d5,k = 2d4,k + 3d3,k + 1.

We may use the above EGF evaluation for A266503 together with a CAS such as Maple to prove the
following asymptotic result conjectured by Kotěšovec in OEIS Foundation Inc. (2011):

A266503n ∼ 2−
7
2 3

n
2−1exp

(√
n

3
− n

2
− 1

12

)
n
n
2 .

Kotěšovec also discovered the following interesting recursive formula for the sequence (A266503n)n∈N:

(n− 6)(n− 4)(n− 2)A266503n = (2n− 7)(2n2 − 14n+ 15)A266503n−1
+ 3(n− 7)(n− 1)(n2 − 7n+ 11)A266503n−2
− (n− 2)(n− 1)(9n2 − 85n+ 189)A266503n−3
+ (n− 3)(n− 2)(n− 1)(n2 − n− 22)A266503n−4
− 2(n− 4)2(n− 3)(n− 2)(n− 1)A266503n−5
− (n− 5)(n− 4)(n− 3)(n− 2)(n− 1)(3n− 19)A266503n−6
+ 3(n− 6)(n− 5)(n− 4)(n− 3)(n− 2)(n− 1)A266503n−7.

This recursion also may be proven using the EGF for A266503 together with a CAS.

4 A triple summation formula for TDT Klein four-subgroups
Let n ≥ 4. Let S be a ∆-closed 4-set consisting of the empty set together with subsets of a set consisting
of pairwise disjoint 2-subsets of {1, 2, . . . , n}. Then one of the following two situations must occur.

(i) The ∆-closed set S is of the form

{∅, {t1, t2, . . . , ti}, {ti+1, ti+2, . . . , tj}, {t1, t2, . . . , ti, ti+1, ti+2, . . . , tj}}

where {t1, t2, . . . , tj} is a set consisting of j distinct pairwise disjoint 2-sets in {1, 2, . . . , n}, or

(ii) The 4-set S consists of ∅ together with non-empty elements of the following forms, letting

{t1, t2, . . . , tk}

be a set consisting of k distinct pairwise disjoint 2-sets in {1, 2, . . . , n}:

{t1, t2, . . . , ti, ti+1, ti+2, . . . , tj},
{ti+1, ti+2, . . . , tj , tj+1, tj+2, . . . , tk},
{t1, t2, . . . , ti, tj+1, tj+2, . . . , tk}.
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Given an arbitrary ∆-closed 4-set S consisting of subsets of a set consisting of pairwise disjoint 2-
subsets of [n], we define the partition type type(S) of S as the unique partition λ = type(S) of length
3 such that a largest set of 2-sets in S consists of λ1

2 pairwise disjoint 2-sets consisting of a total of λ1
elements, a second-largest set of 2-sets in S consists of λ2

2 2-sets, and a third-largest set of 2-sets in S
consists of λ3

3 2-sets. For example,

type ({{{1, 3}, {2, 4}}, {{1, 3}}, {{2, 4}},∅}) = (4, 2, 2) ` 8,

type ({{{1, 3}, {2, 4}}, {{2, 4}, {5, 6}}, {{1, 3}, {5, 6}},∅}) = (4, 4, 4) ` 12,

type ({{{1, 3}, {2, 4}, {5, 6}}, {{1, 3}, {5, 6}}, {2, 4},∅}) = (6, 4, 2) ` 12.

We define a Klein partition for n ∈ N as a partition λ such that λ = type(S) for some set S of the form
described above.

Lemma 4.1. A partition λ is a Klein partition for n ∈ N if and only if

(a) The length `(λ) of λ is 3;

(b) Each entry of λ is even;

(c) The first entry λ1 of λ satisfies λ1 ≤ 2bn2 c; and

(d) There exists an index i in
[
0, λ2

2

]
such that λ1 + λ2 − 4i = λ3 and λ1 + λ2 − 2i ≤ n.

Proof: (=⇒) Suppose that λ is a Klein partition for n ∈ N. We thus have that λ = type(S) for some
∆-closed 4-set S consisting of ∅ together with subsets of a set consisting of pairwise disjoint 2-subsets
of {1, 2, . . . , n}. By definition of the partition type of a set of this form, we have that λ = type(S) must
be of length 3 and must have even entries. The first entry λ1 of λ is equal to the total number of elements
among all 2-sets in a largest set of 2-sets in S. If n is even, then the maximal total number of elements
among all 2-sets in a largest set of 2-sets in S is n, and otherwise, λ1 is at most n − 1. We thus have
that λ1 ≤ 2

⌊
n
2

⌋
. Let p1, p2, and p3 be pairwise distinct nontrivial sets of 2-sets such that p1 is a largest

set of 2-sets in S, p2 is a second-largest set of 2-sets in S, and p3 is a smallest set of 2-sets in S. Note
that it is possible that p1, p2, and p3 are all sets of equal cardinality. Also observe that p1∆p2 = p3 ∈ S.
Suppose that p1 and p2 share exactly j ∈ N0 2-sets in common. It is easily seen that j > 0 since S
forms a group under the binary operation ∆: S × S → S, and since the number of 2-sets of p1 is greater
than or equal to the number of 2-sets of p2 and greater than or equal to the number of 2-sets of p3. Since
λ2 ≤ λ1 it is thus clear that j ∈

[
0, λ2

2

]
. Since p1 and p2 share exactly j 2-sets, we thus have that total

number λ3 of elements among all 2-sets in p3 is (λ1 − 2j) + (λ2 − 2j) . Now consider the total number
of elements among the 2-sets in either p1 or p2. Since p1 and p2 share exactly j 2-sets, by the principle
of inclusion-exclusion, we have that the total number of elements among the 2-sets in either p1 or p2 is
equal to λ1 + λ2 − 2j. We thus have that λ1 + λ2 − 2j ≤ n, and we thus have that there exists an index i
in
[
0, λ2

2

]
such that

λ1 + λ2 − 4i = λ3, λ1 + λ2 − 2i ≤ n

as desired.
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(⇐=) Conversely, suppose that λ is a partition such that (a) The length of λ is 3; (b) Each entry of λ is
even; (c) The first entry λ1 of λ satisfies λ1 ≤ 2bn2 c; and (d) There exists an index i in

[
0, λ2

2

]
such that

λ1 + λ2 − 4i = λ3, λ1 + λ2 − 2i ≤ n. Let p1 denote the following set of pairwise disjoint 2-sets:

p1 = {{1, 2}, {3, 4}, . . . , {λ1 − 1, λ1}}.

Since λ1 is even (since each entry of λ is even), our above definition of p1 is well-defined. Since λ1 ≤
2
⌊
n
2

⌋
, we thus have that p1 is a set consisting of pairwise disjoint 2-subsets of {1, 2, . . . , n}. Since there

exists an integer i in the interval
[
0, λ2

2

]
such that

λ1 + λ2 − 4i = λ3, λ1 + λ2 − 2i ≤ n

by assumption, let j ∈
[
0, λ2

2

]
denote a fixed integer satisfying λ1 +λ2−4j = λ3 and λ1 +λ2−2j ≤ n.

Now let p2 denote the following set of pairwise disjoint 2-sets:

p2 =
{
{λ1 − 2j + 1, λ1 − 2j + 2} , {λ1 − 2j + 3, λ1 − 2j + 4} , . . . ,

{λ1 − 2j + λ2 − 1, λ1 − 2j + λ2}
}
.

The total number of elements among the distinct 2-sets in p2 is thus

(λ1 − 2j + λ2)− (λ1 − 2j + 1) + 1 = λ2

and since λ1 and λ2 are both even, the above definition of p2 is thus well-defined. Furthermore, since
λ1 + λ2 − 2j ≤ n, we thus have that p2 is a set consisting of pairwise disjoint 2-subsets of {1, 2, . . . , n}.
Now consider the expression p1∆p2 ∈ S. The total number of elements among the 2-sets in the expression
p1∆p2 is equal to

(λ1 − 2j) + (−2j + λ2) = λ1 + λ2 − 4j

and thus since λ1 +λ2−4j = λ3 we have that the expression p1∆p2 ∈ S consists of λ3

2 pairwise disjoint
2-sets consisting of a total of λ3 entries. Now consider the expression type(S). The set p1 consists of λ1

2

2-sets, the set p2 consists of λ2

2 2-sets, and the set p3 consists of λ3

2 2-sets, with

λ1
2
≥ λ2

2
≥ λ3

2

since λ = (λ1, λ2, λ3) is a partition. We thus have that type(S) = λ, thus proving that λ is a Klein
partition for n ∈ N.

Lemma 4.2. For n ∈ N, the Klein partitions for n are precisely tuples of the form

(2a, 2b, 2a+ 2b− 4i)

such that:

1. 1 ≤ a ≤
⌊
n
2

⌋
;

2. 1 ≤ b ≤ a; and
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3. max
(
a+ b−

⌊
n
2

⌋
,
⌈
a
2

⌉)
≤ i ≤ min

(
b,
⌊
2a+2b−1

4

⌋)
.

Proof: Let n ∈ N. Let λ = (2a, 2b, 2a+ 2b− 4i) be a tuple satisfying the conditions (1), (2), and (3)
given above. We have that 1 ≤ λ2 ≤ λ1 from condition (2). We have that 2a + 2b − 4i ≤ 2b since
a
2 ≤ i since

⌈
a
2

⌉
≤ i from condition (3), and we thus have that λ3 ≤ λ2 ≤ λ1 as desired. We have that

1 ≤ 2a+ 2b− 4i since i ≤ 2a+2b−1
4 since i ≤

⌊
2a+2b−1

4

⌋
from condition (3), and we thus have that

1 ≤ λ3 ≤ λ2 ≤ λ1

thus proving that that the tuple
λ = (2a, 2b, 2a+ 2b− 4i)

is in fact an integer partition. We proceed to make use of Lemma 4.1. Certainly, λ is of length 3, and each
entry of λ is even. The first entry λ1 = 2a of λ satisfies λ1 = 2a ≤ 2

⌊
n
2

⌋
since a ≤

⌊
n
2

⌋
from condition

(1). Certainly, λ1 + λ2 − 4i = λ3 = 2a + 2b − 4i. Furthermore, we have that λ1 + λ2 − 2i ≤ n since
a+ b− n

2 ≤ i since a+ b−
⌊
n
2

⌋
≤ i from condition (3). By Lemma 4.1, we thus have that the partition

λ is a Klein partition for n ∈ N.
Conversely, let λ be a Klein partition for n. By Lemma 4.1, we thus have that:

(a) The length `(λ) of λ is 3;

(b) Each entry of λ is even;

(c) The first entry λ1 of λ satisfies λ1 ≤ 2bn2 c; and

(d) There exists an integer i ∈
[
0, λ2

2

]
such that:

λ1 + λ2 − 4i = λ3, λ1 + λ2 − 2i ≤ n.

Begin by rewriting the entries of λ = (λ1, λ2, λ3) as follows. By condition (b) we may thus write
λ1 = 2a and λ2 = 2b, letting a, b ∈ N. Let i ∈

[
0, λ2

2

]
be as given in condition (d) above. We thus

have that λ3 = 2a+ 2b− 4i and we thus have that the integer partition λ = (λ1, λ2, λ3) is a tuple of the
following form:

λ = (2a, 2b, 2a+ 2b− 4i) .

Since λ is an integer partition, we have that 1 ≤ a. Since the first entry λ1 of λ satisfies λ1 ≤ 2
⌊
n
2

⌋
by condition (c) above, we thus have that a ≤

⌊
n
2

⌋
and we thus have that the first condition given in

Lemma 4.2 holds. Since λ is an integer partition, we have that 1 ≤ b ≤ a, and we thus have that the
second condition given in Lemma 4.2 holds.

From condition (d), we have that
λ1 + λ2 − 2i ≤ n

and we thus have that 2a+ 2b− 2i ≤ n and thus i ≥ a+ b− n
2 and we thus have that a+ b−

⌊
n
2

⌋
≤ i.

Since λ is a partition, we have that
2a+ 2b− 4i ≤ 2b
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and we thus have that a2 ≤ i and therefore
⌈
a
2

⌉
≤ i. From the inequality a + b −

⌊
n
2

⌋
≤ i together with

the inequality
⌈
a
2

⌉
≤ i we thus have that

max
(
a+ b−

⌊n
2

⌋
,
⌈a

2

⌉)
≤ i.

Since i ∈
[
0, λ2

2

]
, we thus have that i ≤ b. Since λ is an integer partition, we have that 1 ≤ λ3. Therefore,

1 ≤ 2a + 2b − 4i. We thus have that i ≤ 2a+2b−1
4 , and we thus have that i ≤

⌊
2a+2b−1

4

⌋
. From the

inequality i ≤
⌊
2a+2b−1

4

⌋
together with the inequality i ≤ b, we thus have that

i ≤ min

(
b,

⌊
2a+ 2b− 1

4

⌋)
thus proving that condition (3) given in Lemma 4.2 holds.

Definition 4.1. Let λ be a partition. We define the maximum repetition length of λ as the maximum
natural number m such that

λi+1 = λi+2 = · · · = λi+m

for some i ∈ N0. The maximum repetition length of a partition λ is denoted by repeat(λ).

Example 4.1. For a partition λ of length three, repeat(λ) = 1 if all three entries of λ are pairwise
distinct, repeat(λ) = 2 if two entries of λ are equal but different from the remaining (third) entry, and
repeat(λ) = 3 if λ1 = λ2 = λ3.

Lemma 4.3. Letting λ be a fixed Klein partition, the number of ∆-closed 4-sets consisting of ∅ together
with subsets of a set consisting of pairwise disjoint 2-subsets of {1, 2, . . . , n} of partition type λ is

1

(repeat(λ))!

∏λ1
2 −1
j=0

(
n−2j

2

)(
λ1

2

)
!

( λ1

2
λ1+λ2−λ3

4

)∏λ2−λ1+λ3
4 −1

j=0

(
n−λ1−2j

2

)(
λ2−λ1+λ3

4

)
!

.

Proof: There are ∏λ1
2 −1
j=0

(
n−2j

2

)(
λ1

2

)
!

distinct sets of 2-sets in Sn of length λ1

2 . Let i denote the unique index in
[
0, λ2

2

]
such that λ1 +λ2−4i =

λ3 and λ1+λ2−2i ≤ n. We thus have that there are precisely i “overlap” 2-sets shared among the largest
set of sets in a 4-set S of partition type λ and the second-largest set of sets in S. There are( λ1

2
λ1+λ2−λ3

4

)
choices for i “overlap” 2-sets, and for each such choice there are∏λ2−λ1+λ3

4 −1
j=0

(
n−λ1−2j

2

)(
λ2−λ1+λ3

4

)
!

remaining choices for the remaining 2-sets for the second-largest set in S.
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Theorem 4.4. The number of ∆-closed 4-sets S such that there exists a set T consisting of pairwise
disjoint 2-subsets of [n] such that each element in S is contained in T is

n!

bn2 c∑
i=1

i∑
j=1

min(j,b 1
4 (2i+2j−1)c)∑

k=max(d i2e,i+j−bn2 c)

2k−i−j

k!(i− k)!(j − k)!(n− 2i− 2j + 2k)!(δi,j + δi,2k + 1)!

for arbitrary n ∈ N.

Proof: From the above lemma, we have that the number of ∆-closed 4-sets consisting of the empty set
together with subsets of a set consisting of pairwise disjoint 2-subsets of {1, 2, . . . , n} is

∑
λ

1

(repeat(λ))!

∏λ1
2 −1
j=0

(
n−2j

2

)(
λ1

2

)
!

( λ1

2
λ1+λ2−λ3

4

)∏λ2−λ1+λ3
4 −1

j=0

(
n−λ1−2j

2

)(
λ2−λ1+λ3

4

)
!

where the above sum is over all Klein partitions λ for n. By Lemma 4.2, we thus have that the above
summation may be rewritten as:

bn2 c∑
a=1

a∑
b=1

min(b,b 2a+2b−1
4 c)∑

i=max(a+b−bn2 c,d a2 e)

1

(δ0,a−b + δ0,2i−a + 1)!

∏a−1
j=0

(
n−2j

2

)
a!

(
a

i

)∏b−i−1
j=0

(
n−2a−2j

2

)
(b− i)!

Rewriting the above expression by evaluating the products in the summand yields the desired result.

The integer sequence

(0, 0, 0, 3, 15, 105, 525, 3255, 17703, 112455, 669735, 4485195, 29023995, 205768563, . . .)

given by the number of ∆-closed 4-sets consisting of the empty set together with subsets of a set consisting
of pairwise disjoint 2-subsets of {1, 2, . . . , n} is given in the On-Line Encyclopedia of Integer Sequences
sequence A267840 which we contributed. For example, there are A267840n = 15 symmetric difference-
closed 4-sets of this form in the case whereby n = 5:

{∅, {{1, 2}} , {{3, 4}} , {{1, 2} , {3, 4}}} , {∅, {{1, 2}} , {{3, 5}} , {{1, 2} , {3, 5}}} ,
{∅, {{1, 2}} , {{4, 5}} , {{1, 2} , {4, 5}}} , {∅, {{1, 3}} , {{2, 4}} , {{1, 3} , {2, 4}}} ,
{∅, {{1, 3}} , {{2, 5}} , {{1, 3} , {2, 5}}} , {∅, {{1, 3}} , {{4, 5}} , {{1, 3} , {4, 5}}} ,
{∅, {{1, 4}} , {{2, 3}} , {{1, 4} , {2, 3}}} , {∅, {{1, 4}} , {{2, 5}} , {{1, 4} , {2, 5}}} ,
{∅, {{1, 4}} , {{3, 5}} , {{1, 4} , {3, 5}}} , {∅, {{1, 5}} , {{2, 3}} , {{1, 5} , {2, 3}}} ,
{∅, {{1, 5}} , {{2, 4}} , {{1, 5} , {2, 4}}} , {∅, {{1, 5}} , {{3, 4}} , {{1, 5} , {3, 4}}} ,
{∅, {{2, 3}} , {{4, 5}} , {{2, 3} , {4, 5}}} , {∅, {{2, 4}} , {{3, 5}} , {{2, 4} , {3, 5}}} ,
{∅, {{2, 5}} , {{3, 4}} , {{2, 5} , {3, 4}}} .

It it natural to use Lemma 4.2 to determine “even” analogues of the above results.
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Lemma 4.5. For n ∈ N, the Klein partitions for n corresponding to 4-sets consisting of ∅ together with
subsets of a set consisting of pairwise disjoint 2-subsets of [n] are precisely tuples of the form (4d, 4e, 4d+
4e− 4i) such that:

1. 1 ≤ d ≤
⌊
n
4

⌋
;

2. 1 ≤ e ≤ d; and

3. max
{

2d+ 2e−
⌊
n
2

⌋
, d
}
≤ i ≤ min

{
2e,
⌊
4d+4e−1

4

⌋}
.

Proof: The above lemma follows immediately from Lemma 4.2 by letting a = 2d and b = 2e.

Theorem 4.6. The number of ∆-closed 4-sets consisting of even-order subsets of a set consisting of
pairwise disjoint 2-subsets of {1, 2, . . . , n} is

n!

bn4 c∑
i=1

i∑
j=1

min(2j,b 1
4 (4i+4j−1)c)∑

k=max(i,2i+2j−bn2 c)

2k−2i−2j

k!(2i− k)!(2j − k)!(n− 4i− 4j + 2k)!(δi,j + δi,k + 1)!

for arbitrary n ∈ N.

Proof: The above theorem follows from Lemma 4.3 by analogy with Theorem 4.4.

The corresponding integer sequence is given below, and is given in the sequence A266503 which we
contributed to OEIS Foundation Inc. (2011).

(0, 0, 0, 0, 0, 15, 105, 735, 4095, 26775, 162855, 1105335, 7187895, 51126075, 356831475, . . .) .

5 Conclusion
The number of Klein partitions for n = 1, 2, . . . is given by the following integer sequence:

(0, 0, 0, 1, 1, 3, 3, 6, 6, 10, 10, 16, 16, 23, 23, 32, 32, 43, 43, 56, 56, 71, 71, 89, . . .) .

We have previously noted that the corresponding integer sequence

(0, 1, 3, 6, 10, 16, 23, 32, 43, 56, 71, 89, 109, 132, 158, . . .)

coincides with the sequence A034198 given by the number of binary codes of a given length with 3 words,
as indicated in OEIS Foundation Inc. (2011). We currently leave it as an open problem to use Lemma 4.2
to prove this. Proving this problem is nontrivial in the following sense. It may be difficult to construct a
closed-form formula for the number of Klein partitions of n ∈ N, since the definition of a Klein partition
is somewhat complicated. Moreover, it may not be obvious as to how to relate such a formula to a known
formula for the sequence A034198.

Interestingly, there are known connections between the OEIS sequence A034198 and Klein four-
subgroups. In particular, A034198n is the number of orbits of Klein subgroups of Cn2 under automor-
phisms of Cn2 , and A034198n is the number of faithful representations of K4 = C2

2 of dimension n up to
equivalence by automorphisms of C2

2 (OEIS Foundation Inc. (2011)).
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